ISSN 1000-3304CN 11-1857/O6

聚电解质单链在盐溶液中构象转变的并行回火蒙特卡罗研究

王朗 王铮 尹玉华 蒋润 李宝会

引用本文: 王朗, 王铮, 尹玉华, 蒋润, 李宝会. 聚电解质单链在盐溶液中构象转变的并行回火蒙特卡罗研究[J]. 高分子学报, 2017, (12): 1984-1992. doi: 10.11777/j.issn1000-3304.2017.17034 shu
Citation:  Lang Wang, Zheng Wang, Yu-hua Yin, Run Jiang and Bao-hui Li. A Parallel Tempering Monte-Carlo Study of Conformation Transitions of a Single Polyelectrolyte Chain in Solutions with Added Salt[J]. Acta Polymerica Sinica, 2017, (12): 1984-1992. doi: 10.11777/j.issn1000-3304.2017.17034 shu

聚电解质单链在盐溶液中构象转变的并行回火蒙特卡罗研究

    通讯作者: 李宝会, 李宝会,E-mail: baohui@nankai.edu.cn
  • 基金项目: 国家自然科学基金(基金号21574071,21528401,20925414,91227121)、教育部创新团队发展计划(项目号IRT1257)和高等学校学科创新引智计划(项目号B16027)资助

摘要: 采用并行回火蒙特卡罗方法,研究了聚电解质单链在盐溶液中的构象转变以及离子的凝聚行为.对不同盐浓度以及不同价态的情况,得到了链均方回转半径(< Rg2>)随Bjerrum长度lB的变化曲线.模拟结果表明,在不同浓度与价态的盐溶液中,随着lB的增加,链先伸展,然后收缩,最终形成塌缩态.链尺寸受盐浓度与价态的影响,在中等lB范围内,随着单价盐的加入,< Rg2>逐渐减小.而加入少量的高价盐则会引起 < Rg2>更加显着得减小,这主要是由于高价反离子的凝聚造成的.对于高价盐,在一定的lB范围内,随着盐浓度的增加,存在 < Rg2>先减小后增大的现象.在高价(如二价或三价)盐溶液中,当高价反离子的总电量大于链电量时,高价反离子和共离子(与链带同种电荷的离子)都发生凝聚,而单价反离子几乎不发生凝聚;并且存在高价离子过度补偿引起的链有效电荷反转.

English

    1. [1]

      Barrat J L, Joanny J F. Adv Chem Phys, 1996, 94:1-66

    2. [2]

      Dobrynin A V, Rubinstein M. Prog Polym Sci, 2005, 30:1049-1118 doi: 10.1016/j.progpolymsci.2005.07.006

    3. [3]

      Dobrynin A V. Curr. Opin. Colloid Interface Sci, 2008, 13:376-388 doi: 10.1016/j.cocis.2008.03.006

    4. [4]

      Aseyev V O, Klenin S I, Tenhu H, Grillo I, Geissler E. Macromolecules, 2001, 34:3706-3709 doi: 10.1021/ma0016331

    5. [5]

      Carbajal-Tinoco M D, Ober R, Dolbnya I, Bras W, Williams C E. J. Phys Chem B, 2002, 106:12165-12169 doi: 10.1021/jp020323c

    6. [6]

      Jia P, Zhao J. J Chem Phys, 2009, 131:231103 doi: 10.1063/1.3276278

    7. [7]

      Roiter Y, Trotsenko O, Tokarev V, Minko S. J Am Chem Soc, 2010, 132:13660-13662 doi: 10.1021/ja106065g

    8. [8]

      Trotsenko O, Roiter Y, Minko S. Langmuir, 2012, 28:6037-6044 doi: 10.1021/la300584k

    9. [9]

      Hou Y, Liu G, Wu Y, Zhang G. Phys Chem Chem Phys, 2011, 13:2880-2886 doi: 10.1039/C0CP01994A

    10. [10]

      de la Cruz M O, Belloni L, Delsanti M, Dalbiez J P, Spalla O, Drifford M. J Chem Phys, 1995, 103:5781-5791 doi: 10.1063/1.470459

    11. [11]

      Pelta J, Livolant F, Sikorav J L. J Biol Chem, 1996, 271:5656-5662 doi: 10.1074/jbc.271.10.5656

    12. [12]

      Dubois E, Boué F. Macromolecules, 2001, 34:3684-3697 doi: 10.1021/ma000956u

    13. [13]

      Bloomfield V. A. Biopolymers, 1997, 44:269-282 doi: 10.1002/(ISSN)1097-0282

    14. [14]

      Schiessel H, Pincus P. Macromolecules, 1998, 31:7953-7959 doi: 10.1021/ma980823x

    15. [15]

      Kundagrami A, Muthukumar M. Macromolecules, 2010, 43:2574-2581 doi: 10.1021/ma9020888

    16. [16]

      Solis F J, de la Cruz M O. J Chem Phys, 2000, 112:2030-2035 doi: 10.1063/1.480763

    17. [17]

      Muthukumar M. J Chem Phys, 2004, 120:9343-9350 doi: 10.1063/1.1701839

    18. [18]

      Cherstvy A. J Phys Chem B, 2010, 114:5241 doi: 10.1021/jp910960r

    19. [19]

      Kundagrami A, Muthukumar M. J Chem Phys, 2008, 128:244901 doi: 10.1063/1.2940199

    20. [20]

      Nguyen T T, Rouzina I, Shklovskii B I. J Chem Phys, 2000, 112:2562-2568 doi: 10.1063/1.480819

    21. [21]

      Kłos J, Pakula T. J Chem Phys, 2005, 122:134908 doi: 10.1063/1.1871936

    22. [22]

      Kłos J, Pakula T. J Chem Phys, 2005, 123:024903 doi: 10.1063/1.1948371

    23. [23]

      Hsiao P Y, Luijten E. Phys Rev Lett, 2006, 97:148301 doi: 10.1103/PhysRevLett.97.148301

    24. [24]

      Hsiao P Y. J Chem Phys, 2006, 124:044904 doi: 10.1063/1.2155484

    25. [25]

      Wei Y F, Hsiao P Y. J Chem Phys, 2007, 127:08B603

    26. [26]

      Alarcón F, Pérez-Hernández G, Pérez E, Goicochea A G. Eur Biophys J, 2013, 42:661-672 doi: 10.1007/s00249-013-0915-z

    27. [27]

      Winkler R G, Gold M, Reineker P. Phys Rev Lett, 1998, 80:3731 doi: 10.1103/PhysRevLett.80.3731

    28. [28]

      Liu S, Muthukumar M. J Chem Phys, 2002, 116:9975-9982 doi: 10.1063/1.1476930

    29. [29]

      Chi P, Li B, Shi A C. Phys Rev E, 2011, 84:021804

    30. [30]

      Chi P, Wang Z, Yin Y, Li B, Shi A C. Phys Rev E, 2013, 87:042608 doi: 10.1103/PhysRevE.87.042608

    31. [31]

      Earl D J, Deem M W. Phys Chem Chem Phys, 2005, 7:3910-3916 doi: 10.1039/b509983h

    32. [32]

      Carmesin I, Kremer K. Macromolecules, 1988, 21:2819-2823 doi: 10.1021/ma00187a030

    33. [33]

      Klos J, Pakula T. J Chem Phys, 2004, 120:2496-2501 doi: 10.1063/1.1637872

    34. [34]

      Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H T. J Chem Phys, 1953, 21:1087-1092 doi: 10.1063/1.1699114

    35. [35]

      Lingenheil M, Denschlag R, Mathias G, Tavan P. Chem Phys Lett, 2009, 478:80-84 doi: 10.1016/j.cplett.2009.07.039

    36. [36]

      Rathore N, Chopra M, de Pablo J J. J Chem Phys, 2005, 122:024111 doi: 10.1063/1.1831273

    1. [1]

      瞿立建付洁 . 高价盐对柱状聚电解质刷的效应. 高分子学报, 2015, (2): 181-185. doi: 10.11777/j.issn1000-3304.2015.14190

    2. [2]

      刘付永张宝庆张军刘琛阳 . 聚苯乙烯磺酸钠在1-烯丙基-3-甲基咪唑氯盐中的流变行为. 高分子学报, 2016, (9): 1263-1272. doi: 10.11777/j.issn1000-3304.2016.16033

    3. [3]

      袁涛孙俊奇 . 具有优异自恢复性能的高强度聚电解质复合物水凝胶. 高分子学报, 2019, 50(12): 1263-1271. doi: 10.11777/j.issn1000-3304.2019.19093

    4. [4]

      罗双江高培源郭洪霞杨京法赵江 . 关于聚电解质单链抗衡离子浓度径向分布的研究. 高分子学报, 2017, (9): 1479-1487. doi: 10.11777/j.issn1000-3304.2017.17065

    5. [5]

      肖玉娟何倩楠周环宇徐海涛谈利承陈义旺 . 原位聚合聚(3, 4-乙烯二氧噻吩):π共轭聚电解质应用于聚合物太阳能电池空穴传输层. 高分子学报, 2018, (2): 257-265. doi: 10.11777/j.issn1000-3304.2018.17215

    6. [6]

      陈全 . 含离子聚合物体系的动力学. 高分子学报, 2017, (8): 1220-1233. doi: 10.11777/j.issn1000-3304.2017.17093

    7. [7]

      刘德中李皆富黄文弢杨曙光 . 高分子复合物纤维的研究进展. 高分子学报, 2018, (4): 445-455. doi: 10.11777/j.issn1000-3304.2017.17285

    8. [8]

      叶涛杜淼宋义虎郑强 . 烷基三甲基溴化铵对羧甲基纤维素钠亚浓缠结溶液流变行为的影响. 高分子学报, 2015, (7): 827-834. doi: 10.11777/j.issn1000-3304.2015.14441

    9. [9]

      谢元南黄昀 . 半刚性高分子链塌缩相变的蒙特卡洛模拟. 高分子学报, 1993, (3): 322-329.

    10. [10]

      史继富黄启章沈成家朱艳青徐刚 . 聚乙烯醇缩醛基准固态电解质及其在染料敏化太阳能电池中的应用. 高分子学报, 2016, (12): 1735-1742. doi: 10.11777/j.issn1000-3304.2016.16188

    11. [11]

      柴春鹏王云普李玉峰张发爱 . 苯并-12-冠-4磺酰氯接枝聚苯胺及其锂盐络合固体电解质的合成与性能研究. 高分子学报, 2006, (9): 1088-1093.

    12. [12]

      陈彦涛丁建东 . 高分子链坍塌转变动力学过程的动态蒙特卡罗模拟. 高分子学报, 2009, (12): 1238-1244. doi: 10.3724/SP.J.1105.2009.01238

    13. [13]

      李霆杨小震 . 多嵌段高分子的溶解性和分子形状的蒙特卡罗研究. 高分子学报, 1999, (5): 581-587.

    14. [14]

      樊克吴大诚 . 端基附壁高分子模型链的塌缩转变. 高分子学报, 2001, (1): 17-21.

    15. [15]

      周树华向万春方世璧林原 . 纳米复合全固态聚膦腈电解质. 高分子学报, 2008, (8): 805-812. doi: 10.3724/SP.J.1105.2008.00805

    16. [16]

      蔡佳利薄淑琴程镕时 . 聚电解质溶液浓度区域的划分. 高分子学报, 2004, (5): 625-627.

    17. [17]

      李晓毅李鑫吴大诚赵得禄 . 简立方格点自避行走所模拟的高分子链吸附和塌缩. 高分子学报, 2001, (5): 618-624.

    18. [18]

      朱子霆高欢欢胡文兵 . 环形高分子单链塌缩的熔球中间态及其热力学解释. 高分子学报, 2017, (9): 1471-1478. doi: 10.11777/j.issn1000-3304.2017.17055

    19. [19]

      刘懋涛王甦畛忻永和钱锦文 . 聚电解质溶液性质的研究 Ⅰ.在无外加盐存在下聚电解质溶液的粘性行为. 高分子学报, 1980, (2): 99-105.

    20. [20]

      刘懋涛王甦畛忻永和钱锦文 . 聚电解质溶液性质的研究 Ⅱ.在有外加盐存在下聚电解质溶液的粘性行为. 高分子学报, 1980, (2): 106-111.

  • Figure 1.  Snapshots of typical conformations at different lB in a solution with monovalent salt at NS = 32 Only chain segments and nearby ions are shown. Color scheme: green for chain segment and orange for counterion (The online version is colorful.)

    Figure 2.  Snapshots of typical conformations at different lB in a solution with divalent salt at NS = 32 Only chain segments and the nearby ions are shown. Color scheme: green for chain segment, orange for monovalent counterion and red for divalent counterion (The online version is colorful.)

    Figure 3.  Snapshots of typical conformations at different lB in a solution with trivalent salt at NS = 33 Only chain segments and the nearby ions are shown. Color scheme: green for chain segment, orange for monovalent counterion and red for trivalent counterion (The online version is colorful.)

    图 4  R02 is the corresponding Rg2 value in the athermal state: (a) and (d) monovalent salt; (b) and (e) divalent salt; (c) and (f) trivalent salt

    Figure 4.  < Rg2/R02 > as a function of lBin solution with different salt concentration and valence (a -c), and as a function of NS at three different lB (d -f)

    Figure 5.  lB value corresponding to the maximum of < Rg2 > as a function of Ns

    Figure 6.  Effective charge and the ion condensation parameters as a function of lB in a solution with monovalent salt: (a) effective charge, (b) condensed counterions and (c) condensed co-ion

    Figure 7.  Effective charge and ion condensation parameters as a function of lB in a solution with divalent salt: (a) effective charge, (b) condensed divalent counterions, (c) condensed monovalent counterions and (d) condensed co-ions

    Figure 8.  Effective charge and ion condensation parameters as a function of lB in a solution with trivalent salt: (a) effective charge, (b) condensed trivalent counterions, (c) condensed monovalent counterions and (d) condensed co-ions

    Figure 9.  Debye length as a function of salt concentration in solution with salt of different valence

  • 加载中
图(9)
计量
  • PDF下载量:  17
  • 文章访问数:  779
  • HTML全文浏览量:  316
  • 引证文献数: 0
文章相关
  • 通讯作者:  李宝会, baohui@nankai.edu.cn
  • 收稿日期:  2017-02-28
  • 修稿日期:  2017-03-23
  • 刊出日期:  2017-12-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计