ISSN 1000-3304CN 11-1857/O6

聚合物接枝纳米粒子两亲性分子在溶液中自组装行为的模拟研究

李青霄 王铮 尹玉华 蒋润 李宝会

引用本文: 李青霄, 王铮, 尹玉华, 蒋润, 李宝会. 聚合物接枝纳米粒子两亲性分子在溶液中自组装行为的模拟研究[J]. 高分子学报, 2018, (10): 1351-1358. doi: 10.11777/j.issn1000-3304.2018.18072 shu
Citation1:  Qing-xiao Li, Zheng Wang, Yu-hua Yin, Run Jiang and Bao-hui Li. Self-assembly of Polymer-grafted Nanoparticle Amphiphiles in Selective Solvents[J]. Acta Polymerica Sinica, 2018, (10): 1351-1358. doi: 10.11777/j.issn1000-3304.2018.18072 shu

聚合物接枝纳米粒子两亲性分子在溶液中自组装行为的模拟研究

    通讯作者: 李宝会, E-mail: baohui@nankai.edu.cn
  • 基金项目: 国家自然科学基金(基金号21574071,21774066,21528401,20925414,91227121)、PCSIRT计划(项目号IRT1257)、111计划(项目号B16027)资助

摘要: 利用布朗动力学模拟方法,研究了聚合物接枝纳米粒子组成的两亲性分子在溶液中的自组装行为. 这种两亲性分子可通过自组装形成多种结构. 考察了两亲性分子浓度、疏溶剂纳米粒子直径、聚合物链和纳米粒子之间的相互作用、聚合物链的链长以及溶剂性质对组装结构的影响. 构建了随不同参数变化的形态相图. 我们观察到2种囊泡形成路径,并且通过控制两亲性分子浓度,能实现2种路径之间的转变,并将本研究的模拟结果与已报道的相关实验观测和模拟结果做了比较.

English

    1. [1]

      Yu X F, Zhang W B, Yue K, Li X P, Liu H, Xin Y, Wang C L, Wesdemiotis C, Cheng S. J Am Chem Soc, 2012, 134(18): 7780 − 7787

    2. [2]

      Kawauchi T, Kumaki J, Yashima E. J Am Chem Soc, 2005, 127(28): 9950 − 9951

    3. [3]

      Yu X F, Zhong S, Li X P, Tu Y F, Yang S G, van Horn R M, Ni C Y, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S. J Am Chem Soc, 2010, 132(47): 16741 − 16744

    4. [4]

      Zhang W, Fang B, Walther A, Müller A H E. Macromolecules, 2009, 42(7): 2563 − 2569

    5. [5]

      Wang Z, Li Y, Dong X, Yu X, Guo K, Su H, Yue K, Wesdemiotis C, Cheng S Z D, Zhang W. Chem Sci, 2013, 4(3): 1345 − 1352

    6. [6]

      Li W, Thanneeru S, Kanyo I, Liu B, He J. ACS Macro Lett, 2015, 4(7): 736 − 740

    7. [7]

      Zhang Y, Zhao H Y. Langmuir, 2016, 32(15): 3567 − 3579

    8. [8]

      Wen J, Zhang J, Zhang Y, Yang Y, Zhao H C. Polym Chem, 2014, 5(13): 4032 − 4038

    9. [9]

      Yu X, Li Y, Dong X H, Yue K, Lin Z W, Feng X Y, Huang M J, Zhang W B, Cheng S Z D. J Polym Sci, Part B: Polym Phys, 2014, 52(20): 1309 − 1325

    10. [10]

      Zhang W B, Yu X F, Wang C L, Sun H J, Hsieh I F, Li Y W, Dong X H, Yue K, van Horn R, Cheng S Z D. Macromolecules, 2014, 47(4): 1221 − 1239

    11. [11]

      Mai Y, Eisenberg A. Chem Soc Rev, 2012, 41(18): 5969 − 5985

    12. [12]

      Shen H W, Eisenberg A. J Phys Chem B, 1999, 103(44): 9473 − 9487

    13. [13]

      Du B, Mei A, Yin K, Zhang Q, Xu J, Fan Z. Macromolecules, 2009, 42(21): 8477 − 8484

    14. [14]

      Li Q, Wang Z, Yin Y, Jiang R, Li B. Macromolecules, 2018, 51(8): 3050 − 3058

    15. [15]

      Li W K, Kuo C H, Kanyo I, Thanneeru S, He J. Macromolecules, 2014, 47(17): 5932 − 5941

    16. [16]

      Li B, Zhao L, Qian H J, Lu Z Y. Soft Matter, 2014, 10(13): 2245 − 2252

    17. [17]

      Anderson J A, Travesset A. Macromolecules, 2006, 39(15): 5143 − 5151

    18. [18]

      Grest G S, Kremer K. Phys Rev A, 1986, 33(5): 3628 − 3631

    19. [19]

      Anderson J A, Lorenz C D, Travesset A. J Comput Phys, 2008, 227(10): 5342 − 5359

    20. [20]

      Glaser J, Nguyen T D, Anderson J A, Liu P, Spiga F, Millan J A, Morse D C, Glotzer S C. Comput Phys Commun, 2015, 192: 97 − 107

    21. [21]

      Zhu Y, Liu H, Li Z, Qian H, Milano G, Lu Z. J Comput Chem, 2013, 34(25): 2197 − 2211

    22. [22]

      Zhu Y, Pan D, Li Z, Liu H, Qian H, Zhao Y, Lu Z, Sun Z. Mol Phys, 2018, 116(7-8): 1065 − 1077

    23. [23]

      Ma S, Hu Y, Wang R. Macromolecules, 2015, 48(9): 3112 − 3120

    24. [24]

      Zhang L F, Eisenberg A. Science, 1995, 268(5218): 1728 − 1731

    25. [25]

      Sun P, Yin Y, Li B, Chen T, Jin Q, Ding D. J Chem Phys, 2005, 122(20): 204905

    26. [26]

      Song Y, Jiang R, Wang Z, Wang L, Yin Y, Li B, S hi, A C. Macromol Theory Simul, 2016, 25(6): 559 − 570

    27. [27]

      Uneyama T. J Chem Phys, 2007, 126(11): 11490

    28. [28]

      Xiao M, Xia G, Wang R, Xie D. Soft Matter, 2012, 8(30): 7865 − 7874

    29. [29]

      Huang J H, Wang Y, Qian C. J Chem Phys, 2009, 131(23): 234902

    30. [30]

      Han Y, Yu H, Du H, Jiang W. J Am Chem Soc, 2010, 132(3): 1144 − 1150

    31. [31]

      He X, Liang H, Huang L, Pan C. J Phys Chem B, 2004, 108(5): 1731 − 1735

    32. [32]

      He X, Schmid F. Macromolecules, 2006, 39(7): 2654 − 2662

    33. [33]

      He X, Schmid F. Phys Rev Lett, 2008, 100(13): 137802

    1. [1]

      隆美林张科陈永明朱雯 . 两亲性聚合物刷的合成和溶液自组装. 高分子学报, 2016, (9): 1238-1246. doi: 10.11777/j.issn1000-3304.2016.16010

    2. [2]

      陈平符文鑫 . 巯-炔加成可控修饰的两亲性嵌段共聚肽及其溶液自组装. 高分子学报, 2015, (10): 1223-1230. doi: 10.11777/j.issn1000-3304.2015.15071

    3. [3]

      杨光许汇王传明何文军李应成 . 两亲性嵌段共聚物在选择性溶液中吸附行为的理论研究. 高分子学报, 2015, (12): 1435-1442. doi: 10.11777/j.issn1000-3304.2015.15100

    4. [4]

      周加境吴迪卢德荣段宏伟 . 高分子修饰金纳米粒子的自组装研究进展. 高分子学报, 2018, 0(8): 1033-1047. doi: 10.11777/j.issn1000-3304.2018.18050

    5. [5]

      何乃普潘素娟王荣民 . 热诱导白蛋白与壳聚糖在溶液中的自组装. 高分子学报, 2016, (1): 61-69. doi: 10.11777/j.issn1000-3304.2016.15129

    6. [6]

      张翠歌朱叶罗静魏玮顾瑶刘晓亚 . Papain/HA-Phe自组装复合纳米粒子及乳化性能. 高分子学报, 2016, (7): 963-970. doi: 10.11777/j.issn1000-3304.2016.15350

    7. [7]

      曹旭光蒋涛王立权张良顺林嘉平蔡春华 . 两亲性/双疏性嵌段共聚物共混体系的自组装行为研究. 高分子学报, 2015, (4): 475-483. doi: 10.11777/j.issn1000-3304.2015.14339

    8. [8]

      戚美微黄卫肖谷雨朱新远高超周永丰 . 超支化聚合物的合成和自组装研究. 高分子学报, 2017, (2): 214-228. doi: 10.11777/j.issn1000-3304.2017.16324

    9. [9]

      候平平张振宇平静沈志豪范星河周其凤 . 甲壳型液晶高分子的构筑、自组装及其功能化. 高分子学报, 2017, (10): 1591-1608. doi: 10.11777/j.issn1000-3304.2017.17116

    10. [10]

      肖春生丁建勋贺超良陈学思 . 糖聚肽高分子的合成、自组装及生物医学应用. 高分子学报, 2018, (1): 45-55. doi: 10.11777/j.issn1000-3304.2018.17282

    11. [11]

      吕秋丰张佳音何志伟 . 苯胺与吡咯共聚物空心球的自组装制备及性能. 高分子学报, 2012, (3): 299-306. doi: 10.3724/SP.J.1105.2012.11190

    12. [12]

      张连斌王珂朱锦涛 . 中国嵌段共聚物受限自组装的研究进展. 高分子学报, 2017, (8): 1261-1276. doi: 10.11777/j.issn1000-3304.2017.17126

    13. [13]

      崔杰张晓旭韩媛媛姜伟 . 多分散性对两亲性两嵌段共聚物在选择性溶剂中自组装行为影响的Monte Carlo模拟. 高分子学报, 2011, (4): 421-426. doi: 10.3724/SP.J.1105.2011.10246

    14. [14]

      郄晶晶韦宾张立群岳冬梅 . 含MPEG侧链的膦手性螺旋聚合物自组装材料的合成与表征. 高分子学报, 2012, (10): 1170-1176. doi: 10.3724/SP.J.1105.2012.12036

    15. [15]

      李志海潘俊星张进军孙敏娜郭宇琦岑建勇武海顺 . 掩膜诱导的光敏性三组分聚合物混合体系的自组装. 高分子学报, 2017, (5): 768-775. doi: 10.11777/j.issn1000-3304.2017.16270

    16. [16]

      王国建朱琦邓洪平王大力朱新远颜德岳 . 利用聚合物自组装实现绿色荧光蛋白生色团的荧光增强. 高分子学报, 2013, (5): 660-667. doi: 10.3724/SP.J.1105.2013.12418

    17. [17]

      陈增磊何林李 . Coil-Rod-Coil刚柔嵌段共聚物在选择性溶剂中的自组装. 高分子学报, 2014, (4): 514-522. doi: 10.3724/SP.J.1105.2014.13327

    18. [18]

      郭和泽宋晟戴婷婷李圣利窦红静 . 由自组装构筑蛋白酶响应性近红外/磁共振双显影微球. 高分子学报, 2018, 0(8): 1127-1140. doi: 10.11777/j.issn1000-3304.2018.18079

    19. [19]

      王荣张洁宛新华 . 螺旋链大侧基聚苯乙烯衍生物手性长程传递和自组装. 高分子学报, 2016, (4): 409-421. doi: 10.11777/j.issn1000-3304.2016.16037

    20. [20]

      唐雯岳衎程正迪 . 巨型表面活性剂的本体自组装研究和分子拓扑结构效应. 高分子学报, 2018, 0(8): 959-972. doi: 10.11777/j.issn1000-3304.2018.18102

  • Figure 1.  Schematic of model (Pn-H) giant molecule: one hydrophobic nanoparticle (H) bead tethered with one hydrophilic polymer chain (P). The red and green spheres represent the hydrophobic head and hydrophilic beads, respectively.

    Figure 2.  (a) Morphological phase diagram of the aggregates formed by P3-H giant amphiphiles depending on amphiphile concentration and diameter of hydrophobic head. (b) Typical morphological snapshots of the hydrophobic bead with different diameters at φ = 1.5% (εHP = 0.7 and αPP = 0.1).

    Figure 3.  (a) Morphological phase diagram of the aggregates formed by Pn-H model giant amphiphiles as a function of hydrophilic chain length n and interaction parameter εHP. (b) Typical snapshots. The size of H bead is 2.0, αPP = 0.1, the total number of coarse-grained beads in each system is fixed at 36000.

    Figure 4.  (a) Morphological phase diagram of the aggregates formed by P4-H model giant amphiphiles with different amphiphile concentrations and in different solvents for P-beads. (b) Typical morphological snapshots in different solvents for P-beads at φ = 6.8%. (c) Typical morphological snapshots with α = 0.1 at two different amphiphile concentrations. The size of hydrophobic bead is 2.0, αPP = 0.1, εHP = 0.9.

    Figure 5.  Snapshots of vesicle formation from P3-H system at different time with φ = 5.2%, the arrows point to the cross-sectional slice of the aggregates. The size of hydrophobic bead is 2.0, αPP = 0.1, εHP = 0.7.

    Figure 6.  Snapshots of vesicle formation from P3-H system at different times with φ = 4.3%, the arrows point to the cross-sectional slice of aggregates. The size of hydrophobic bead is 2.0, αPP = 0.1, εHP = 0.7.

    Table 1.  The effect of concentration of the hydrophilic P-beads φP on the vesicle formation

    Model molecule φ (%) φP (%) Morphologya a Mechanism b
    1.5 2.3 3.0 3.8 0.50 0.75 1.00 1.26 V II
    P4-H 4.5 5.3 1.51 1.76 V I
    6.0 2.01 TV I
    6.8 2.26 CMV
    a V, TV, and CMV are vesicles, tubular vesicles, and cylindrical multicompartment vesicles formed by P4-H model shape amphiphiles with different φ, respectively. b I, II are formation mechanisms of vesicles formed by P4-H model shape amphiphiles with different φ, respectively.
    下载: 导出CSV
  • 加载中
图(7)表(1)
计量
  • PDF下载量:  71
  • 文章访问数:  881
  • HTML全文浏览量:  335
  • 引证文献数: 0
文章相关
  • 通讯作者:  李宝会, baohui@nankai.edu.cn
  • 收稿日期:  2018-03-02
  • 修稿日期:  2018-04-03
  • 网络出版日期:  2018-07-09
  • 刊出日期:  2018-10-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计