ISSN 1000-3304CN 11-1857/O6

非共价键胶束方法与原理的拓展与应用

陈国颂 姚萍 陈道勇

引用本文: 陈国颂, 姚萍, 陈道勇. 非共价键胶束方法与原理的拓展与应用[J]. 高分子学报, 2018, (8): 1048-1065. doi: 10.11777/j.issn1000-3304.2018.18064 shu
Citation:  Guo-song Chen, Ping Yao and Dao-yong Chen. Further Expansions and Applications of the Principles and Methodology of Non-covalent Connected Micelles[J]. Acta Polymerica Sinica, 2018, (8): 1048-1065. doi: 10.11777/j.issn1000-3304.2018.18064 shu

非共价键胶束方法与原理的拓展与应用

摘要: 20世纪末,江明等在其有关大分子络合的研究基础上,通过将大分子间相互作用局域化,成功地利用大分子间的络合来驱动结构规整组装体的形成. 这一思想和方法通过不断地拓展和深化,形成了大分子自组装的新路线,获得了一系列具有新颖结构与功能的核壳间为非共价键连接的聚合物胶束(non-covalently connected micelles, NCCM). 本综述将对近年来我们在非共价键胶束方法与原理的拓展与应用方面取得的成果作一总结. 内容包括:为NCCM的形成引入新的驱动力,并同时赋予NCCM新的性质与功能;将NCCM 的形成原理应用于生物大分子的自组装,发展出了全绿色的大分子自组装路线;运用将相互作用局域化的基本思想,将嵌段共聚物的化学交联反应局域化,发展出化学交联诱导嵌段共聚物胶束化的新方法.

English

    1. [1]

      Jiang M, Xie H. Prog Polym Sci, 1991, 16(6): 977-1026

    2. [2]

      Jiang M, Li M, Zhou H. Adv Polym Sci, 1999, 146: 121-196

    3. [3]

      Zhang L, Eisenberg A. Science, 1995, 268(5128): 1728-1731

    4. [4]

      Kelley E, Albert J, Sullivan M, Epps III T. Chem Soc Rev, 2013, 42(17): 7057-7071

    5. [5]

      Stefik M, Guldin S, Vignolini S, Wiesner U, Steiner Ullrich. Chem Soc Rev, 2015, 44(15): 5076-5091

    6. [6]

      Yoo, H, Byun M, Jeong C, Lee K. Adv Mater, 2015, 27(27): 3982-3998.

    7. [7]

      Liu S, Pan Q, Xie J, Jiang M. Polymer, 2000, 41(18): 6919-6929

    8. [8]

      Liu S, Jiang M, Liang H, Wu C. Polymer, 2000, 41(24): 8697-8702

    9. [9]

      Wang M, Zhang G, Chen, D, Jiang, M, Liu S. Macromolecules, 2001, 34(20): 7172-7178

    10. [10]

      Jiang Ming(江明). Macromolecular Self-assembly, Chapter 4 (《大分子自组装》第四章). Beijing(北京): Science Press(科学出版社), 2006. 71-110

    11. [11]

      Guo M, Jiang M. Soft Matter, 2009, 5(3): 495-500

    12. [12]

      Chen G, Jiang M. Chem Soc Rev, 2011, 40(5): 2254-2266

    13. [13]

      Liu Y, Chen Y. Acc Chem Res, 2006, 39(10): 681-691.

    14. [14]

      Wang J, Jiang M. J Am Chem Soc, 2005, 128(11): 3703-3708

    15. [15]

      Guo M, Jiang M, Zhang G. Langmuir, 2008, 24(19): 10583-10586

    16. [16]

      Lehn J. Chem Soc Rev, 2007, 36(2): 151-160

    17. [17]

      Zou J, Tao F, Jiang M. Langmuir, 2007, 23(26): 12791-12794

    18. [18]

      Zou J, Guan B, Liao X, Jiang M, Tao F. Macromolecules, 2009, 42(19): 7465-7473

    19. [19]

      Wang Y, Ma N, Wang Z, Zhang X. Angew Chem Int Ed, 2007, 46(16): 2823-2826

    20. [20]

      Zhang X, Wang C. Chem Soc Rev, 40(1): 94-101

    21. [21]

      Li J, Harada A, Kamachi M. Polym J, 1994, 26(9): 1019-1026

    22. [22]

      Liao X, Chen G, Liu X, Chen W, Chen F, Jiang M. Angew Chem, 2010, 122(26): 4511-4515

    23. [23]

      Guo M, Jiang M, Pispas S, Zhou C. Macromolecules, 2008, 41(24): 9744-9749.

    24. [24]

      Liu J, Chen G, Guo M, Jiang M. Macromolecules, 2010, 43(19): 8086-8093.

    25. [25]

      Wei K, Li J, Liu J, Chen G, Jiang M. Soft Matter, 2012, 8(12): 3300-3303

    26. [26]

      Liu J, Chen G, Jiang, M. Macromolecules, 2011, 44(19): 7682-7691

    27. [27]

      Liao X, Chen G, Jiang M. Langmuir, 2011, 27(20): 12650-12656

    28. [28]

      Du P, Chen G, Jiang, M. Sci China Chem, 2012, 55(5): 836-843

    29. [29]

      Wei K, Li J, Chen G, Jiang M. ACS Macro Lett, 2013, 2(3): 278-283

    30. [30]

      Zhang J, Ma P. Angew Chem Int Ed, 2009, 48(5): 964-968

    31. [31]

      Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin, Y. J Am Chem Soc, 2010, 132(27): 9268-9270

    32. [32]

      Meng X, Qin J, Liu Y, Fan M, Li B, Zhang S, Yu X. Chem Commun, 2010, 46(4): 643-645

    33. [33]

      Dong H, Li Y, Cai S, Zhuo R, Zhang X, Liu L. Angew Chem Int Ed, 2008, 47(30): 5573-5576

    34. [34]

      Zeng J, Shi K, Zhang Y, Sun X, Zhang B. Chem Commun, 2008,44(32): 3753-3755

    35. [35]

      Ringsdorf H, Schlarb B, Venzmer J. Angew Chem Int Ed, 1988, 27(1):113-158

    36. [36]

      Widnell C, Hamilton T, Tata J. J Cell Biol, 1967, 32(3): 766-770

    37. [37]

      Blow N. Nature, 2009, 457(7229): 617-620.

    38. [38]

      Bertozzi C, Kiessling L. Science, 2001, 291(5512): 2357-2364

    39. [39]

      Paszek M J, et al. Nature, 2014, 511(7509): 319-325

    40. [40]

      Ladmiral V, Mantovani G, Clarkson G J, Solene C, Irwin J L, Haddleton D M. J Am Chem Soc, 2006, 128(44):4823-4830

    41. [41]

      Chen Guosong(陈国颂), Liu Yijiang(刘一江). Macromolecular Self-assembly (New edition), Chapter 7(《大分子自组装新编》第七章). Beijing(北京): Science Press (科学出版社), 2018. in press

    42. [42]

      Su L, Zhao Y, Chen G, Jiang M. Polym Chem, 2012, 3(6): 1560-1566

    43. [43]

      Su L, Wang C, Polzer F, Lu Y, Chen G, Jiang M. ACS Macro Lett, 2014, 3(6): 534-539

    44. [44]

      Wu X, Su L, Chen G, Jiang M. Macromolecules, 2015, 48(11): 3705-3712

    45. [45]

      Su L, Zhang W, Wu X, Zhang Y, Chen X, Liu G, Chen G, Jiang M. Small, 2015, 11(33): 4191-4200

    46. [46]

      Lin M, Zhang Y, Chen G, Jiang M. Small. 2015,11(45): 6065-6070

    47. [47]

      Sakai F, Yang G, Weiss, Liu Y, Chen G, Jiang M. Nat Commun, 2014, 5(8): 4634

    48. [48]

      Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, F, Ballauff M, Li X, Liu C, Chen G, Jiang M. J Am Chem Soc, 2016, 138(6): 1932-1937

    49. [49]

      Yang G, Ding H, Kochovski Z, Hu R, Lu Y, Ma Y, Chen G, Jiang M. Angew Chem Int Ed, 2017, 56(36): 10691-10695

    50. [50]

      Yu S, Hu J, Pan X, Yao P, Jiang M. Langmuir, 2006, 22(6): 2754-2759

    51. [51]

      Hu J, Yu S, Yao P. Langmuir 2007, 23(11): 6358-6364

    52. [52]

      Yu S, Yao P, Jiang M, Zhang G. Biopolymers, 2006, 83(2): 148-158

    53. [53]

      Pan X, Yu S, Yao P, Shao Z. J Colloid Interface Sci, 2007, 316(2): 405-412

    54. [54]

      Ding X, Yao P. Langmuir, 2013, 29(27): 8636-8644

    55. [55]

      Simo O K, Mao Y, Tokle T, Decker E A, McClements D J. Food Res Int , 2012, 48(2): 337-345

    56. [56]

      Li J, Yu S, Yao P, Jiang M. Langmuir, 2008, 24(7): 3486-3492

    57. [57]

      Li J, Yao P. Langmuir, 2009, 25(11): 6385-6391

    58. [58]

      Hao H, Yao P. Chem J Chinese U, 2014, 35(3): 652-659

    59. [59]

      Deng W, Li J, Yao P, He F, Huang C. Macromol Biosci, 2010, 10(10): 1224-1234

    60. [60]

      Qi J, Yao P, He F, Yu C, Huang C. Int J Pharm, 2010, 393(1): 176-184

    61. [61]

      Mu M, Pan X, Yao P, Jiang M. J Colloid Interface Sci, 2006, 301(1): 98-106

    62. [62]

      Pan X, Mu M, Hu B, Yao P, Jiang M. Biopolymers, 2006, 81(1): 29-38

    63. [63]

      Pan X, Yao P, Jiang M. J Colloid Interface Sci, 2007, 315(2): 456-463

    64. [64]

      Hao H, Ma Q, Huang C, He F, Yao P. Int J Pharm, 2013, 444(1): 77-84

    65. [65]

      Hao, H, Ma, Q, He, F, Yao, P. J Mater Chem B, 2014, 2(45): 7978-7987

    66. [66]

      Cai H, Yao P. Nanoscale, 2013, 5(7): 2892-2900

    67. [67]

      Li C, Liu Z, Yao P. Rsc Adv, 2016, 6(39): 33083-33091

    68. [68]

      Chen D, Peng H, Jiang M. Macromolecules, 2003, 36(8): 2576-2578

    69. [69]

      Hui T, Chen D, Jiang M. Macromolecules, 2005, 38(13): 5834-5837

    70. [70]

      Gu C, Chen D, Jiang M. Macromolecules, 2004, 37(4): 1666-1669

    71. [71]

      Jia X, Chen D, Jiang M. Chem Commun, 2006,52(16): 1736-1738

    72. [72]

      Yang Q, Wu J, Xu Z. Chen D.Polym Chem, 2015, 6(10): 1688-1692

    73. [73]

      Peng H, Chen D, Jiang M. Macromolecules, 2005, 38(9): 3550-3553

    74. [74]

      Wang L, Wang Y, Miao H, Chen D. Soft Matter, 2016, 12(22): 4891-4895

    75. [75]

      Ji J, Fan Y, Jiang M, Chen D. Soft Matter, 2012, 8(33): 8636-8641

    76. [76]

      Cheng L, Hou G, Miao J, Chen D, Jiang M, Zhu L. Macromolecules, 2008, 41 (21): 8159-8166

    1. [1]

      庄莹王立权林嘉平 . 基于非共价键作用的二嵌段共聚物/均聚物超分子体系的自组装行为. 高分子学报, 2011, (11): 1320-1328. doi: 10.3724/SP.J.1105.2011.11017

    2. [2]

      . 动态共价键高分子专辑前言. 高分子学报, 2019, 50(5): -.

    3. [3]

      陈兴幸钟倩云王淑娟吴宥伸谭继东雷恒鑫黄绍永张彦峰 . 动态共价键高分子材料的研究进展. 高分子学报, 2019, 50(5): 469-484. doi: 10.11777/j.issn1000-3304.2019.18277

    4. [4]

      张昊宇和亚宁李煜璟王晓工 . 超支化偶氮大分子重氮盐静电层-层自组装膜的制备及光响应性研究. 高分子学报, 2008, (4): 383-387. doi: 10.3724/SP.J.1105.2008.00383

    5. [5]

      李芸焜李亚超徐翔晖顾忠伟 . 生物可裂解树状大分子组装体与智能型基因传递系统. 高分子学报, 2017, (2): 375-385. doi: 10.11777/j.issn1000-3304.2017.16301

    6. [6]

      陈圣典胡方振盛瑞隆曹阿民 . 可逆加成-断裂链转移方法合成两亲液晶嵌段功能大分子及其自组装的研究. 高分子学报, 2013, (1): 102-111. doi: 10.3724/SP.J.1105.2013.12156

    7. [7]

      崔树勋 . 生物大分子的单分子力谱:在水溶液与非极性溶剂中的对照研究. 高分子学报, 2016, (9): 1160-1165. doi: 10.11777/j.issn1000-3304.2016.16131

    8. [8]

      陶杰林翠玲王兆龙魏斌华奇侠万雪婷邱化玉尹守春 . 基于金属配位和主客体相互作用分级自组装构筑超分子凝胶. 高分子学报, 2017, (1): 93-100. doi: 10.11777/j.issn1000-3304.2017.16244

    9. [9]

      杨支帅田玉奎李子健敖雷高宗春汪峰 . 基于非共价镊合作用的线形超分子聚合物. 高分子学报, 2017, (1): 121-128. doi: 10.11777/j.issn1000-3304.2017.16251

    10. [10]

      吴思武唐征海郭宝春 . 动态共价键交联橡胶的设计和性能. 高分子学报, 2019, 50(5): 442-450. doi: 10.11777/j.issn1000-3304.2019.19002

    11. [11]

      夏嘉豪李宏斌许华平 . 含硫/硒动态共价键强弱的测定. 高分子学报, 2020, 51(2): 205-213. doi: 10.11777/j.issn1000-3304.2019.19166

    12. [12]

      张朔蔡春华黄琦婧林嘉平许占文 . 分子间相互作用对聚肽共聚物/聚苯乙烯衍生物共混体系自组装形貌影响的研究. 高分子学报, 2018, (1): 109-118. doi: 10.11777/j.issn1000-3304.2018.17223

    13. [13]

      杨文君李俊柏沈家骢 . 大分子引发-转移-终止剂. 高分子学报, 1994, (5): 636-640.

    14. [14]

      陈巧梅杨洋危岩吉岩 . 含可交换动态共价键的液晶聚合物驱动器. 高分子学报, 2019, 50(5): 451-468. doi: 10.11777/j.issn1000-3304.2019.19004

    15. [15]

      李永三徐艳双陶磊危岩 . 基于动态共价键的自愈性水凝胶及其在医学领域的应用. 高分子学报, 2020, 51(1): 30-38. doi: 10.11777/j.issn1000-3304.2020.19144

    16. [16]

      李永三徐艳双陶磊危岩 . 基于动态共价键的自愈性水凝胶及其在医学领域的应用. 高分子学报, 2020, 51(1): 0-0. doi: 10.11777/j.issn1000-3304.2020.19144

    17. [17]

      胡榕婷王珏杨静丁澦陈国颂 . 基于多重非共价相互作用的荧光融合蛋白质微米环. 高分子学报, 2019, 50(2): 135-146. doi: 10.11777/j.issn1000-3304.2018.18204

    18. [18]

      朱力知潘振远李玉良苏炳录沈德康 . 大分子氮氧自由基的合成及其阻聚作用. 高分子学报, 1982, (5): 388-392.

    19. [19]

      梁淑君杨万泰 . 一种大分子引发剂的引发作用研究. 高分子学报, 2009, (6): 576-580. doi: 10.3724/SP.J.1105.2009.00576

    20. [20]

      林铭昌陈国颂 . 基于糖和苯硼酸动态共价键的高效蛋白质表面修饰方法. 高分子学报, 2017, (7): 1113-1120. doi: 10.11777/j.issn1000-3304.2017.16347

  • Figure 1.  An illustration of formation of NCCM constructed by CD/ADA host-guest interactions, and its hollow manipulation and surface modification (Reprinted with permission from Ref.[14]; Copyright (2006) American Chemical Society)

    Figure 2.  An illustration of photo-switchable NCCV constructed by CD/Azobenzne host-guest interaction (Reprinted with permission from Ref.[17]; Copyright (2007) American Chemical Society)

    Figure 3.  An illustration of light-controlled PPR hydrogel (Reprinted with permission from Ref.[12]; Copyright (2011) The Royal Society of Chemistry)

    Figure 4.  An illustration of construction of HIC and consequent hydrogel via host-guest interactions (Reprinted with permission from Ref.[24]; Copyright (2010) American Chemical Society)

    Figure 5.  An illustration of construction of glycovesicles via dynamic covalent bond of sugar and phenylboronic acid group, and their biomimicry of glycan via the specific recognition of protein and glycovesicles (Reprinted with permission from Ref.[42]; Copyright (2012) The Royal Society of Chemistry)

    Figure 6.  TEM image and illustration of the nanogels produced by self-assembly of chitosan and ovalbumin (The scale bar is 1 µm for the image and 100 nm for the enlarged image.) (Reprinted with permission from Ref.[50]; Copyright (2006) American Chemical Society)

    Figure 7.  Illustration of lysozyme-dextran nanogel with core-shell structure prepared via a green process (Reprinted with permission from Ref.[56]; Copyright (2008) American Chemical Society)

    Figure 8.  Structures of casein-dextran copolymers produced by Maillard reaction (Reprinted with permission from Ref.[61]; Copyright (2006) Elsevier)

    Figure 9.  Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-dextran and β-carotene (Reprinted with permission from Ref.[63]; Copyright (2007) Elsevier)

    Figure 10.  Magnetic resonance imaging and therapy efficacy of the tumor-bearing mice after treatment with doxorubicin and Fe3O4 loaded albumin nanoparticles with folic acid modified dextran surface (Reprinted with permission from Ref.[65]; Copyright (2014) The Royal Society of Chemistry)

    Figure 11.  Preparation process, TEM image and cell imaging of doxorubicin and gold nanoparticle-loaded lysozyme-dextran nanogels (Reprinted with permission from Ref.[66]; Copyright (2013) The Royal Society of Chemistry)

    Figure 12.  Illustration of the fabrication process of Au@PDA@BD nanoparticles; CT image and therapy efficacy of the tumor-bearing mice after treatment with the nanoparticles (Reprinted with permission from Ref.[67]; Copyright (2016) The Royal Society of Chemistry)

    Figure 13.  (A) Schematic representation of chemical crosslinking induced micellization of a diblock copolymer by crosslinking one of the two blocks in the common solvent. (B) SEM (a) and TEM (b) images of discrete core-crosslinked polymeric micelles. (C) 1H-NMR spectra of PS-b-P4VP in deuterated DMF after reacting with excess 1,4-dibromobutane for: (A) 0 h, (B) 10 h, (C) 28 h, (D) 52 h (Reprinted with permission from Ref.[68]; Copyright (2003) American Chemical Society)

    Figure 14.  Core-crosslinked polymeric micelles with a mixed shell (PMMS) formed by chemically crosslinking the P2VP blocks in the common solvent; the covalent crosslinking enables sufficient mixing of the strongly incompatible PEO and PS blocks in the shell (Reprinted with permission from Ref.[69]; Copyright (2005) American Chemical Society)

    Figure 15.  The polymeric micelles prepared by chemical crosslinking in the common solvent that can self-associate and self-dissociate (Reprinted with permission from Ref.[70]; Copyright (2004) American Chemical Society)

    Figure 16.  The schematic presentation of multi-responsive micelles formed by chemical crosslinking induced micellization of a diblock copolymer (Reprinted with permission from Ref.[71]; Copyright (2006) The Royal Society of Chemistry)

    Figure 17.  (a) The schematic description of the complexation with a lower critical complexation temperature (LCCT) between random copolymer PNIPAM-co-AA (NIPAM: N-isopropyl acrylamide, AA: acrylic acid) and lysozyme, which results in smart protection of the lysozyme. (b) Temperature-dependent zeta potentials of PNIPAM-co-AA in aqueous solution; MF represents the molar fraction (MF) of NIPAM (Reprinted with permission from Ref.[72]; Copyright (2015) The Royal Society of Chemistry)

    Figure 18.  (A) The mechanism for core-core coupling between the polymeric core-shell nanospheres to form the core-shell nanofibers. (B) SEM (a) and TEM (b) images of core-shell polymeric nanospheres, and nanofibers (c–g) and graftlike aggregates (h) formed by core-core coupling of core-shell polymeric nanospheres (Reprinted with permission from Ref.[73]; Copyright (2005) American Chemical Society)

    Figure 19.  (A) Synthesis of unimolecular polymeric Janus nanoparticles and their self-assembly.(B) TEM images of (a) unimolecular Janus nanoparticles and (b) their supermicelles. The dark spherical core was assigned as 1,4-dibromobutane (DBB)-cross-linked P2VP. Magnified images are shown as insets. (Reprinted with permission from Ref.[76]; Copyright (2008) American Chemical Society)

  • 加载中
图(20)
计量
  • PDF下载量:  152
  • 文章访问数:  1484
  • HTML全文浏览量:  461
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计