γ | 0 | 5 | 15 | 20 | 30 |
Barrier ΔFb (kBT) | 0.016 | 0.084 | 0.277 | 0.418 | 0.517 |
Annealing
time τ (s) |
91.4 | 97.8 | 118.7 | 136.7 | 150.9 |

Citation: Jun-qing Song, Yi-xin Liu and Hong-dong Zhang. Theoretical Study on Defect Removal in Block Copolymer Thin Films under Soft Confinement[J]. Acta Polymerica Sinica, 2018, (12): 1548-1557. doi: 10.11777/j.issn1000-3304.2018.18097

软受限条件下嵌段共聚物薄膜缺陷消除的理论研究
English
Theoretical Study on Defect Removal in Block Copolymer Thin Films under Soft Confinement
-
Key words:
- Block copolymer /
- Thin film /
- Polymer brush /
- Defect removal /
- String method /
- Self-consitent field theory
-
-
[1]
Matsen M W, Bates F S. Macromolecules, 1996, 29(23): 7641 − 7644
-
[2]
Khandpur A K, Forster S, Bates F S, Hamley I W, Ryan A J, Bras W, Almdal K, Mortensen K. Macromolecules, 1995, 28(26): 8796 − 8806
-
[3]
Xie N, Liu M J, Deng H L, Li W H, Qiu F, Shi A C. J Am Chem Soc, 2014, 136(8): 2974 − 2977
-
[4]
Park C, Yoon J, Thomas E L. Polymer, 2003, 44(22): 6725 − 6760
-
[5]
Ji S X, Wan L, Liu C C, Nealey P F. Prog Polym Sci, 2016, 54-55: 76 − 127
-
[6]
Li W H, Muller M. Annu Rev Chem Biomol Eng, 2015, 6: 187 − 216
-
[7]
Matsen M W. J Chem Phys, 1997, 106(18): 7781 − 7791
-
[8]
Turner M S. Phys Rev Lett, 1992, 69(12): 1788 − 1791
-
[9]
Walton D G, Kellogg G J, Mayes A M, Lambooy P, Russell T P. Macromolecules, 1994, 27(21): 6225 − 6228
-
[10]
Mansky P, Liu Y, Huang E, Russell T P, Hawker C J. Science, 1997, 275(5305): 1458 − 1460
-
[11]
Han E, Stuen K O, La Y H, Nealey P F, Gopalan P. Macromolecules, 2008, 41(23): 9090 − 9097
-
[12]
Onses M S, Ramirez-Hernandez A, Hur S M, Sutanto E, Williamson L, Alleyne A G, Nealey P F, de Pablo J J, Rogers J A. ACS Nano, 2014, 8(7): 6606 − 6613
-
[13]
Ruiz R, Kang H M, Detcheverry F A, Dobisz E, Kercher D S, Albrecht T R, de Pablo J J, Nealey P F. Science, 2008, 321(5891): 936 − 939
-
[14]
Liu C C, Ramirez-Hernandez A, Han E, Craig G S W, Tada Y, Yoshida H, Kang H M, Ji S X, Gopalan P, de Pablo J J. Macromolecules, 2013, 46(4): 1415 − 1424
-
[15]
Stoykovich M P, Muller M, Kim S O, Solak H H, Edwards E W, de Pablo J J, Nealey P F. Science, 2005, 308(5727): 1442 − 1446
-
[16]
Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47(1): 2 − 12
-
[17]
Hammond M R, Cochran E, Fredrickson G H, Kramer E J. Macromolecules, 2005, 38(15): 6575 − 6585
-
[18]
Mishra V, Fredrickson G H, Kramer E J. ACS Nano, 2012, 6(3): 2629 − 2641
-
[19]
Nagpal U, Muller M, Nealey P F, de Pablo J J. ACS Macro Lett, 2012, 1(3): 418 − 422
-
[20]
Li W H, Muller M. Macromolecules, 2016, 49(16): 6126 − 6138
-
[21]
Li W H, Nealey P F, de Pablo J J, Muller M. Phys Rev Lett, 2014, 113(16): 168301
-
[22]
Takahashi H, Laachi N, Delaney K T, Hur S M, Weinheimer C J, Shykind D, Fredrickson G H. Macromolecules, 2012, 45(15): 6253 − 6265
-
[23]
Hur S M, Thapar V, Ramirez-Hernandez A, Khaira G, Segal-Peretz T, Rincon-Delgadillo P A, Li W H, Muller M, Nealey P F, de Pablo J J. Proc Natl Acad Sci USA, 2015, 112(46): 14144 − 14149
-
[24]
Yokoyama H. Mater Sci Eng R-Rep, 2006, 53(5-6): 199 − 248
-
[25]
Lodge T P, Dalvi M C. Phys Rev Lett, 1995, 75(4): 657 − 660
-
[26]
Meng D, Wang Q. J Chem Phys, 2007, 126(23): 234902
-
[27]
Trombly D M, Pryamitsyn V, Ganesan V. Macromolecules, 2011, 44(24): 9867 − 9881
-
[28]
Trombly D M, Pryamitsyn V, Ganesan V. Phys Rev Lett, 2011, 107(14): 148304
-
[29]
Song J Q, Liu Y X, Zhang H D. J Chem Phys, 2016, 145(21): 214902
-
[30]
Hur S M, Khaira G S, Ramirez-Hernandez A, Muller M, Nealey P F, de Pablo J J. ACS Macro Lett, 2015, 4(1): 11 − 15
-
[31]
Kim B H, Park S J, Jin H M, Kim J Y, Son S W, Kim M H, Koo C M, Shin J, Kim J U, Kim S O. Nano Lett, 2015, 15(2): 1190 − 1196
-
[32]
Liu Y X, Zhang H D. J Chem Phys, 2014, 140(22): 224101
-
[33]
Chantawansri T L, Hur S M, Garcia-Cervera C J, Ceniceros H D, Fredrickson G H. J Chem Phys, 2011, 134(24): 244905
-
[34]
E W N, Ren W Q, Vanden-Eijnden E. J Chem Phys, 2007, 126(16): 164103
-
[35]
E W N, Ren W Q, Vanden-Eijnden E. Phys Rev B, 2002, 66(5): 052301
-
[36]
Tong Q Q, Sibener S J. Macromolecules, 2013, 46(21): 8538 − 8544
-
[37]
Kim S O, Kim B H, Kim K, Koo C M, Stoykovich M P, Nealey P F, Solak H H. Macromolecules, 2006, 39(16): 5466 − 5470
-
[38]
Kim B, Laachi N, Delaney K T, Carilli M, Kramer E J, Fredrickson G H. J Appl Polym Sci, 2014, 131(24): 40790
-
[39]
Man X K, Zhou P, Tang J Z, Yan D D, Andelman D. Macromolecules, 2016, 49(21): 8241 − 8248
-
[40]
Man X K, Andelman D. Phys Rev E, 2012, 86(1): 010801
-
[41]
Cavicchi K A, Lodge T P. Macromolecules, 2004, 37(16): 6004 − 6012
-
[42]
Harrison C, Adamson D H, Cheng Z D, Sebastian J M, Sethuraman S, Huse D A, Register R A, Chaikin P M. Science, 2000, 290(5496): 1558 − 1560
-
[43]
Ruiz R, Sandstrom R L, Black C T. Adv Mater, 2007, 19(4): 587 − 591
-
[1]
-
Figure 2. MEP for the transition between the defective (α = 0) and the perfect lamellae obtained using the string method associated with SCFT. No energy barrier is found along the MEP. Blue: the brush layer; red: A-rich domains; green: B-rich domains. The softness of the brush layer is γ = 0 and the length of brush chain is ϵ = 0.2.
Figure 3. Density distribution of component A in Fig. 2 as a function of the film depth parameterized by z: (a) three-dimensional morphology of the thin film; two-dimensional morphology of component A at (b) z = 0Rg, (c) z = 2.9Rg and (d) z = 3.4Rg. (e): Density distribution of A component along the yellow dotted line with different film depths. The thickness of AB block copolymer film is
${\bar \phi _{{\rm{AB}}}}d$ = 3.51Rg.Figure 4. Density amplitude ϕC,max − ϕC,min of grafted brush in xy plane as a function of film depth d − z from bottom substrate: (a) defect-free lamellae, (b) dislocation dipole, (c) rearrancement degree of brush
${κ} = 1/A \!\!\displaystyle\mathop {\text{\rotatebox[origin=t]{12}{\scalebox{0.95}[1]{\int}}}} \limits \!\! \sqrt {{{\left[ {{ϕ} \left( z \right) - 1} \right]}^2}} {\rm d}A$ with${ϕ} \left( z \right) = {{ϕ} _{\rm{C}}}\left( z \right)/{\bar {ϕ} _{\rm{C}}}\left( z \right)$ Figure 6. (a) MEP for the transition between a dislocation dipole and perfert lamellae on grafted brush with different γ (The online version is colorful.); (b) Corresponding free energy difference
$\Delta {f_{\rm{d}}} = {(}{{F_{\rm{d}}} - {F_{\rm{p}}}} {)}/{(}{{d}{{\bar {ϕ} }_{{\rm{AB}}}}} {)}$ ; (c) Energy barrier of the transition state over defect$\Delta {f_{\rm{b}}} = \left( {{F_{{\rm{tran}}}} - {F_{\rm{d}}}} \right)/{(} {{d}{{\bar {ϕ} }_{{\rm{AB}}}}} {)}$ Table 1. Annealing time estimated from kinetic barriers at different softness parameters for PS-b-PMMA system
-