ISSN 1000-3304CN 11-1857/O6

软受限条件下嵌段共聚物薄膜缺陷消除的理论研究

宋俊清 刘一新 张红东

引用本文: 宋俊清, 刘一新, 张红东. 软受限条件下嵌段共聚物薄膜缺陷消除的理论研究[J]. 高分子学报, 2018, (12): 1548-1557. doi: 10.11777/j.issn1000-3304.2018.18097 shu
Citation:  Jun-qing Song, Yi-xin Liu and Hong-dong Zhang. Theoretical Study on Defect Removal in Block Copolymer Thin Films under Soft Confinement[J]. Acta Polymerica Sinica, 2018, (12): 1548-1557. doi: 10.11777/j.issn1000-3304.2018.18097 shu

软受限条件下嵌段共聚物薄膜缺陷消除的理论研究

    通讯作者: 刘一新, E-mail: lyx@fudan.edu.cn
  • 基金项目: 上海市浦江人才计划(项目号 18PJ1401200)、国家自然科学基金(基金号 21004013)和国家重点基础研究发展计划项目(项目号 2011CB605701)资助

摘要: 理解缺陷消除机理对于制备无缺陷的长程有序嵌段共聚物薄膜至关重要. 本文利用弦方法结合自洽平均场理论研究了接枝均聚物高分子刷在AB两嵌段共聚物垂直层薄膜的偶极位错缺陷消除中发挥的作用. 研究发现,高分子刷的“浸润效应”和“重排效应”能够降低χAB的有效值,增大跳跃扩散的扩散系数,进而促进“桥连”结构的形成. 并且,接枝高分子刷的基底表面的“硬度”越小,以上2种效应越显著,越能进一步降低缺陷消除过程中形成“桥连”结构这一关键步骤的能垒.

English

    1. [1]

      Matsen M W, Bates F S. Macromolecules, 1996, 29(23): 7641 − 7644

    2. [2]

      Khandpur A K, Forster S, Bates F S, Hamley I W, Ryan A J, Bras W, Almdal K, Mortensen K. Macromolecules, 1995, 28(26): 8796 − 8806

    3. [3]

      Xie N, Liu M J, Deng H L, Li W H, Qiu F, Shi A C. J Am Chem Soc, 2014, 136(8): 2974 − 2977

    4. [4]

      Park C, Yoon J, Thomas E L. Polymer, 2003, 44(22): 6725 − 6760

    5. [5]

      Ji S X, Wan L, Liu C C, Nealey P F. Prog Polym Sci, 2016, 54-55: 76 − 127

    6. [6]

      Li W H, Muller M. Annu Rev Chem Biomol Eng, 2015, 6: 187 − 216

    7. [7]

      Matsen M W. J Chem Phys, 1997, 106(18): 7781 − 7791

    8. [8]

      Turner M S. Phys Rev Lett, 1992, 69(12): 1788 − 1791

    9. [9]

      Walton D G, Kellogg G J, Mayes A M, Lambooy P, Russell T P. Macromolecules, 1994, 27(21): 6225 − 6228

    10. [10]

      Mansky P, Liu Y, Huang E, Russell T P, Hawker C J. Science, 1997, 275(5305): 1458 − 1460

    11. [11]

      Han E, Stuen K O, La Y H, Nealey P F, Gopalan P. Macromolecules, 2008, 41(23): 9090 − 9097

    12. [12]

      Onses M S, Ramirez-Hernandez A, Hur S M, Sutanto E, Williamson L, Alleyne A G, Nealey P F, de Pablo J J, Rogers J A. ACS Nano, 2014, 8(7): 6606 − 6613

    13. [13]

      Ruiz R, Kang H M, Detcheverry F A, Dobisz E, Kercher D S, Albrecht T R, de Pablo J J, Nealey P F. Science, 2008, 321(5891): 936 − 939

    14. [14]

      Liu C C, Ramirez-Hernandez A, Han E, Craig G S W, Tada Y, Yoshida H, Kang H M, Ji S X, Gopalan P, de Pablo J J. Macromolecules, 2013, 46(4): 1415 − 1424

    15. [15]

      Stoykovich M P, Muller M, Kim S O, Solak H H, Edwards E W, de Pablo J J, Nealey P F. Science, 2005, 308(5727): 1442 − 1446

    16. [16]

      Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47(1): 2 − 12

    17. [17]

      Hammond M R, Cochran E, Fredrickson G H, Kramer E J. Macromolecules, 2005, 38(15): 6575 − 6585

    18. [18]

      Mishra V, Fredrickson G H, Kramer E J. ACS Nano, 2012, 6(3): 2629 − 2641

    19. [19]

      Nagpal U, Muller M, Nealey P F, de Pablo J J. ACS Macro Lett, 2012, 1(3): 418 − 422

    20. [20]

      Li W H, Muller M. Macromolecules, 2016, 49(16): 6126 − 6138

    21. [21]

      Li W H, Nealey P F, de Pablo J J, Muller M. Phys Rev Lett, 2014, 113(16): 168301

    22. [22]

      Takahashi H, Laachi N, Delaney K T, Hur S M, Weinheimer C J, Shykind D, Fredrickson G H. Macromolecules, 2012, 45(15): 6253 − 6265

    23. [23]

      Hur S M, Thapar V, Ramirez-Hernandez A, Khaira G, Segal-Peretz T, Rincon-Delgadillo P A, Li W H, Muller M, Nealey P F, de Pablo J J. Proc Natl Acad Sci USA, 2015, 112(46): 14144 − 14149

    24. [24]

      Yokoyama H. Mater Sci Eng R-Rep, 2006, 53(5-6): 199 − 248

    25. [25]

      Lodge T P, Dalvi M C. Phys Rev Lett, 1995, 75(4): 657 − 660

    26. [26]

      Meng D, Wang Q. J Chem Phys, 2007, 126(23): 234902

    27. [27]

      Trombly D M, Pryamitsyn V, Ganesan V. Macromolecules, 2011, 44(24): 9867 − 9881

    28. [28]

      Trombly D M, Pryamitsyn V, Ganesan V. Phys Rev Lett, 2011, 107(14): 148304

    29. [29]

      Song J Q, Liu Y X, Zhang H D. J Chem Phys, 2016, 145(21): 214902

    30. [30]

      Hur S M, Khaira G S, Ramirez-Hernandez A, Muller M, Nealey P F, de Pablo J J. ACS Macro Lett, 2015, 4(1): 11 − 15

    31. [31]

      Kim B H, Park S J, Jin H M, Kim J Y, Son S W, Kim M H, Koo C M, Shin J, Kim J U, Kim S O. Nano Lett, 2015, 15(2): 1190 − 1196

    32. [32]

      Liu Y X, Zhang H D. J Chem Phys, 2014, 140(22): 224101

    33. [33]

      Chantawansri T L, Hur S M, Garcia-Cervera C J, Ceniceros H D, Fredrickson G H. J Chem Phys, 2011, 134(24): 244905

    34. [34]

      E W N, Ren W Q, Vanden-Eijnden E. J Chem Phys, 2007, 126(16): 164103

    35. [35]

      E W N, Ren W Q, Vanden-Eijnden E. Phys Rev B, 2002, 66(5): 052301

    36. [36]

      Tong Q Q, Sibener S J. Macromolecules, 2013, 46(21): 8538 − 8544

    37. [37]

      Kim S O, Kim B H, Kim K, Koo C M, Stoykovich M P, Nealey P F, Solak H H. Macromolecules, 2006, 39(16): 5466 − 5470

    38. [38]

      Kim B, Laachi N, Delaney K T, Carilli M, Kramer E J, Fredrickson G H. J Appl Polym Sci, 2014, 131(24): 40790

    39. [39]

      Man X K, Zhou P, Tang J Z, Yan D D, Andelman D. Macromolecules, 2016, 49(21): 8241 − 8248

    40. [40]

      Man X K, Andelman D. Phys Rev E, 2012, 86(1): 010801

    41. [41]

      Cavicchi K A, Lodge T P. Macromolecules, 2004, 37(16): 6004 − 6012

    42. [42]

      Harrison C, Adamson D H, Cheng Z D, Sebastian J M, Sethuraman S, Huse D A, Register R A, Chaikin P M. Science, 2000, 290(5496): 1558 − 1560

    43. [43]

      Ruiz R, Sandstrom R L, Black C T. Adv Mater, 2007, 19(4): 587 − 591

    1. [1]

      刘圆圆唐鹤玮李倩王晓琳 . 嵌段共聚物规整纳米多孔薄膜的制备与形貌调控. 高分子学报, 2015, (4): 466-474. doi: 10.11777/j.issn1000-3304.2015.14338

    2. [2]

      向略朱雯隆美林张科陈永明 . 三嵌段刷状共聚物的合成及溶液组装制备多孔纳米粒子. 高分子学报, 2018, 0(7): 917-929. doi: 10.11777/j.issn1000-3304.2018.18043

    3. [3]

      徐李梅章林溪 . 受限于平行板中高分子刷/磁性纳米粒子体系的构象性质研究. 高分子学报, 2011, (11): 1298-1304. doi: 10.3724/SP.J.1105.2011.10347

    4. [4]

      张盈胡超群贺小华 . 接枝树形支化分子双亲性嵌段共聚肽的合成及性能研究. 高分子学报, 2017, (2): 266-273. doi: 10.11777/j.issn1000-3304.2017.16220

    5. [5]

      王雅卓马德旺赵迎春明明吴佳丁建东 . 古紫质等光驱质子泵以及该类活性蛋白质与聚合物的功能复合材料. 高分子学报, 2012, (7): 698-713. doi: 10.3724/SP.J.1105.2012.12051

    6. [6]

      常同鑫赵海峰黄海瑛何天白 . 溶剂去除速度对于溶剂退火薄膜相形貌的影响. 高分子学报, 2016, (1): 78-84. doi: 10.11777/j.issn1000-3304.2016.15131

    7. [7]

      卢汝烽胡继文张干伟肖定书 . 一种以聚酰亚胺为主链的分子刷合成及表征. 高分子学报, 2012, (3): 239-249. doi: 10.3724/SP.J.1105.2012.11149

    8. [8]

      王洪振秦亚伟董金勇 . 聚丙烯-聚磷酸酯嵌段共聚物的设计与合成. 高分子学报, 2013, (4): 518-525. doi: 10.3724/SP.J.1105.2013.12273

    9. [9]

      师楠张洁宛新华 . 基于多酸/嵌段共聚物的刺激响应性杂化功能材料. 高分子学报, 2016, (12): 1645-1653. doi: 10.11777/j.issn1000-3304.2016.16265

    10. [10]

      张连斌王珂朱锦涛 . 中国嵌段共聚物受限自组装的研究进展. 高分子学报, 2017, (8): 1261-1276. doi: 10.11777/j.issn1000-3304.2017.17126

    11. [11]

      朱煜王晓工 . 偶氮液晶嵌段共聚物自组装和光响应性研究进展. 高分子学报, 2013, (8): 962-970. doi: 10.3724/SP.J.1105.2013.13109

    12. [12]

      李小霞谷梦鑫张良顺林嘉平 . 双亲性DNA嵌段共聚物胶束构建超结构的模拟研究. 高分子学报, 2020, 51(11): 1257-1266. doi: 10.11777/j.issn1000-3304.2020.20078

    13. [13]

      李晓露王锐杨春芳董振峰张秀芹王笃金王德义 . 含柔性链段聚右旋乳酸嵌段共聚物对聚左旋乳酸拉伸行为的影响. 高分子学报, 2018, 0(5): 598-606. doi: 10.11777/j.issn1000-3304.2017.17197

    14. [14]

      秦江雷陈永明 . 由嵌段共聚物制备有形状的核壳结构聚合物纳米颗粒. 高分子学报, 2011, (6): 572-585. doi: 10.3724/SP.J.1105.2011.11132

    15. [15]

      刘志瑶王铮尹玉华蒋润李宝会 . 溶剂对嵌段共聚物AB/均聚物C共混体系增容效果的模拟研究. 高分子学报, 2019, 50(11): 1220-1228. doi: 10.11777/j.issn1000-3304.2019.19072

    16. [16]

      张怀文杜淼王楠郑强 . 拒水型有机硅改性聚氨酯嵌段共聚物的合成与表征. 高分子学报, 2013, (1): 63-69. doi: 10.3724/SP.J.1105.2013.12139

    17. [17]

      杨挺邓鑫星杜福胜李子臣 . 基于含苯硼酸三嵌段共聚物的糖响应性水凝胶. 高分子学报, 2014, (11): 1553-1560. doi: 10.11777/j.issn1000-3304.2014.14201

    18. [18]

      王英英麻家妮崔杰韩媛媛姜伟 . 球壳受限下非对称两嵌段共聚物自组装行为的Monte Carlo模拟研究. 高分子学报, 2018, 0(8): 1116-1126. doi: 10.11777/j.issn1000-3304.2018.18058

    19. [19]

      于春阳李善龙李珂周永丰 . 两嵌段共聚物反相溶剂中组装结构转变动力学的模拟研究. 高分子学报, 2020, 51(3): 311-318. doi: 10.11777/j.issn1000-3304.2019.19173

    20. [20]

      唐雯岳衎程正迪 . 巨型表面活性剂的本体自组装研究和分子拓扑结构效应. 高分子学报, 2018, 0(8): 959-972. doi: 10.11777/j.issn1000-3304.2018.18102

  • Figure 1.  Free energy difference (ΔFd) between a dislocation dipole and perfect lamellae as a function of physical size in x direction across the layers (a), and y direction along the layers (b). The simulations are conducted in a two-dimensional AB diblock copolymer system.

    Figure 2.  MEP for the transition between the defective (α = 0) and the perfect lamellae obtained using the string method associated with SCFT. No energy barrier is found along the MEP. Blue: the brush layer; red: A-rich domains; green: B-rich domains. The softness of the brush layer is γ = 0 and the length of brush chain is ϵ = 0.2.

    Figure 3.  Density distribution of component A in Fig. 2 as a function of the film depth parameterized by z: (a) three-dimensional morphology of the thin film; two-dimensional morphology of component A at (b) z = 0Rg, (c) z = 2.9Rg and (d) z = 3.4Rg. (e): Density distribution of A component along the yellow dotted line with different film depths. The thickness of AB block copolymer film is ${\bar \phi _{{\rm{AB}}}}d$ = 3.51Rg.

    Figure 4.  Density amplitude ϕC,maxϕC,min of grafted brush in xy plane as a function of film depth dz from bottom substrate: (a) defect-free lamellae, (b) dislocation dipole, (c) rearrancement degree of brush ${κ} = 1/A \!\!\displaystyle\mathop {\text{\rotatebox[origin=t]{12}{\scalebox{0.95}[1]{\int}}}} \limits \!\! \sqrt {{{\left[ {{ϕ} \left( z \right) - 1} \right]}^2}} {\rm d}A$ with ${ϕ} \left( z \right) = {{ϕ} _{\rm{C}}}\left( z \right)/{\bar {ϕ} _{\rm{C}}}\left( z \right)$

    Figure 5.  Responsive density rearrangement of the grafted brush by morphology of ϕ(z) with dz = 1 Rg during the defect removal process in Fig. 2

    Figure 6.  (a) MEP for the transition between a dislocation dipole and perfert lamellae on grafted brush with different γ (The online version is colorful.); (b) Corresponding free energy difference $\Delta {f_{\rm{d}}} = {(}{{F_{\rm{d}}} - {F_{\rm{p}}}} {)}/{(}{{d}{{\bar {ϕ} }_{{\rm{AB}}}}} {)}$ ; (c) Energy barrier of the transition state over defect $\Delta {f_{\rm{b}}} = \left( {{F_{{\rm{tran}}}} - {F_{\rm{d}}}} \right)/{(} {{d}{{\bar {ϕ} }_{{\rm{AB}}}}} {)}$

    Figure 7.  (a) MEP for the transition between a dislocation dipole and perfert lamellae on grafted brush with different ϵ (The online version is colorful.); (b) Corresponding free energy difference Δ fd; (c) Energy barrier Δ f b

    Table 1.  Annealing time estimated from kinetic barriers at different softness parameters for PS-b-PMMA system

    γ 0 5 15 20 30
    Barrier ΔFb (kBT) 0.016 0.084 0.277 0.418 0.517
    Annealing
    time τ (s)
    91.4 97.8 118.7 136.7 150.9
    下载: 导出CSV
  • 加载中
图(8)表(1)
计量
  • PDF下载量:  68
  • 文章访问数:  1299
  • HTML全文浏览量:  700
  • 引证文献数: 0
文章相关
  • 通讯作者:  刘一新, lyx@fudan.edu.cn
  • 收稿日期:  2018-03-29
  • 修稿日期:  2018-04-24
  • 网络出版日期:  2018-07-17
  • 刊出日期:  2018-12-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计