ISSN 1000-3304CN 11-1857/O6

拉伸过程中聚偏氟乙烯纤维晶体结构变化

闫静静 肖长发 王纯 付浩 安树林 姜亚明

引用本文: 闫静静, 肖长发, 王纯, 付浩, 安树林, 姜亚明. 拉伸过程中聚偏氟乙烯纤维晶体结构变化[J]. 高分子学报, 2019, 50(7): 752-760. doi: 10.11777/j.issn1000-3304.2018.18261 shu
Citation1:  Jing-jing Yan, Chang-fa Xiao, Chun Wang, Hao Fu, Shu-lin An and Ya-ming Jiang. Crystalline Structure Changes of Poly(vinylidene fluoride) Fibers during Stretching Process[J]. Acta Polymerica Sinica, 2019, 50(7): 752-760. doi: 10.11777/j.issn1000-3304.2018.18261 shu

拉伸过程中聚偏氟乙烯纤维晶体结构变化

    通讯作者: 肖长发, E-mail: xiaochangfa@163.com
  • 基金项目: 国家自然科学基金(基金号 51673149)资助项目

摘要: 采用熔融纺丝法制备不同喷丝头拉伸比聚偏氟乙烯(PVDF)初生纤维,再经后拉伸制得不同后拉伸比PVDF纤维. 对纤维在不同拉伸过程中晶体结构研究表明:随喷丝头拉伸比增大,纤维结晶度、α晶型取向、大分子取向均增加,且喷丝头拉伸比达到一定程度后,变化更显著;而随后拉伸比增大,纤维结晶度无显著变化,但后拉伸较喷丝头拉伸更有利于α晶型向β晶型转变,且后拉伸比越高越易形成β晶型,当后拉伸使纤维进入直径均匀变小阶段后,β晶型取向效果更明显;后拉伸比为11时,β晶型含量达82.85%,β(110/200)晶面取向因子达0.83.

English

    1. [1]

      Chi Shuli(迟淑丽), Tian Mingwei(田明伟), Qu Lijun(曲丽君). Cotton Textile Technology(棉纺织技术), 2016, 44(6): 1 − 5 doi: 10.3969/j.issn.1001-7415.2016.06.001

    2. [2]

      Humphrey J S, Amin-Sanayei R. Vinylidene Fluoride Polymers. Encyclopedia of Polymer Science and Technology, 2001. 476 – 485

    3. [3]

      Du C H, Zhu B K, Xu Y Y. J Appl Polym Sci, 2007, 104(4): 2254 − 2259 doi: 10.1002/(ISSN)1097-4628

    4. [4]

      Du Chunhui(杜春慧), Zhu Baoku(朱宝库), Xu Youyi(徐又一). Journal of Zhejiang University(Engineering Science)(浙江大学学报(工学版)), 2006, 40(4): 679 − 683 doi: 10.3785/j.issn.1008-973X.2006.04.028

    5. [5]

      Milind V M, Devang V K, Ashok M. Polym Eng Sci, 2010, 47(12): 1992 − 2004

    6. [6]

      Lund A, Hagström B. J Appl Polym Sci, 2010, 116(5): 2685 − 2693

    7. [7]

      Gaétan L, Yves M, Robert G, Martin W K, Louisette M, Thien H, Yvan D. J Biomed Mater Res, 1995, 29(12): 1525 doi: 10.1002/(ISSN)1097-4636

    8. [8]

      Xiao Changfa(肖长发), Wang Chun(王纯), Chen Mingxing(陈明星), Huang Qinglin(黄庆林), Liu Hailiang(刘海亮). China patent, B01D71/56, CN 104801205A. 2015-07-29

    9. [9]

      Zheng Huazhen(郑华珍). Organo-Fluorine Industry(有机氟工业), 2006, (1): 58-64

    10. [10]

      Wang Yang(汪洋), Lv Xiaolong(吕晓龙), Wu Chunrui(武春瑞), Gao Qijun(高启君), Zhang Ruyi(张如意). Journal of Textile Research(纺织学报), 2015, 36(6): 1 − 6

    11. [11]

      Schultz J, Hsiao B S, Samon J M. Polymer, 2000, 41(25): 8887 − 8895 doi: 10.1016/S0032-3861(00)00232-9

    12. [12]

      Sajkiewicz P, Wasiak A, Gocłowski Z. Eur Polym J, 1999, 35(3): 423 − 429 doi: 10.1016/S0014-3057(98)00136-0

    13. [13]

      Masamichi K, Kohji T, Hiroyuki T. Macromolecules, 1975, 8(2): 158 − 171 doi: 10.1021/ma60044a013

    14. [14]

      Sencadas V, Costa C M, Moreira V, Monteiro J, Mendiratta S K, Mano J F, Lanceros-Méndez S. e-Polymers, 2005, 5(1): 10 − 21

    15. [15]

      Gregorio R, Ueno E M. J Mater Sci, 1999, 34(18): 4489 − 4500 doi: 10.1023/A:1004689205706

    16. [16]

      Guo Z W, Nilsson E, Rigdahl M, Hagström B. J Appl Polym Sci, 2013, 130(4): 2603 − 2609 doi: 10.1002/app.39484

    17. [17]

      Gregorio R. J Appl Polym Sci, 2010, 100(4): 3272 − 3279

    18. [18]

      Zhang Qiang(张强), Wang Qingzhao(王庆昭), Chen Yong(陈勇). Polymer Materials Science & Engineering(高分子材料科学与工程), 2014, 30(3): 80 − 84

    19. [19]

      Huang Qing(黄庆), Wu Pengfei(吴鹏飞), Cui Ning(崔宁), Cui Huashuai(崔华帅), Shen Liming(沈锂鸣), Gao Xushan(高绪珊). Acta Polymerica Sinica(高分子学报), 2012, (3): 326 − 333 doi: 10.3724/SP.J.1105.2012.11267

    20. [20]

      Cai Zaisheng(蔡再生). Fiber Chemistry and Physics(纤维化学与物理). Beijing(北京): China Textile Press(中国纺织出版社), 2014. 61-64

    21. [21]

      Zhang H, Ren P, Zhang G F, Xiao C F. J Wuhan Univ Technol, 2006, 21(4): 53 − 55 doi: 10.1007/BF02841204

    22. [22]

      Hsu T C, Geil P H. J Mater Sci, 1989, 24(4): 1219 − 1232 doi: 10.1007/BF02397050

    23. [23]

      Matsushige K, Nagata K, Imada S, Takemura T. Polymer, 1980, 21(12): 1391 − 1397 doi: 10.1016/0032-3861(80)90138-X

    24. [24]

      Marega C, Marigo A. Eur Polym J, 2003, 39(8): 1713 − 1720 doi: 10.1016/S0014-3057(03)00062-4

    25. [25]

      Steinmann W, Walter S, Seide G, Gries T, Roth G, Schubnell M. J Appl Polym Sci, 2011, 120(1): 21 − 35 doi: 10.1002/app.v120.1

    26. [26]

      Tang W, Deng L J, Xu K W, Lu J. Surf Coat Technol, 2007, 201(12): 5944 − 5947 doi: 10.1016/j.surfcoat.2006.10.049

    27. [27]

      Ma W Z, Zhang J, Chen S J, Wang X L. Colloid Polym Sci, 2008, 286(10): 1193 − 1202 doi: 10.1007/s00396-008-1889-8

    28. [28]

      Lund A, Hagström B. J Appl Polym Sci, 2011, 120(2): 1080 − 1089 doi: 10.1002/app.v120.2

    29. [29]

      Du Chunhui(杜春慧). Structure and Properties of Microporous PVDF Hollow Fiber Membranes Prepared by Melt Spinning-Stretching Process(" 熔纺—拉伸”法制备聚偏氟乙烯中空纤维微孔膜的结构控制与性能研究). Doctoral Dissertation of Zhejiang University(浙江大学博士学位论文), 2005

    30. [30]

      Yu Jinchao(于金超), Wang Rui(王锐), Yang Chunlei(杨春雷), Dong Wei(董葳), Chen Shenghui(陈晟辉), Zhang Yumei(张玉梅), Wang Huaping(王华平). China Syntehtic Fiber Industry(合成纤维工业), 2014, 37(2): 1 − 5 doi: 10.3969/j.issn.1001-0041.2014.02.001

    31. [31]

      He Manjun(何曼君), Chen Weixiao(陈维孝), Dong Xixia(董西侠). Polymer Physics(高分子物理). Revised edition. Shanghai(上海): Fudan University Press(复旦大学出版社), 2000. 182-183

    32. [32]

      Xiao C F, Zhang Y F. Chinese J Polym Sci, 2000, 18(1): 81 − 86

    33. [33]

      Gregorio R, Cestari M. J Polym Sci, Part B: Polym Phys, 1994, 32(5): 859 − 870 doi: 10.1002/polb.1994.090320509

    34. [34]

      Sencadas V, Costa C M, Moreira V, Monteiro J, Mendiratta S K, Mano J F, Lanceros-Méndez S. e-Polymers, 2013, 5(1): 10 − 21

    35. [35]

      Zhang Xiuqin(张秀芹), Xiong Zujiang(熊祖江), Liu Guoming(刘国明), Yin Yong’ai(尹永爱), Wang Rui(王锐), Wang Dujin(王笃金). Acta Polymerica Sinica(高分子学报), 2014, (8): 1048 − 1055

    36. [36]

      Fu Hao(付浩), Xiao Changfa(肖长发), Sun Lele(孙乐乐), Pan Jian(潘健), Quan Quan(权全). Acta Polymerica Sinica(高分子学报), 2017, (5): 624 − 631

    1. [1]

      郭妙才和亚宁王晓工 . 偶氮聚合物结构与表面起伏光栅参数对液晶取向的影响. 高分子学报, 2013, (12): 1501-1507. doi: 10.3724/SP.J.1105.2013.13115

    2. [2]

      丁治天刘正英刘葭冯建民杨伟杨鸣波 . 高分子量级分含量对熔体挤出拉伸法制备聚丙烯微孔膜的影响. 高分子学报, 2012, (4): 462-468. doi: 10.3724/SP.J.1105.2012.11324

    3. [3]

      杜文杰任毅唐毓婧姚雪容郭梅芳张师军刘立志 . 线性低密度聚乙烯薄膜撕裂性能和结构的关系. 高分子学报, 2016, (7): 895-902. doi: 10.11777/j.issn1000-3304.2016.15333

    4. [4]

      张秀芹熊祖江刘国明尹永爱王锐王笃金 . 取向对聚左旋乳酸/聚右旋乳酸复合物纤维结晶性能的影响. 高分子学报, 2014, (8): 1048-1055. doi: 10.11777/j.issn1000-3304.2014.13444

    5. [5]

      马德柱钱恒泽胡克良江建生 . 单向拉伸聚偏氟乙烯的取向结构. 高分子学报, 1982, (6): 408-415.

    6. [6]

      苏萃施光宇王笃金刘国明 . 受限在一维纳米孔道内的高分子结晶取向模型. 高分子学报, 2019, 50(3): 281-290. doi: 10.11777/j.issn1000-3304.2019.18218

    7. [7]

      张国耀徐力平姜宁刘东 . 热拉伸的超高分子量聚乙烯的晶体结构和力学性能. 高分子学报, 1995, (5): 577-585.

    8. [8]

      益小苏邹湘坪谭洪生 . 口模拉伸共聚高密度聚乙烯单丝的取向结构探讨. 高分子学报, 1998, (2): 227-231.

    9. [9]

      陈寿羲钱人元 . 拉伸取向对绦纶纤维结晶过程的影响. 高分子学报, 1965, 7(4): 264-267.

    10. [10]

      吴刚姜胶东孙全松 . 关于超高分子量聚丙烯超拉伸膜的结构性能的研究——Ⅰ.拉伸取向过程的表征. 高分子学报, 1992, (2): 148-156.

    11. [11]

      漆宗能李绪发钱人元 . 结晶及拉伸取向对聚对苯二甲酸乙二酯纤维分子运动的影响. 高分子学报, 1966, 8(2): 68-73.

    12. [12]

      范庆荣刘勇石兵钱人元 . 拉伸热历史对取向聚对苯二甲酸乙二酯膜在热处理过程中收缩和伸长的影响. 高分子学报, 1990, (4): 506-512.

    13. [13]

      李历生张广利刘易华 . 天然橡胶在单向拉伸下的结晶与取向. 高分子学报, 1980, (5): 306-308.

    14. [14]

      徐志强卢咏来张立群闫寿科 . 弹性体拉伸取向和应变诱导结晶研究进展. 高分子学报, 2011, (6): 586-595. doi: 10.3724/SP.J.1105.2011.10361

    15. [15]

      胡世如徐懋 . 单向和双向拉伸聚酯(PET)薄膜取向的光学评价. 高分子学报, 1985, (2): 157-160.

    16. [16]

      关家玉刘尚琪王淑丽徐懋 . 不同结晶速率的PET薄膜在拉伸过程中的结晶与取向. 高分子学报, 1984, (1): 57-61.

    17. [17]

      陈济舟王俊桥韩甫田伍宣池蒋世承 . 双轴拉伸PET薄膜成膜过程非晶区分子取向的WAXS研究. 高分子学报, 1991, (6): 684-689.

    18. [18]

      朱诚身窦红静何素芹 . 间规聚苯乙烯晶体结构的研究——等温结晶球晶形态及生成条件研究. 高分子学报, 2001, (2): 195-199.

    19. [19]

      钱人元漆宗能吴林生 . 晶区分子链构象及拉伸取向对聚酰胺-6分子运动的影响. 高分子学报, 1965, 7(5): 291-296.

    20. [20]

      肖长发安树林贾广霞张宇峰 . 超高分子量聚乙烯冻胶纺丝-拉伸纤维结构的研究. 高分子学报, 1999, (2): 171-177.

  • Figure 1.  Infrared spectrograms of the fibers with different spin-stretching ratios

    Figure 2.  Schematic diagram: (a) low spin-stretching ratio; (b) high spin-stretching ratio

    Figure 3.  X-ray diffraction strength curves (a) and azimuth angle scanograms (b) of the fibers with different spin-stretching ratios

    Figure 4.  DSC thermal analysis curves of the fibers with different spin-stretching ratios

    Figure 5.  SAXS patterns: (a) P-1, (b) P-4 and (c) P-5; (d) SAXS profiles of the fibers with different spin-stretching ratios

    Figure 6.  Density of the fibers with different spin-stretching ratios

    Figure 7.  Orientation factor of the fibers with different spin-stretching ratios; POM images of the diagonal position: (a) P-1, (b) P-2 and (c) P-5; POM images of the extinction position: (d) P-1, (e) P-2 and (f) P-5

    Figure 8.  Infrared spectrograms of the fibers with different post-stretching ratios

    Figure 9.  Schematic diagram: (a) low post-stretching ratio and (b) high post-stretching ratio

    Figure 10.  X-ray diffraction strength curves (a) and azimuth angle scanograms (b) of the fibers with different post-stretching ratios

    Figure 11.  DSC thermal analysis curves of the fibers with different post-stretching ratios

    Table 1.  Iβ/Iα and relative crystallinity of the fibers with different spin-stretching ratios

    SampleIβ/Iα (%)ΔH (J·g-1)Xc* (%)
    P-11.8241.7939.91
    P-231.2843.1041.17
    P-347.3343.5941.63
    P-430.6443.8641.89
    P-514.3759.0356.38
    *Note: Sample crystallinity Xc = ΔHHc, where ΔH is the sample crystal melting enthalpy, ΔHc is the melting enthalpy at the time of 100% crystallizing of the sample, the ΔHc of PVDF is 104.7 J/g[28].
    下载: 导出CSV

    Table 2.  The content of β-crystalline phases and Iβ/Iα of the fibers with different post-stretching ratios

    SampleF(β) (%)Iβ/Iα (%)
    P-135.371.82
    PS-166.99794.68
    PS-272.841005.40
    PS-376.211444.55
    PS-482.851712.00
    下载: 导出CSV

    Table 3.  Relative crystallinity of the fibers with different post-stretching ratios

    SampleΔH (J·g−1)Xc (%)
    P-141.7939.91
    PS-146.4144.33
    PS-247.7945.64
    PS-347.8945.74
    PS-451.0448.75
    下载: 导出CSV
  • 加载中
图(12)表(3)
计量
  • PDF下载量:  63
  • 文章访问数:  880
  • HTML全文浏览量:  403
  • 引证文献数: 0
文章相关
  • 通讯作者:  肖长发, xiaochangfa@163.com
  • 收稿日期:  2018-12-03
  • 修稿日期:  2018-12-26
  • 网络出版日期:  2019-02-01
  • 刊出日期:  2019-07-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计