ISSN 1000-3304CN 11-1857/O6

以离子液体为介质的纤维素加工与功能化

张金明 武进 余坚 张晓程 米勤勇 张军

引用本文: 张金明, 武进, 余坚, 张晓程, 米勤勇, 张军. 以离子液体为介质的纤维素加工与功能化[J]. 高分子学报, 2017, (7): 1058-1072. doi: 10.11777/j.issn1000-3304.2017.17066 shu
Citation:  Jin-ming Zhang, Jin Wu, Jian Yu, Xiao-cheng Zhang, Qin-yong Mi and Jun Zhang. Processing and Functionalization of Cellulose with Ionic Liquids[J]. Acta Polymerica Sinica, 2017, (7): 1058-1072. doi: 10.11777/j.issn1000-3304.2017.17066 shu

以离子液体为介质的纤维素加工与功能化

    作者简介: 张军, 男, 1969年4月生.中国科学院化学研究所研究员, 中国科学院大学岗位教授, 中国科学院工程塑料重点实验室副主任.1993年安徽师范大学大学化学系本科, 1996年哈尔滨工程大学应用化学系硕士(导师:赵书兰教授), 1999年大连理工大学高分子材料系博士(导师:蹇锡高教授).2014年国家杰出青年基金获得者, 2015年山东省首届泰山产业领军人才.获2013年度北京市科学技术一等奖和2009年度北京市科学技术二等奖.目前担任中国纤维素行业协会(CCIA)技术委员会副主任, 中国科学院分子科学中心学术委员会委员, 《Polymer International》(Wiley)和《高分子学报》编委.主要研究兴趣包括:天然高分子的加工与功能化改性; 纤维素化学与物理; 离子液体在高分子材料中的应用; 功能化聚合物复合材料; 新型聚合物纤维等;
    通讯作者: 张军, 张军, E-mail:jzhang@iccas.ac.cn
  • 基金项目: 国家自然科学基金(基金号51425307,51573196,21374126,51273206,21174151,51103167,50973124,50873111,50473058,50103011)、山东省泰山产业领军人才和北京市科学技术研究院创新团队计划(项目号IG201605N)资助

摘要: 纤维素作为自然界中储量最大的天然高分子,被认为是未来世界能源与化工的主要原料.但由于分子链间存在丰富氢键网络以及高度结晶的聚集态结构特点,天然纤维素不熔化、难溶解,造成纤维素的加工极其困难,纤维素材料的传统生产工艺复杂且污染严重,极大限制了纤维素材料的广泛应用.近年来,人们发现一些特定结构的离子液体能够高效溶解纤维素,为纤维素的加工和功能化提供了新的多用途平台.本文从“溶解纤维素的离子液体、纤维素溶解机理与溶液性质、以离子液体制备再生纤维素材料和以离子液体为介质合成纤维素衍生物” 4个方面详细介绍了本课题组在此领域的研究进展.

English

    1. [1]

      Klemm D, Heublein B, Fink H, Bohn A. Angew Chem Int Ed, 2005, 44:3358-3393 doi: 10.1002/(ISSN)1521-3773

    2. [2]

      张金明, 张军.高分子学报, 2010, (12):1376-1398
      Zhang Jinming, Zhang Jun. Acta Polymerica Sinica, 2010, (12):1376-1398

    3. [3]

      Rose M, Palkovits R. Macromol Rapid Commun, 2011, 32:1299-1311 doi: 10.1002/marc.201100230

    4. [4]

      Heinze T, Liebert T. Prog Polym Sci, 2001, 26:1689-1762 doi: 10.1016/S0079-6700(01)00022-3

    5. [5]

      Wang S, Lu A, Zhang L N. Prog Polym Sci, 2016, 53:169-206 doi: 10.1016/j.progpolymsci.2015.07.003

    6. [6]

      Pinkert A, Marsh K N, Pang S S, Staiger M P. Chem Rev, 2009, 109:6712-6728 doi: 10.1021/cr9001947

    7. [7]

      Wang H, Gurau G, Rogers R D. Chem Soc Rev, 2012, 41:1519-1537 doi: 10.1039/c2cs15311d

    8. [8]

      van Osch Dannie J G P, Kollau Laura J B M, van den Bruinhorst A, Asikainen S, Rocha M A A, Kroon M C. Phys Chem Chem Phys, 2017, 19:2636-2665 doi: 10.1039/C6CP07499E

    9. [9]

      Cao Y, Wu J, Zhang J, Li H Q, Zhang Y, He J S. Chem Eng J, 2009, 147:13-21 doi: 10.1016/j.cej.2008.11.011

    10. [10]

      Zhang J M, Wu J, Yu J, Zhang X Y, He J S, Zhang J. Mater Chem Front, 2017, doi:10.1039/c6qm00348f

    11. [11]

      张金明, 吕玉霞, 罗楠, 武进, 余坚, 何嘉松, 张军.高分子通报, 2011, (10):138-153
      Zhang Jinming, Lv Yuxia, Luo Nan, Wu Jin, Yu Jian, He Jiasong, Zhang Jun. Chin Polym Bull, 2011, (10):138-153

    12. [12]

      Graenacher C. US patent, 1943176. 1934

    13. [13]

      Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J Am Chem Soc, 2002, 124:4974-4975 doi: 10.1021/ja025790m

    14. [14]

      Zhang J, Ren Q, He J S. CN patent, ZL02155945. 2002

    15. [15]

      任强, 武进, 张军, 何嘉松, 过梅丽.高分子学报, 2003, (3):448-451
      Ren Qiang, Wu Jin, Zhang Jun, He Jiasong, Guo Meili. Acta Polymerica Sinica, 2003, (3):448-451

    16. [16]

      Zhang H, Wu J, Zhang J, He J S. Macromolecules, 2005, 38:8272-8277 doi: 10.1021/ma0505676

    17. [17]

      Wu J, Zhang J, Zhang H, He J S, Ren Q, Guo M L. Biomacromolecules, 2004, 5:266-268 doi: 10.1021/bm034398d

    18. [18]

      Zavrel M, Bross D, Funke M, Buchs J, Spiess A C. Bioresour Technol, 2009, 100:2580-2587 doi: 10.1016/j.biortech.2008.11.052

    19. [19]

      Pinkert A, Marsh K N, Pang S S. Ind Eng Chem Res 2010, 49:11121-11130 doi: 10.1021/ie1006596

    20. [20]

      Zhang J M, Zhang H, Wu J, Zhang J, He J S, Xiang J F. Phys Chem Chem Phys, 2010, 12:1941-1947 doi: 10.1039/b920446f

    21. [21]

      Zhang J M, Zhang H, Wu J, Zhang J, He J S, Xiang J F. Phys Chem Chem Phys, 2010, 12:14829-14830 doi: 10.1039/c005453b

    22. [22]

      Lovell C S, Walker A, Damion R A, Radhi A, Tanner S F, Budtova T, Ries M E. Biomacromolecules, 2010, 11:2927-2935 doi: 10.1021/bm1006807

    23. [23]

      Payal R S, Bharath R, Periyasamy G, Balasubramanian S. J Phys Chem B, 2012, 116:833-840 doi: 10.1021/jp207989w

    24. [24]

      Zhang J M, Xu L L, Yu J, Wu J, Zhang X Y, He J S, Zhang J. Sci China Chem, 2016, 59:1421-1429 doi: 10.1007/s11426-016-0269-5

    25. [25]

      Cho H M, Gross A S, Chu J W. J Am Chem Soc, 2011, 133:14033-14041 doi: 10.1021/ja2046155

    26. [26]

      Lu B L, Xu A R, Wang J J. Green Chem, 2014, 16:1326-1335 doi: 10.1039/C3GC41733F

    27. [27]

      Chang H C, Zhang R L, Hsu D T. Phys Chem Chem Phys, 2015, 17:27573-27578 doi: 10.1039/C5CP04607F

    28. [28]

      Kuang Q L, Zhao J C, Niu Y H, Zhang J, Wang Z G. J Phys Chem B, 2008, 112:10234-10240 doi: 10.1021/jp804167n

    29. [29]

      Song H Z, Zhang J, Niu Y H, Wang Z G. J Phys Chem B, 2010, 114:6006-6013 doi: 10.1021/jp1013863

    30. [30]

      Song H Z, Niu Y H, Wang Z G, Zhang J. Biomacromolecules, 2011, 12:1087-1096 doi: 10.1021/bm101426p

    31. [31]

      Lv Y X, Wu J, Zhang J M, Niu Y H, Liu C Y, He J S, Zhang J. Polymer, 2012, 53:2524-2531 doi: 10.1016/j.polymer.2012.03.037

    32. [32]

      Liu J J, Zhang J M, Zhang B Q, Zhang X Y, Xu L L, Zhang J, He J S, Liu C Y. Cellulose, 2016, 23:2341-2348 doi: 10.1007/s10570-016-0967-1

    33. [33]

      Song H Z, Niu Y H, Yu J, Zhang J, Wang Z G, He J S. Soft Matter, 2013, 9:3013-3020 doi: 10.1039/c3sm27320b

    34. [34]

      Ding M C, Yu J, He J S, Zhang J. RSC Adv, 2015, 5:44648-44651 doi: 10.1039/C5RA06740E

    35. [35]

      Cao Y, Li H Q, Zhang Y, Zhang J, He J S. J Appl Polym Sci, 2010, 116:547-554 doi: 10.1002/app.v116:1

    36. [36]

      Xu S S, Zhang J, He A H, Li J X, Zhang H, Han C C. Polymer, 2008, 49:2911-2917 doi: 10.1016/j.polymer.2008.04.046

    37. [37]

      Mi Q Y, Ma S R, Yu J, He J S, Zhang J. ACS Sustainable Chem Eng, 2016, 4:656-660 doi: 10.1021/acssuschemeng.5b01079

    38. [38]

      Yuan B, Zhang J M, Yu J, Song R, Mi Q Y, He J S, Zhang J. Sci China Chem, 2016, 59:1335-1341 doi: 10.1007/s11426-016-0188-0

    39. [39]

      Luo N, Lv Y X, Wang D X, Zhang J M, Wu J, He J S, Zhang J. Chem Commun, 2012, 48:6283-6285 doi: 10.1039/c2cc31483e

    40. [40]

      Zhang J M, Luo N, Zhang X Y, Xu L L, Wu J, Yu J, He J S, Zhang J. ACS Sustainable Chem Eng, 2016, 4:4417-4423 doi: 10.1021/acssuschemeng.6b01034

    41. [41]

      Zhang H, Wang Z G, Zhang Z N, Wu J, Zhang J, He J S. Adv Mater, 2007, 19:698-704 doi: 10.1002/(ISSN)1521-4095

    42. [42]

      Zhang B Q, Ning W, Zhang J M, Qiao X, Zhang J, He JS, Liu CY. J Mater Chem, 2010, 20:5401-5403 doi: 10.1039/c0jm01029d

    43. [43]

      Feng Y, Zhang J M, He J S, Zhang J. Carbohydr Polym, 2016, 147:171-177 doi: 10.1016/j.carbpol.2016.04.003

    44. [44]

      Wu W T, Dong Z, He J S, Yu J, Zhang J. J Mater Sci, 2016, 51:4125-4133 doi: 10.1007/s10853-016-9735-8

    45. [45]

      Luo N, Varaprasad K, Reddy G V S, Rajulu A V, Zhang J. RSC Adv, 2012, 2:8483-8488 doi: 10.1039/c2ra21465b

    46. [46]

      Yan C H, Wang R H, Wan J Q, Zhang Q H, Xue S Z, Wu X, Zhang J M, Zhang J, Lu Y M, Wang C. Algal Research, 2016, 20:135-141 doi: 10.1016/j.algal.2016.09.024

    47. [47]

      Xia G M, Wan J Q, Zhang J M, Zhang X Y, Xu L L, Wu J, He J S, Zhang J. Carbohydr Polym, 2016, 151:223-229 doi: 10.1016/j.carbpol.2016.05.080

    48. [48]

      Sui X F, Yuan J Y, Zhou M, Zhang J, Yang H J, Yuan W Z, Wei Y, Pan C Y. Biomacromolecules, 2008, 9:2615-2620 doi: 10.1021/bm800538d

    49. [49]

      Meng T, Gao X, Zhang J, Yuan J Y, Zhang Y Z, He J S. Polymer, 2009, 50:447-454 doi: 10.1016/j.polymer.2008.11.011

    50. [50]

      Yang L L, Zhang J, He J S, Zhang J, Gan Z H. Chinese J Polym Sci, 2015, 33:1640-1649 doi: 10.1007/s10118-015-1703-2

    51. [51]

      Yan C H, Zhang J M, Lv Y X, Yu J, Wu J, Zhang J, He J S. Biomacromolecules, 2009, 10:2013-2018 doi: 10.1021/bm900447u

    52. [52]

      Yan C H, Wu J, Zhang J M, He J S, Zhang J. Polym Degrad Stab, 2015, 118:130-136 doi: 10.1016/j.polymdegradstab.2015.04.019

    53. [53]

      Yang L L, Zhang J M, He J S, Zhang J, Gan Z H. RSC Adv, 2016, 6:17617-17623 doi: 10.1039/C5RA25993B

    54. [54]

      Luan Y H, Wu J, Zhan M S, Zhang J M, Zhang J, He J S. Cellulose, 2013, 20:327-337 doi: 10.1007/s10570-012-9818-x

    55. [55]

      Zhang J M, Chen W W, Feng Y, Wu J, Yu J, He J S, Zhang J. Polym Int, 2015, 64:963-970 doi: 10.1002/pi.2015.64.issue-8

    56. [56]

      Luan Y H, Zhang J M, Zhan M S, Wu J, Zhang J, He J S. Carbohydr Polym, 2013, 92:307-311 doi: 10.1016/j.carbpol.2012.08.111

    57. [57]

      Cao Y, Zhang J, He J S, Li H Q, Zhang Y. Chin J Chem Eng, 2010, 18:515-522 doi: 10.1016/S1004-9541(10)60252-2

    58. [58]

      Cao Y, Wu J, Meng T, Zhang J, He J S, Li H Q, Zhang Y. Carbohydr Polym, 2007, 69:665-672 doi: 10.1016/j.carbpol.2007.02.001

    59. [59]

      Cao Y, Li H Q, Zhang J. Ind Eng Chem Res, 2011, 50:7808-7814 doi: 10.1021/ie2004362

    60. [60]

      Chen J, Zhang J M, Feng Y, He J S, Zhang J. Chinese J Polym Sci, 2014, 32:1-8 doi: 10.1007/s10118-014-1384-2

    61. [61]

      曹妍, 李会泉, 张懿, 张军, 何嘉松.高等学校化学学校, 2008, 29:2115-2117
      Cao Yan, Li Huiquan, Zhang Yi, Zhang Jun, He Jiasong. Chem J Chin Univ, 2008, 29:2115-2117

    62. [62]

      Zhang J M, Wu J, Cao Y, Sang S M, Zhang J, He J S. Cellulose, 2009, 16:299-308 doi: 10.1007/s10570-008-9260-2

    63. [63]

      Chen W W, Ding M C, Zhang M, Zhang J M, Gao X, He J S, Zhang J. Chinese J Polym Sci, 2015, 33:1633-1639 doi: 10.1007/s10118-015-1695-y

    64. [64]

      Chen W W, Zhang M, Feng Y, Wu J, Gao X, Zhang J M, He J S, Zhang J. Polym Int, 2015, 64:1037-1044 doi: 10.1002/pi.2015.64.issue-8

    65. [65]

      Chen W W, Feng Y, Zhang M, Wu J, Zhang J M, Gao X, He J S, Zhang J. RSC Adv, 2015, 5:58536-58542 doi: 10.1039/C5RA08911E

    66. [66]

      陈婧, 张金明, 陈韦韦, 丰晔, 张军.高分子学报, 2013, (10):1235-1240
      Chen Jing, Zhang Jinming, Chen Weiwei, Feng Ye, Zhang Jun. Acta Polymerica Sinica, 2013, (10):1235-1240

    67. [67]

      Chen J, Zhang J M, Feng Y, Wu J, He J S, Zhang J. J Membr Sci, 2014, 469:507-514 doi: 10.1016/j.memsci.2014.06.010

    68. [68]

      Xiao P, Zhang JM, Feng Y, Wu J, He J S, Zhang J. Cellulose, 2014, 21:2369-2378 doi: 10.1007/s10570-014-0256-9

    69. [69]

      Tian W G, Zhang J M, Yu J, Wu J, Nawaz H, Zhang J, He J S, Wang F S. Adv Optical Mater, 2016, 4:2044-2050 doi: 10.1002/adom.v4.12

    70. [70]

      陈婧, 张金明, 张军.高等学校化学学报, 2013, 34:2037-2039 doi: 10.7503/cjcu20130480
      Chen Jing, Zhang Jinming, Zhang Jun. Chem J Chin Univ, 2013, 34:2037-2039 doi: 10.7503/cjcu20130480

    1. [1]

      赵地顺付林林张娟李贺刘猛帅付江涛王薇 . 共溶剂存在下N-烯丙基吡啶氯盐离子液体对纤维素的溶解性能研究. 高分子学报, 2012, (9): 937-942. doi: 10.3724/SP.J.1105.2012.11407

    2. [2]

      吕晓文李露林章碧崔树勋 . 离子液体再生纤维素水凝胶的形成机理及其在凝胶电泳中的应用. 高分子学报, 2011, (9): 1026-1032. doi: 10.3724/SP.J.1105.2011.10353

    3. [3]

      朱庆松韩小进程春祖武长城 . 壳聚糖在4种咪唑型离子液体中溶解性的研究. 高分子学报, 2011, (10): 1173-1179. doi: 10.3724/SP.J.1105.2011.10272

    4. [4]

      陈婧张金明陈韦韦丰晔张军 . 纤维素萘甲酸酯在离子液体中的均相合成. 高分子学报, 2013, (10): 1235-1240. doi: 10.3724/SP.J.1105.2013.13168

    5. [5]

      毛云增王昊汪东沈衡杨曙光马敬红赵宁刘瑞刚徐坚 . 溶液预凝胶化对再生纤维素水凝胶膜性能的影响. 高分子学报, 2014, (7): 1023-1028. doi: 10.11777/j.issn1000-3304.2014.14004

    6. [6]

      万纪强张金明郑学晶贾锋伟余坚张军 . 用于锂离子电池的阻燃型纤维素基复合气凝胶膜. 高分子学报, 2020, 51(0): 0-0. doi: 10.11777/j.issn1000-3304.2020.20081

    7. [7]

      万纪强张金明郑学晶贾锋伟余坚张军 . 用于锂离子电池的阻燃型纤维素基复合气凝胶膜. 高分子学报, 2020, 51(8): 933-941. doi: 10.11777/j.issn1000-3304.2020.20081

    8. [8]

      刘志宏柴敬超张建军崔光磊 . 高性能纤维素基复合锂离子电池隔膜研究进展. 高分子学报, 2015, (11): 1246-1257. doi: 10.11777/j.issn1000-3304.2015.15147

    9. [9]

      沈军刘双燕赵勇强沈贤德岡本佳男 . 多糖类氨基甲酸酯衍生物的区域选择性合成及其手性识别. 高分子学报, 2013, (3): 293-299. doi: 10.3724/SP.J.1105.2013.12393

    10. [10]

      段博涂虎张俐娜 . 可持续高分子-纤维素新材料研究进展. 高分子学报, 2020, 51(1): 66-86. doi: 10.11777/j.issn1000-3304.2020.19160

    11. [11]

      侯甲子张万喜李莉莉孙晓平 . 纤维素纤维材料几种降解方法的研究. 高分子学报, 2013, (1): 30-35. doi: 10.3724/SP.J.1105.2013.12116

    12. [12]

      张晓茜周旋孙英娟岳丽娜石永香许可罗梓兮伍一波 . 在离子液体介质中对甲基苯乙烯阳离子聚合的研究. 高分子学报, 2019, 50(4): 375-383. doi: 10.11777/j.issn1000-3304.2018.18239

    13. [13]

      宋建会周凤王湘任毅张晓红郭鸣明乔金樑 . 纤维素/全硫化弹性纳米粒子复合膜的制备与性能. 高分子学报, 2017, (4): 676-682. doi: 10.11777/j.issn1000-3304.2017.16190

    14. [14]

      裴莹张俐娜王慧媛张先正徐敏 . 纤维素/明胶复合膜的超分子结构与性能. 高分子学报, 2011, (9): 1098-1104. doi: 10.3724/SP.J.1105.2011.11143

    15. [15]

      宋俊李俊男侯源富程博闻郝蕾郭雪雪 . 纤维素山梨酸酯膜的制备及其抗菌性能研究. 高分子学报, 2019, 50(1): 62-70. doi: 10.11777/j.issn1000-3304.2018.18168

    16. [16]

      胡丹宁孙亚飞陶磊袁金颖隋晓锋危岩 . 具有环境响应性的纤维素基水凝胶. 高分子学报, 2020, 51(8): 880-889. doi: 10.11777/j.issn1000-3304.2020.20131

    17. [17]

      王超丽胡小玲管萍吴丹锋钱立伟李季宋任远 . 离子液体作为功能单体制备溶菌酶分子印迹复合膜的研究. 高分子学报, 2015, (3): 259-265. doi: 10.11777/j.issn1000-3304.2015.14224

    18. [18]

      陈会英张树彪彭孝军崔韶晖赵轶男张传敏韩颖 . 壳聚糖在离子液体中均相接枝聚乙烯亚胺及其基因转运. 高分子学报, 2014, (8): 1089-1095. doi: 10.11777/j.issn1000-3304.2014.13461

    19. [19]

      王一夫万贺廷王丹王吉林王璐璐封瑞江 . Gemini型碱性离子液体的制备及其在吡啶功能化PVA阴离子膜中的应用. 高分子学报, 2018, (4): 541-552. doi: 10.11777/j.issn1000-3304.2017.17150

    20. [20]

      华笋陈风王捍卿刘正英杨伟杨鸣波 . 纤维素接枝共聚物对聚乳酸结晶性能和拉伸流变性能的影响. 高分子学报, 2016, (8): 1136-1144. doi: 10.11777/j.issn1000-3304.2016.15376

  • Figure 1.  (a) Chemical structures of ionic liquids AmimCl and EmimAc; (b) Dissolution mechanism of cellulose in ionic liquids

    Figure 2.  (a) Phase diagram of concentrated cellulose/EmimAc solutions (Reprinted with permission from Ref.[30]; Copyright (2011) American Chemical Society); (b) Concentration dependence of the specific viscosity ηsp of cellulose/ionic liquids/DMSO solutions, and frequency dependence of the storage modulus (G' , filled symbols) and loss modulus (G″, open symbols) of cellulose/AmimCl/DMSO (80/20, w/w) solutions at 25 ℃ (Reprinted with permission from Ref.[31]; Copyright (2012) Elsevier); (c) Various cellulose spherulites prepared from cellulose/ionic liquids solutions (Reprinted with permission from Refs.[33] and [34]; Copyright (2013 and 2015) The Royal Society of Chemistry)

    Figure 3.  (a) Schematic of viscose process to fabricate Rayon fibers and Cellophane films; (b) Schematic of the production process of regenerated cellulose materials (fibers and films) with ionic liquids in an industrial test scale

    Figure 4.  (a) Cellulose hydrogel; (b) Transparent cellulose aerogel fabricated by a controlled regeneration process[37]; (c) SEM image of transparent cellulose aerogel (Reprinted with permission from Ref.[37]; Copyright (2016) American Chemical Society); (d) Optical and SEM images of cellulose/Al2O3aerogel[38]; (e) Elemental mapping and EDS spectrum of cellulose/Al2O3aerogel[38]; (f) Heat release rate (HRR) curves and ignition test of cellulose and cellulose/Al2O3aerogels[38] (Reprinted with permission from Ref.[38]; Copyright (2016) Science China Press and Springer-Verlag Berlin Heidelberg)

    Figure 5.  (a) TEM observation and schematic illustration for the dissolution process of cellulose in ionic liquids (Reprinted with permission from Ref.[39]; Copyright (2012) The Royal Society of Chemistry); (b) Self-reinforced all-cellulose nanocomposite film prepared by a selective dissolution process (Reprinted with permission from Ref.[40]; Copyright (2016) American Chemical Society)

    Figure 6.  (a) Photograph of cellulose fibers (white) and cellulose/MWCNT composite fibers (black), and TEM and 2D WAXD images of cellulose/MWCNT composite fibers (Reprinted with permission from Ref.[41]; Copyright (2007) John Wiley & Sons); (b) Optical and TEM images of POSS-AN/AmimCl solution and cellulose/POSS-AN composite films (Reprinted with permission from Ref.[43]; Copyright (2016) Elsevier); (c) Optical images of curcumin/AmimCl solution and cellulose/curcumin composite film, and antibacterial activity of cellulose/curcumin composite films against E. coli. (Reprinted with permission from Ref.[45]; Copyright (2012) The Royal Society of Chemistry)

    Figure 7.  (a) Synthesis procedure of cellulose-based ATRP macroinitiators and cellulose graft copolymers, and temperature-triggered sol-to-gel phase transition properties of cellulose-g-PNIPAM copolymers [48-50]; (b) Synthesis procedure of cellulose-g-PLLA and cellulose esters-g-PLLA copolymers [51-54]; (c) Cell cultivation behaviors of cellulose-g-PLLA microspheres (Reprinted with permission from Ref.[53]; Copyright (2016) The Royal Society of Chemistry); (d) Melt flow behavior of cellulose-g-PLLA copolymers[51], and cellulose acetate-g-PLLA fibers and dumbbell samples produced by thermal processing[54] (Reprinted with permission from Refs.[51] and [54]; Copyright (2009) American Chemical Society and (2013) Springer)

    Figure 8.  (a) General synthesis route and molecular structure of cellulose aliphatic esters, aromatic esters and mixed esters homogeneously prepared in ionic liquid AmimCl; (b) Cellulose phenylcarbamates with different degrees of substitution (DS) and degrees of polymerization (DP) homogeneously synthesized in ionic liquid AmimCl, and their chiral recognition abilities (Reprinted with permission from Ref.[63]; Copyright (2015) Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg)

    Figure 9.  Schematic illustration for the strong fluorescent emission mechanism of cellulose-based solid fluorescent materials (Reprinted with permission from Ref.[69]; Copyright (2016) John Wiley & Sons)

  • 加载中
图(9)
计量
  • PDF下载量:  149
  • 文章访问数:  1366
  • HTML全文浏览量:  701
  • 引证文献数: 0
文章相关
  • 通讯作者:  张军, jzhang@iccas.ac.cn
  • 收稿日期:  2017-03-30
  • 修稿日期:  2017-03-30
  • 刊出日期:  2017-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计