ISSN 1000-3304CN 11-1857/O6

计算机模拟研究聚合物纳米复合材料的分散与界面

刘军 沈建祥 曹达鹏 张立群

引用本文: 刘军, 沈建祥, 曹达鹏, 张立群. 计算机模拟研究聚合物纳米复合材料的分散与界面[J]. 高分子学报, 2016, (8): 1048-1061. doi: 10.11777/j.issn1000-3304.2016.16105 shu
Citation1:  Jun Liu, Jian-xiang Shen, Da-peng Cao and Li-qun Zhang. Computer Simulation of Dispersion and Interface in Polymer Nanocomposites[J]. Acta Polymerica Sinica, 2016, (8): 1048-1061. doi: 10.11777/j.issn1000-3304.2016.16105 shu

计算机模拟研究聚合物纳米复合材料的分散与界面

    通讯作者: 刘军, 刘军, E-mail:liujun@mail.buct.edu.cn
摘要: 针对聚合物纳米复合材料,系统综述了计算机模拟技术(分子动力学模拟)在纳米颗粒的分散与聚合物-纳米颗粒界面作用取得的成果与进展,包括不同形状纳米颗粒在聚合物基体的分散机理、相行为与微观结构、纳米颗粒对分子链构象的影响(分子链均方回转半径的变化)、分子链在纳米颗粒表面结构(取向与排列)、分子链与纳米颗粒界面作用能、界面区分子链活动性与纳米颗粒形成的网络结构.为构建聚合物纳米复合材料的组成、结构与性能之间的关系,提出了3个模拟方面的挑战,包括发展长时间跨尺度计算机模拟技术、建立准确模拟材料力学性能的方法与导电导热功能性的模拟.

English

    1. [1]

      Balazs A C, Emrick T, Russell T P..Science, 2006, 314(5802):1107-1110 doi: 10.1126/science.1130557

    2. [2]

      Bokobza L..Polymer, 2007, 48(17):4907-4920 doi: 10.1016/j.polymer.2007.06.046

    3. [3]

      Vaia R A, Maguire J F..Chem Mat, 2007, 19(11):2736-2751 doi: 10.1021/cm062693+

    4. [4]

      Sim L C, Ramanan S R, Ismail H, Seetharamu K N, Goh T J..Thermochim Acta, 2005, 430(1-2):155-165 doi: 10.1016/j.tca.2004.12.024

    5. [5]

      Kohjiya S, Murakami K, Iio S, Tanahashi T, Ikeda Y..Rubber Chem Technol, 2001, 74(1):16-27 doi: 10.5254/1.3547635

    6. [6]

      Zhang L Q, Wang Y Z, Wang Y Q, Sui Y, Yu D S..J Appl Polym Sci, 2000, 78:1873-1892 doi: 10.1002/(ISSN)1097-4628

    7. [7]

      Wang Y Z, Zhang L Q, Tang C H, Yu D S, 2000, 78:1879-1896

    8. [8]

      Kim Y A, Hayashi T, Endo M, Gotoh Y, Wada N, Seiyama J..Scr Mater, 2006, 54(1):31-35 doi: 10.1016/j.scriptamat.2005.09.014

    9. [9]

      Heinrich G, Kluppel M..Adv Polym Sci, 2002, 160:1-44 doi: 10.1007/3-540-45362-8

    10. [10]

      Kluppel M..Adv Polym Sci, 2003, 164:1-86 doi: 10.1007/b10953

    11. [11]

      Kohjiya S, Katoh A, Shimanuki J, Hasegawa T, Ikeda Y..Polymer, 2005, 46(12):4440-4446 doi: 10.1016/j.polymer.2005.02.026

    12. [12]

      Ikeda Y, Katoh A, Shimanuki J, Kohjiya S..Macromol Rapid Commun, 2004, 25(12):1186-1190 doi: 10.1002/(ISSN)1521-3927

    13. [13]

      Kohjiya S, Katoh A, Suda T, Shimanuki J, Ikeda Y..Polymer, 2006, 47(10):3298-3301 doi: 10.1016/j.polymer.2006.03.008

    14. [14]

      Kohjiya S, Kato A, Ikeda Y..Prog Polym Sci, 2008, 33(10):979-997 doi: 10.1016/j.progpolymsci.2008.06.001

    15. [15]

      Luo H, Kluppel M, Schneider H..Macromolecules, 2004, 37(21):8000-8009 doi: 10.1021/ma035985u

    16. [16]

      Litvinov V M, Steeman P A M.., Macromolecules, 1999, 32:8476-8482 doi: 10.1021/ma9910080

    17. [17]

      Valentin J L, Mora-Barrantes I, Carretero-Gonzalez J, Lopez-Manchado M A, Sotta P, Long D R, Saalwachter K..Macromolecules, 2010, 43(1):334-346 doi: 10.1021/ma901999j

    18. [18]

      Ozmusul M S, Picu C R, Sternstein S S, Kumar S K..Macromolecules, 2005, 38(10):4495-4500 doi: 10.1021/ma0474731

    19. [19]

      Zhang Q, Archer L A..J Chem Phys, 2004, 121(21):10814-10824 doi: 10.1063/1.1812752

    20. [20]

      Fu C L, Sun Z Y, An L J..Chinese J Polym Sci, 2013, 31(3):388-398 doi: 10.1007/s10118-013-1231-x

    21. [21]

      Ding M M, Duan X Z, Lu Y Y, Shi T F..Chinese J Polym Sci, 2015, 33(5):674-679 doi: 10.1007/s10118-015-1630-2

    22. [22]

      Hoogerbrugge P J, Koelman J..Europhys Lett, 1992, 19:155-160 doi: 10.1209/0295-5075/19/3/001

    23. [23]

      Pan J, Bian L C, Zhao H C, Zhao Y..Comp Mater Sci, 2016, 113:21-26 doi: 10.1016/j.commatsci.2015.11.009

    24. [24]

      Banerjee D, Nguyen T, Chuang T J..Comp Mater Sci, 2016, 114:209-218 doi: 10.1016/j.commatsci.2015.12.026

    25. [25]

      Hooper J B, Schweizer K S..Macromolecules, 2005, 38(21):8858-8869 doi: 10.1021/ma051318k

    26. [26]

      Hooper J B, Schweizer K S..Macromolecules, 2006, 39(15):5133-5142 doi: 10.1021/ma060577m

    27. [27]

      Liu J, Gao Y G, Cao D P, Zhang L Q, Guo Z H..Langmuir, 2011, 27(12):7926-7933 doi: 10.1021/la201073m

    28. [28]

      Patra T K, Singh J K..Soft Matter, 2014, 10(11):1823-1830 doi: 10.1039/c3sm52216d

    29. [29]

      Sankar U K, Tripathy M..Macromolecules, 2015, 48(2):432-442 doi: 10.1021/ma501292d

    30. [30]

      Hall L M, Schweizer K S..Soft Matter, 2010, 6(5):1015-1025 doi: 10.1039/b919160g

    31. [31]

      Akcora P, Liu H, Kumar S K, Moll J, Li Y D..Nat Mater, 2009, 8(4):354-359 doi: 10.1038/nmat2404

    32. [32]

      Ginzburg V V..Macromolecules, 2013, 46(24):9798-9805 doi: 10.1021/ma402210v

    33. [33]

      Green P F..Soft Matter, 2011, 7(18):7914-7926 doi: 10.1039/c1sm05076a

    34. [34]

      Trombly D M, Ganesan V..J Chem Phys, 2010, 133(15):154904 doi: 10.1063/1.3493330

    35. [35]

      Shen J X, Liu J, Li H D, Gao Y Y, Li X L, Wu Y P, Zhang L Q..Phys Chem Chem Phys, 2015, 17(11):7196-7207 doi: 10.1039/C4CP05520A

    36. [36]

      Martin T B, Dodd P M, Jayaraman A..Phys Rev Lett, 2013, 110(1):018301 doi: 10.1103/PhysRevLett.110.018301

    37. [37]

      Jayaraman A, Schweizer K S..Macromolecules, 2008, 41(23):9430-9438 doi: 10.1021/ma801722m

    38. [38]

      Jayaraman A..J Polym Sci, Part B:Polym Phys, 2013, 51(7):524-534 doi: 10.1002/polb.23260

    39. [39]

      Lin B, Martin T B, Jayaraman A..ACS Macro Lett, 2014, 3(7):628-632 doi: 10.1021/mz500274w

    40. [40]

      Padmanabhan V..J Chem Phys, 2013, 139(14):144904 doi: 10.1063/1.4824765

    41. [41]

      Vacatello M..Macromolecules, 2001, 34(6):1946-1952 doi: 10.1021/ma0015370

    42. [42]

      Vacatello M..Macromolecules, 2002, 35(21):8191-8193 doi: 10.1021/ma020416s

    43. [43]

      Tuteja A, Duxbury P M, Mackay M E..Phys Rev Lett, 2008, 100(7):177-181

    44. [44]

      Frischknecht A L, McGarrity E S, Mackay M E..J Chem Phys, 2010, 132(20):204901 doi: 10.1063/1.3428760

    45. [45]

      Karatrantos A, Clarke N, Composto R J, Winey K I..Soft Matter, 2015, 11(2):382-388 doi: 10.1039/C4SM01980F

    46. [46]

      Rittigstein P, Priestley R D, Broadbelt L J, Torkelson J M..Nat Mater, 2007, 6(4):278-282 doi: 10.1038/nmat1870

    47. [47]

      Berriot J M, Lequeux F, Long D, Sotta P..Macromolecules, 2002, 35, 9756-9762.: doi: 10.1021/ma0212700

    48. [48]

      Montes H, Lequeux F, Berriot J..Macromolecules, 2003, 36(21):8107-8118 doi: 10.1021/ma0344590

    49. [49]

      Merabia S, Sotta P, Long D R..Macromolecules, 2008, 41(21):8252-8266 doi: 10.1021/ma8014728

    50. [50]

      Bogoslovov R B, Roland C M, Ellis A R, Randall A M, Robertson C G..Macromolecules, 2008, 41(4):1289-1296 doi: 10.1021/ma702372a

    51. [51]

      Robertson C G, Lin C J, Rackaitis M, Roland C M..Macromolecules, 2008, 41(7):2727-2731 doi: 10.1021/ma7022364

    52. [52]

      Robertson C G, Lin C J, Bogoslovov R B, Rackaitis M, Sadhukhan P, Quinn J D, Roland C M..Rubber Chem Technol, 2011, 84(4):507-519 doi: 10.5254/1.3601885

    53. [53]

      Robertson C G, Roland C M..Rubber Chem Technol, 2008, 81(3):506-522 doi: 10.5254/1.3548217

    54. [54]

      Starr F W, Schroder T B, Glotzer S C..Macromolecules, 2002, 35(11):4481-4492 doi: 10.1021/ma010626p

    55. [55]

      Brown D, Mele P, Marceau S, Alberola N D..Macromolecules, 2003, 36(4):1395-1406 doi: 10.1021/ma020951s

    56. [56]

      Brown D, Marcadon V, Mele P, Alberola N D..Macromolecules, 2008, 41(4):1499-1511 doi: 10.1021/ma701940j

    57. [57]

      Liu J, Wu Y, Shen J X, Gao Y Y, Zhang L Q, Cao D P..Phys Chem Chem Phys, 2011, 13(28):13058 doi: 10.1039/c0cp02952a

    58. [58]

      Milano G, Santangelo G, Ragone F, Cavallo L, Di Matteo A..J Phys Chem C, 2011, 115(31):15154-15163 doi: 10.1021/jp201374h

    59. [59]

      Smith G D, Bedrov D, Borodin O..Phys Rev Lett, 2003, 90(22):226103 doi: 10.1103/PhysRevLett.90.226103

    60. [60]

      Borodin O, Smith G D, Bandyopadhyaya R, Byutner E..Macromolecules, 2003, 36(20):7873-7883 doi: 10.1021/ma0346005

    61. [61]

      Smith K A, Vladkov M, Barrat J L..Macromolecules, 2005, 38(2):571-580 doi: 10.1021/ma048096v

    62. [62]

      Sikdar D, Katti D R, Katti K S, Bhowmik R..Polymer, 2006, 47(14):5196-5205 doi: 10.1016/j.polymer.2006.05.026

    63. [63]

      Karatrantos A, Composto R J, Winey K I, Clarke N..Macromolecules, 2011, 44(24):9830-9838 doi: 10.1021/ma201359s

    64. [64]

      Wei C Y, Srivastava D, Cho K..Nano Letters, 2004, 4(10):1949-1952 doi: 10.1021/nl048845m

    65. [65]

      Wei C Y..Nano Letters, 2006, 6(8):1627-1631 doi: 10.1021/nl0605770

    66. [66]

      Foroutan M, Nasrabadi A T..J Phys Chem B, 2010, 114(16):5320-5326 doi: 10.1021/jp100960u

    67. [67]

      Frankland S J V, Caglar A, Brenner D W..J Phys Chem B, 2002, 106:3046-3048 doi: 10.1021/jp015591+

    68. [68]

      Zheng Q B, Xia D, Xue Q Z, Yan K Y, Gao X L, Li Q..Appl Surf Sci, 2009, 255(6):3534-3543 doi: 10.1016/j.apsusc.2008.09.077

    69. [69]

      Payne A R..J Appl Polym Sci, 1965, 9:2273 doi: 10.1002/app.1965.070090619

    70. [70]

      Jaber E, Luo H B, Li W T, Gersappe D..Soft Matter, 2011, 7(8):3852-3860 doi: 10.1039/c0sm00990c

    71. [71]

      Li Y, Kroger M, Liu W K..Polymer, 2011, 52(25):5867-5878 doi: 10.1016/j.polymer.2011.10.044

    1. [1]

      沈烈孟庆荣彭懋方征平 . 动态流变法在聚合物/聚合物界面分子链扩散研究中的应用. 高分子学报, 2012, (8): 794-800. doi: 10.3724/SP.J.1105.2012.12049

    2. [2]

      李文林牛艳华王志刚 . 聚合物熔体界面扩散理论与研究方法. 高分子学报, 2013, (7): 817-826. doi: 10.3724/SP.J.1105.2013.13032

    3. [3]

      栗华吴晓甫杭昊陈永红童辉王利祥 . 水分散超支化共轭聚合物纳米粒子的制备及其对苦味酸的高灵敏荧光检测. 高分子学报, 2018, (2): 248-256. doi: 10.11777/j.issn1000-3304.2018.17194

    4. [4]

      林敏王丹丹刘树威周鼎张皓刘畅孙宏晨 . 纳米粒子/聚合物复合光热平台的构筑和应用. 高分子学报, 2015, (2): 133-146. doi: 10.11777/j.issn1000-3304.2015.14359

    5. [5]

      崔宝宝潘俊星张进军孙敏娜郭宇琦岑建勇武海顺 . 纳米粒子驱动受限环境下两嵌段共聚物/均聚物混合体系的自组装行为. 高分子学报, 2017, (6): 959-966. doi: 10.11777/j.issn1000-3304.2017.16285

    6. [6]

      李雪梅贺继东 . 两亲性三嵌段共聚物PHB-PEG-PHB的合成及其纳米粒子的制备与表征. 高分子学报, 2015, (1): 41-48. doi: 10.11777/j.issn1000-3304.2015.14166

    7. [7]

      马世营汪蓉 . 嵌段共聚物调控纳米粒子自组装的研究进展. 高分子学报, 2016, (8): 1030-1041. doi: 10.11777/j.issn1000-3304.2016.16082

    8. [8]

      陈丽杰秦玉升周庆海王献红赵晓江王佛松 . 氨酯化合物对聚碳酸1,2-丙二酯的同时增韧和增强研究. 高分子学报, 2011, (11): 1349-1354. doi: 10.3724/SP.J.1105.2011.11110

    9. [9]

      魏浩桐杨柏 . 聚合物与纳米晶的杂化及性能优化. 高分子学报, 2011, (9): 939-949. doi: 10.3724/SP.J.1105.2011.11136

    10. [10]

      陈国彬张晓明刘俊吕忆玲 . 基于氧化铁颗粒与聚合物的纳米复合材料磁电容特性研究. 高分子学报, 2015, (3): 277-283. doi: 10.11777/j.issn1000-3304.2015.14253

    11. [11]

      郭闻源杨东杰李荣邱学青 . 磺化木质素系聚合物的结构及其在氧化铝上的吸附特性. 高分子学报, 2012, (9): 988-996. doi: 10.3724/SP.J.1105.2012.11411

    12. [12]

      郑香允陈晓婷李道克冯传义 . 聚离子液体修饰碳纳米管及其对环氧树脂力学性能的影响. 高分子学报, 2016, (2): 264-270. doi: 10.11777/j.issn1000-3304.2016.15248

    13. [13]

      门菲张洁崔宇恒张立群岳冬梅 . 手性荧光聚合物微球的合成及表征. 高分子学报, 2015, (11): 1322-1327. doi: 10.11777/j.issn1000-3304.2015.15076

    14. [14]

      谭珏郑裕东彭江吴健高爽田茹陈红谚 . 层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究. 高分子学报, 2012, (4): 351-356. doi: 10.3724/SP.J.1105.2012.11171

    15. [15]

      殷先泽谭业强林雷宋义虎郑强 . 核/壳纳米复合粒子填充聚苯乙烯的流变行为. 高分子学报, 2012, (11): 1335-1341. doi: 10.3724/SP.J.1105.2012.12060

    16. [16]

      张丽洁黄晶吴思武唐征海郭宝春 . 可变形微区增强丁苯橡胶及其机理. 高分子学报, 2019, 50(0): 1-7. doi: 10.11777/j.issn1000-3304.2019.19135

    17. [17]

      李菲菲王秋雯马列高长有 . 复合转化生长因子-1的磺化壳聚糖/聚赖氨酸纳米粒子的制备及其体外诱导干细胞分化性能. 高分子学报, 2013, (9): 1177-1182. doi: 10.3724/SP.J.1105.2013.12425

    18. [18]

      柴仕淦袁建军邹其超张金枝 . Poly(St-co-DMC)/SiO2杂化及空心杂化纳米粒子的合成及表征. 高分子学报, 2016, (2): 250-255. doi: 10.11777/j.issn1000-3304.2016.15192

    19. [19]

      李文迪容建华林志丹张秀菊 . 细菌纤维素(BC)增强PVA/PVP复合水凝胶的制备及性能表征. 高分子学报, 2012, (4): 357-364. doi: 10.3724/SP.J.1105.2012.11175

    20. [20]

      梁福鑫杨振忠 . Janus复合材料调控界面. 高分子学报, 2017, (6): 883-892. doi: 10.11777/j.issn1000-3304.2017.17012

  • Figure 1.  Schematic illustration of four states of the spatial organization of NPs in a homopolymer melt: (1) depletion-induced direct contact aggregation, (2) good dispersion due to steric stabilization, (3) short-ranged polymer bridging-induced aggregation, (4) long-ranged polymer bridging-induced aggregation (Reprinted with permission from Ref.[25]; Copyright (2005) American Chemical Society)

    Figure 2.  Plot of the potential of mean force (POMF), as denoted by Wcc(r) as a function of the inter-particle distance for these four different states, and it is noted that D and d stand for the diameter of the NP and polymer segment, separately (Reprinted with permission from Ref.[26]; Copyright (2006) American Chemical Society)

    Figure 3.  Schematics of the phase diagram by plotting the volume fraction of the NPs ϕ as a function of the interaction strength between polymer chains and NPs εnp (Reprinted with permission from Ref.[26]; Copyright (2006) American Chemical Society)

    Figure 4.  (a) The radial distribution function of NPs for various polymer-NPs interaction strength, and inset shows the cases with εnp=2.0 and 5.0; (b) Snapshots of the dispersion of NPs for different εnp. Note that the red spheres represent NPs, and the blue points stand for polymer chains; (c) The number of neighbor fillers and the second virial coefficient B2 as a function of εnp; (d) Potential of mean force (POMF) for different εnp (Reprinted with permission from Ref.[27]; Copyright (2011) American Chemical Society)

    Figure 5.  (a) Model of cubic NP composed of 98 spherical beads, and its phase diagram standing for all possible spatial organization is shown in the right, ■: cubic array assembly, ●: square column assembly, ▲: sheet-like square array assembly, ★: dispersion, ◆: bridging of NPs via polymer layer. (b)Model of tetrahedrons consisting of 34 spherical beads with its phase diagram representing all possible spatial organization is displayed in the right, ■: sphere-like ordered structure, ▲: sheet-like disordered structure, ★: dispersion, ◆: bridging of NPs via polymer layer. Note that the dashed lines are used only to guide the eye, and are not thermodynamics boundaries[28] (Reproduce from Ref.[28] by permission of The Royal Society of Chemistry)

    Figure 6.  Schematics of the spatial organization of nanorods (a) contact aggregation, (b) bridging and (c) tele-bridging (Reprinted with permission from Ref.[29]; Copyright (2015) American Chemical Society)

    Figure 7.  Schematics of rod, disk and cube (Reproduce from Ref.[30] by permission of The Royal Society of Chemistry)

    Figure 8.  (a) Change of the chain dimension normalized by that of the pure system as a function of the volume fraction of the fillers. The chain length N=40, σn=3σ (filled cyan circles); N=40, σn=5σ(filled green squares, under the pink diamonds); N=40, σn=6. 2σ (filled pink diamonds); N=40, σn=3σ(open blue circles); N=80, σn=5σ (open red squares); N=80, σn=6.2σ (open black diamonds). The black dashed line shows Rg/Rg0=(1-ϕn)-1/3. (b) Radius of gyration of polymers in melt with nanoparticles of radius R=1, 2 normalized with its value in the bulk for N=200 and N=100 (inset): polymer melt (blue filled circles), nanocomposite: attractive monomer-nanoparticle (R=2) interactions (red filled circles), nanocomposite: repulsive monomer-nanoparticle (R=2) interactions (black filled diamonds), nanocomposite: attractive monomer-nanoparticle (R=1) interactions (red open circles), nanocomposite: repulsive monomer-nanoparticle (R=1) interactions (black open diamonds). The black dashed line shows Rg/Rg0=(1-ϕ)-1/3 (Reproduce from Ref.[44] by permission of American Institute of Physics; Reproduce from Ref.[45] by permission of The Royal Society of Chemistry)

    Figure 9.  (a) Snapshot of NPs filled polymer melts, note that the bonds between nearest-neighbor monomers along a chain are drawn in various shades of gray for clarity, and the points on the filler surface represents ideal force sites at the vertices; (b) a few representative polymers that have monomers near the filler surface; (c) The radius of chain gyration Rg as a function of distance d/ < Rg> of the mass center of a chain from the filler surface for attractive and non-attractive interactions, and Rg denotes the component perpendicular to the filler surface; (d) Temperature dependence of the segmental relaxation time τ of the intermediate scattering function of polymer chains for pure polymer melts, filled with attractive and non-attractive cases. The lines are a fit to the VFT from τ≈AeB/(T-T0), and the inset shows the same data plotted against reduced temperature T0/(T-T0) to show the quality of the VFT fit (Reprinted with permission from Ref.[54]; Copyright (2002) American Chemical Society)

    Figure 10.  (a) A close-up 3D view of silica NP with its radius equal to 1.5 nm (left) and snapshot of the model polymer chains surrounded the silica NP (right), note that oxygen atoms are shown in red and silicon atoms in yellow; (b) The adsorption state of a single polymer chain on the filler surface with two typical polymer-filler interaction εnp=2.0 and 10.0; (c) The bond and segmental orientation as a function of its distance from the filler center (Reproduce from Ref.[57] by permission of The Royal Society of Chemistry)

    Figure 11.  MD snapshots of PCL (poly(caprolactone))interacting with SWCNTs at different simulation times (a) 350 ps, (b) 550 ps, (c) 950, (d) 1450, (e) 2450, (f) 3200 ps. The colors used for the polymer represent the following atoms: carbon is aqua, hydrogen is pink, and oxygen is red. (Reprinted with permission from Ref.[66]; Copyright (2010) American Chemical Society)

    Figure 12.  (a) The 5% surface chemical modification of SWCNT with (i) carboxylic groups (—COOH), (ii) amide groups (—CONH2), (iii) alkyl groups (—C6H11) and (iv) phenyl groups (—C6H5); (b) Snapshots of the pullout process of the SWCNT from the polyethylene as a function of the displacement; (c) Comparisons of the interaction energy, interfacial bonding energy and shear stress for the four different surface chemical modifications of SWCNT (Reprinted from Ref.[68]; Copyright (2009), with permission from Elsevier)

    Figure 13.  (a) Snapshot of a fully equilibrated state in the polymer melt with the volume fraction of the nanofillers equal to ϕ=2%. Note that connecting different color hollow spheres represent different polymer chains belonging to different clusters; (b) ϕ=5%, two clusters are formed and cluster 1 is clearly dominating the system and (c) ϕ=10%, only one cluster spanning the entire simulation system is formed. (Reproduce from Ref.[70] by permission of The Royal Society of Chemistry)

  • 加载中
图(13)
计量
  • PDF下载量:  40
  • 文章访问数:  586
  • HTML全文浏览量:  233
  • 引证文献数: 0
文章相关
  • 通讯作者:  刘军, liujun@mail.buct.edu.cn
  • 收稿日期:  2016-03-23
  • 修稿日期:  2016-05-10
  • 刊出日期:  2016-08-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计