Active layer | VOC (V) | JSC (mA/cm2) | FF | PCEc (%) | Thickness (nm) |
PBDB-T:ITCC-M | 0.993 | 14.7 | 0.652 | 9.52 (9.28 ± 0.19) | 100 |
J52-2F:IT-M | 0.944 | 18.3 | 0.697 | 12.0 (11.7 ± 0.2) | 125 |
0.950 | 18.3 | 0.720 | 12.5 (12.2 ± 0.2) | 110 | |
0.952 | 18.2 | 0.726 | 12.6 (12.3 ± 0.2) | 100 | |
0.949 | 17.0 | 0.725 | 11.7 (11.3 ± 0.3) | 85 | |
PBDTTT-E-T:IEICO | 0.822 | 18.8 | 0.661 | 10.2 (9.82 ± 0.26) | 100 |
PTB7-Th:IEICO-4F a | 0.731 | 24.4 | 0.585 | 10.4 (10.0 ± 0.3) | 100 |
PTB7-Th:IEICO-4F b | 0.705 | 24.9 | 0.663 | 11.6 (11.3 ± 0.2) | 110 |
0.708 | 24.7 | 0.679 | 11.9 (11.5 ± 0.3) | 100 | |
0.708 | 23.8 | 0.686 | 11.6 (11.2 ± 0.3) | 80 | |
a Chlorobenzene is used as a solvent and the device was fabricated according to reported methods; b Chloroform is used as a solvent; c The average PCE was calculated from more than 10 devices. The devices based on PBDB-T:ITCC-M and PBDTTT-E-T:IEICO were farbricated according to the optimal conditions in a previous work than 10 independent cells. |

Citation: Cui Yong, Yao Hui-feng, Yang Chen-yi, Zhang Shao-qing and Hou Jian-hui. Organic Solar Cells with an Efficiency Approaching 15%[J]. Acta Polymerica Sinica, 2018, (2): 223-230. doi: 10.11777/j.issn1000-3304.2018.17297

具有接近15%能量转换效率的有机太阳能电池
English
Organic Solar Cells with an Efficiency Approaching 15%
-
-
[1]
Kaltenbrunner M, White M S, Glowacki E D, Sekitani T, Someya T, Sariciftci N S, Bauer S. Nat Commun, 2012, 3:770 doi: 10.1038/ncomms1772
-
[2]
Heeger A J. Adv Mater, 2014, 26:10-27 doi: 10.1002/adma.201304373
-
[3]
Krebs F C. Sol Energy Mat Sol C, 2009, 93:394-412 doi: 10.1016/j.solmat.2008.10.004
-
[4]
Lizin S, Van Passel S, De Schepper E, Maes W, Lutsen L, Manca J, Vanderzande D. Energy Environ Sci, 2013, 6:3136 doi: 10.1039/c3ee42653j
-
[5]
姚惠峰, 侯剑辉.高分子学报, 2016, (11):1468-1481
Yao Huifeng, Hou Jianhui. Acta Polymerica Sinica, 2016, (11):1468-1481 -
[6]
Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139:7148-7151 doi: 10.1021/jacs.7b02677
-
[7]
Ameri T, Li N, Brabec C J. Energy Environ Sci, 2013, 6:2390 doi: 10.1039/c3ee40388b
-
[8]
Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip H L, Peng X, Cao Y, Chen Y. Nat Photon, 2016, 11:85-90
-
[9]
Cui Y, Yao H, Gao B, Qin Y, Zhang S, Yang B, He C, Xu B, Hou J. J Am Chem Soc, 2017, 139:7302-7309 doi: 10.1021/jacs.7b01493
-
[10]
Zheng Z, Zhang S, Zhang J, Qin Y, Li W, Yu R, Wei Z, Hou J. Adv Mater, 2016, 28:5133-5138 doi: 10.1002/adma.201600373
-
[11]
Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y. Adv Mater, 2014, 26:5670-5677 doi: 10.1002/adma.201402072
-
[12]
Gilot J, Wienk M M, Janssen R A J. Adv Funct Mater, 2010, 20:3904-3911 doi: 10.1002/adfm.201001167
-
[13]
Zhang K, Gao K, Xia R, Wu Z, Sun C, Cao J, Qian L, Li W, Liu S, Huang F, Peng X, Ding L, Yip H L, Cao Y. Adv Mater, 2016, 28:4817-4823 doi: 10.1002/adma.v28.24
-
[14]
Yusoff A R b M, Kim D, Kim H P, Shneider F K, da Silva W J, Jang J. Energy Environ Sci, 2015, 8:303-316 doi: 10.1039/C4EE03048F
-
[15]
Lu S, Guan X, Li X, Sha W E I, Xie F, Liu H, Wang J, Huang F, Choy W C H. Adv Energy Mater, 2015, 5:1500631 doi: 10.1002/aenm.201500631
-
[16]
Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv Mater, 2016, 28:8283-8287 doi: 10.1002/adma.v28.37
-
[17]
Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1:16089 doi: 10.1038/nenergy.2016.89
-
[18]
Liang N, Meng D, Ma Z, Kan B, Meng X, Zheng Z, Jiang W, Li Y, Wan X, Hou J, Ma W, Chen Y, Wang Z. Adv Energy Mater, 2017, 7:1601664 doi: 10.1002/aenm.201601664
-
[19]
Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27:1170-1174 doi: 10.1002/adma.201404317
-
[20]
Yang F, Li C, Lai W, Zhang A, Huang H, Li W. Mater Chem Front, 2017, 1:1389-1395 doi: 10.1039/C7QM00025A
-
[21]
Zhao W, Qian D, Zhang S, Li S, Inganas O, Gao F, Hou J. Adv Mater, 2016, 28:4734-4739 doi: 10.1002/adma.v28.23
-
[22]
Liu W, Li S, Huang J, Yang S, Chen J, Zuo L, Shi M, Zhan X, Li C Z, Chen H. Adv Mater, 2016, 28:9729-9734 doi: 10.1002/adma.201603518
-
[23]
Chen S, Zhang G, Liu J, Yao H, Zhang J, Ma T, Li Z, Yan H. Adv Mater, 2017, 29:1604231 doi: 10.1002/adma.201604231
-
[24]
Fan Q, Su W, Meng X, Guo X, Li G, Ma W, Zhang M, Li Y. Solar RRL, 2017, 1:1700020 doi: 10.1002/solr.v1.5
-
[25]
Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z, Hou J. Macromolecules, 2012, 45:9611-9617 doi: 10.1021/ma301900h
-
[26]
Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56:3045-3049 doi: 10.1002/anie.201610944
-
[27]
Cui Y, Xu B, Yang B, Yao H, Li S, Hou J. Macromolecules, 2016, 49:8126-8133 doi: 10.1021/acs.macromol.6b01595
-
[28]
Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28:9423-9429 doi: 10.1002/adma.201602776
-
[29]
Liao S H, Jhuo H J, Cheng Y S, Chen S A. Adv Mater, 2013, 25:4766-4771 doi: 10.1002/adma.v25.34
-
[30]
Huang F, Wu H B, Wang D, Yang W, Cao Y. Chem Mater, 2004, 16:708-716 doi: 10.1021/cm034650o
-
[1]
-
Table 1. Photovoltaic parameters of single-junction devices
Table 2. Photovoltaic parameters of tandem devices with different thicknesses of the subcells
Thickness (nm) VOC (V) JSC (mA/cm2) FF PCEa (%) Front cell Rear cell 130 120 1.79 11.5 0.648 13.4 (12.9 ± 0.3) 120 100 1.64 12.9 0.675 14.3 (13.8 ± 0.3) 110 100 1.65 13.3 0.680 14.9 (14.5 ± 0.2) 100 100 1.65 12.8 0.674 14.2 (13.9 ± 0.2) 110 110 1.65 13.2 0.679 14.8 (14.5 ± 0.2) 110 80 1.65 12.1 0.677 13.4 (13.0 ± 0.3) a The average PCE was calculated from more than 10 devices. -