ISSN 1000-3304CN 11-1857/O6

基于双硫键交换可控构建的水凝胶及其动态交联机理研究

窦雪宇 王星 吴德成

引用本文: 窦雪宇, 王星, 吴德成. 基于双硫键交换可控构建的水凝胶及其动态交联机理研究[J]. 高分子学报, 2019, 50(5): 429-441. doi: 10.11777/j.issn1000-3304.2019.18263 shu
Citation:  Xue-yu Dou, Xing Wang and De-cheng Wu. Study of Disulfide-exchange Dynamic Cross-linking Mechanism for Controlled Construction of Hydrogels[J]. Acta Polymerica Sinica, 2019, 50(5): 429-441. doi: 10.11777/j.issn1000-3304.2019.18263 shu

基于双硫键交换可控构建的水凝胶及其动态交联机理研究

    作者简介: 吴德成,男,1975年出生. 1993 ~ 2001年就读于中国科学技术大学高分子科学与工程系,分别获得学士和硕士学位;2002 ~ 2006年就读于新加坡国立大学化学系,获得博士学位. 2005 ~ 2010年在新加坡材料与工程研究院从事研究工作,先后任研究工程师和高级研究工程师;2011年至今在中国科学院化学研究所工作,任研究员和课题组长;2015年起兼任中国科学院大学岗位教授. 2011年获中共中央组织部“青年千人”计划支持;2017年获国家自然科学基金杰出青年科学基金资助;2018年入选科技部中青年科技创新领军人才;2018年获教育部技术发明一等奖(排名第三). 目前研究方向为生物医用高分子的基础及应用研究,已发表SCI论文94篇,获PCT或美国发明专利授权6件,中国发明专利授权10件;
    通讯作者: 吴德成, E-mail: dcwu@iccas.ac.cn
  • 基金项目: 国家自然科学基金(基金号 21725403,21674120)资助项目

摘要: 水凝胶是一种通过化学或物理作用交联形成的三维网络高分子材料. 近年来,采用动态共价键交联构建的智能水凝胶因其基础研究的重要性以及在生物医学领域中广泛的应用前景引起了众多科研工作者的关注,因而发展具有环境响应性或自修复特性的凝胶材料,能够满足其在生物医学领域中应用的更高要求. 本文结合国内外关于动态共价键制备刺激响应性凝胶的研究发展现状,系统地总结和评述了一种活性可控交联策略,能够通过控制外界响应刺激可逆地激活或终止“巯基-双硫键”交换反应,进而实现在宏观和微/纳米多尺度下凝胶结构和性能的可控构筑,为凝胶材料的多功能化构建提供了全新的思路,同时也为新型智能生物材料的设计和发展提供了一种普适化方法.

English

    1. [1]

      Richtering W, Saunders B R. Soft Matter, 2014, 10(21): 3695 − 3702 doi: 10.1039/C4SM00208C

    2. [2]

      Sangeetha N M, Maitra U. Chem Soc Rev, 2005, 34(10): 821 − 836 doi: 10.1039/b417081b

    3. [3]

      Shibayama M, Tanaka T. Adv Polym Sci, 1993, 106: 1 − 62 doi: 10.1007/BFb0025859

    4. [4]

      Gil E S, Hudson S M. Prog Polym Sci, 2004, 29(12): 1173 − 1222 doi: 10.1016/j.progpolymsci.2004.08.003

    5. [5]

      Burdick J A, Murphy W L. Nat Commun, 2012, 3: 1269 doi: 10.1038/ncomms2271

    6. [6]

      Matanović M R, Kristl J, Grabnar P A. Int J Pharm, 2014, 472(1-2): 262 − 275 doi: 10.1016/j.ijpharm.2014.06.029

    7. [7]

      Zhang Hongxin(张鸿鑫), Lu Lu(鲁路), Li Lihua(李立华), Jiao Yanpeng(焦延鹏), Zhou Changren(周长忍). Acta Polymerica Sinica(高分子学报), 2016, (3): 368 − 374

    8. [8]

      Shewan H M, Stokes J R. J Food Eng, 2013, 119(4): 781 − 792 doi: 10.1016/j.jfoodeng.2013.06.046

    9. [9]

      Liu L S, Kost J, Yan F, Spiro R C. Polymer, 2012, 4(2): 997 − 1011 doi: 10.3390/polym4020997

    10. [10]

      Tran V V, Park D, Lee Y C. Environ Sci Pollut Res, 2018, 25(25): 24569 − 24599 doi: 10.1007/s11356-018-2605-y

    11. [11]

      Yang J M, Olanrele O S, Zhang X, Hsu C C. Adv Exp Med Biol, 2018, 1077: 197 − 224 doi: 10.1007/978-981-13-0947-2

    12. [12]

      Hoffman A S. Adv Drug Deliver Rev, 2012, 64: 18 − 23 doi: 10.1016/j.addr.2012.09.010

    13. [13]

      Seliktar D. Science, 2012, 336(6085): 1124 − 1128 doi: 10.1126/science.1214804

    14. [14]

      Zhang Y S, Khademhosseini A. Science, 2017, 356(6337): eaaf3627 doi: 10.1126/science.aaf3627

    15. [15]

      Odent J, Wallin T J, Pan W Y, Kruemplestaedter K, Shepherd R F, Giannelis E P. Adv Funct Mater, 2017, 27(33): 1701807 doi: 10.1002/adfm.201701807

    16. [16]

      Li P P, Jin Z Y, Peng L L, Zhao F, Xiao D, Jin Y, Yu G H. Adv Mater, 2018, 30(18): e1800124 doi: 10.1002/adma.201800124

    17. [17]

      Zhang X H, Sheng N N, Wang L N, Tan Y Q, Liu C Z, Xia Y Z, Nie Z H, Sui K Y. Mater Horiz, 2019, 6(2): 326 − 333 doi: 10.1039/C8MH01188E

    18. [18]

      Zhang Hao(张浩), Hu Xiaoting(胡晓婷), Yang Ning(杨宁), Chen Li(陈莉). Acta Polymerica Sinica(高分子学报), 2016, (3): 300 − 306

    19. [19]

      Ladet S, David L, Domard A. Nature, 2008, 452(7183): 76 − 79 doi: 10.1038/nature06619

    20. [20]

      Jeong B, Bae Y H, Lee D S, Kim S W. Nature, 1997, 388(6645): 860 − 862 doi: 10.1038/42218

    21. [21]

      Murdan S. J Control Release, 2003, 92(1-2): 1 − 17 doi: 10.1016/S0168-3659(03)00303-1

    22. [22]

      Moriyama K, Minamihata K, Wakabayashi R, Goto M, Kamiya N. Chem Commun, 2014, 50(44): 5895 − 5898 doi: 10.1039/C3CC49766F

    23. [23]

      Collier J H, Hu B H, Ruberti J W, Zhang J, Shum P, Thompson D H, Messersmith P B. J Am Chem Soc, 2001, 123(38): 9463 − 9464 doi: 10.1021/ja011535a

    24. [24]

      Haines L A, Rajagopal K, Ozbas B, Salick D A, Pochan D J, Schneider J P. J Am Chem Soc, 2005, 127(48): 17025 − 17029 doi: 10.1021/ja054719o

    25. [25]

      Deng G H, Tang C M, Li F Y, Jiang H F, Chen Y M. Macromolecules, 2010, 43(3): 1191 − 1194 doi: 10.1021/ma9022197

    26. [26]

      Cheng Xinfeng(程新峰), Jin Yong(金勇), Qi Rui(漆锐), Fan Baozhu(樊宝珠), Li Hanping(李汉平). Progress in Chemistry(化学进展), 2015, 27(12): 1784 − 1798 doi: 10.7536/PC150629

    27. [27]

      Rong Q F, Lei W W, Chen L, Yin Y A, Zhou J J, Liu M J. Angew Chem Int Ed, 2017, 56(45): 14159 − 14163 doi: 10.1002/anie.201708614

    28. [28]

      Yang X F, Liu G Q, Peng L, Guo J H, Tao L, Yuan J Y, Chang C Y, Wei Y, Zhang L N. Adv Funct Mater, 2017, 27(40): 1703174 doi: 10.1002/adfm.v27.40

    29. [29]

      Ma C X, Lu W, Yang X X, He J, Le X X, Wang L, Zhang J W, Serpe M J, Huang Y J, Chen T. Adv Funct Mater, 2018, 28(7): 1704568 doi: 10.1002/adfm.v28.7

    30. [30]

      Liu Yuxia(刘玉霞), Chen Lie(陈列), Zhao Ziguang(赵紫光), Fang Ruochen(房若辰), Liu Mingjie(刘明杰). Acta Polymerica Sinica(高分子学报), 2018, (9): 1155 − 1174

    31. [31]

      Zhang Yaling(张亚玲), Yang Bin(杨斌), Xu Liangxin(许亮鑫), Zhang Xiaoyong(张小勇), Tao Lei(陶磊), Wei Yan(危岩). Acta Chimica Sinica(化学学报), 2013, 71(4): 485 − 492

    32. [32]

      Lu W, Le X X, Zhang J W, Huang Y J, Chen T. Chem Soc Rev, 2017, 46(5): 1284 − 1294 doi: 10.1039/C6CS00754F

    33. [33]

      Rowan S J, Cantrill S J, Cousins G R L, Sanders J K M, Stoddart J F. Angew Chem Int Ed, 2002, 41(6): 898 − 952 doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R

    34. [34]

      Maeda T, Otsuka H, Takahara A. Prog Polym Sci, 2009, 34(7): 581 − 604 doi: 10.1016/j.progpolymsci.2009.03.001

    35. [35]

      Zhang Z P, Rong M Z, Zhang M Q. Prog Polym Sci, 2018, 80: 39 − 93 doi: 10.1016/j.progpolymsci.2018.03.002

    36. [36]

      Deng R H, Ning Y, Jones E R, Cunningham V J, Penfold N J W, Armes S P. Polym Chem, 2017, 8(35): 5374 − 5380 doi: 10.1039/C7PY01242J

    37. [37]

      Deng R H, Derry M J, Mable C J, Ning Y, Armes S P. J Am Chem Soc, 2017, 139(22): 7616 − 7623 doi: 10.1021/jacs.7b02642

    38. [38]

      Deng G H, Li F Y, Yu H X, Liu F Y, Liu C Y, Sun W X, Jiang H F, Chen Y M. ACS Macro Lett, 2012, 1(2): 275 − 279 doi: 10.1021/mz200195n

    39. [39]

      Wei Z, Yang J H, Liu Z Q, Xu F, Zhou J X, Zrínyi M, Osada Y, Chen Y M. Adv Funct Mater, 2015, 25(9): 1352 − 1359 doi: 10.1002/adfm.v25.9

    40. [40]

      Nicolaÿ R, Kamada J, Wassen A V, Matyjaszewski K. Macromolecules, 2010, 43(9): 4355 − 4361 doi: 10.1021/ma100378r

    41. [41]

      Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Angew Chem Int Ed, 2011, 50(7): 1660 − 1663 doi: 10.1002/anie.201003888

    42. [42]

      Xu J, Yang D G, Li W J, Gao Y, Chen H B, Li H M. Polymer, 2011, 52(19): 4268 − 4276 doi: 10.1016/j.polymer.2011.07.015

    43. [43]

      Amamoto Y, Higaki Y, Matsuda Y, Otsuka H, Takahara A. J Am Chem Soc, 2007, 129(43): 13298 − 13304 doi: 10.1021/ja075447n

    44. [44]

      Le X X, Lu W, Zheng J, Tong D Y, Zhao N, Ma C X, Xiao H, Zhang J W, Huang Y J, Chen T. Chem Sci, 2016, 7(11): 6715 − 6720 doi: 10.1039/C6SC02354A

    45. [45]

      Naficy S, Brown H R, Razal J M, Spinks G M, Whitten P G. Aust J Chem, 2011, 64(8): 1007 − 1025 doi: 10.1071/CH11156

    46. [46]

      Cohen Y, Ramon O, Kopelman I J, Mizrahi S. J Polym Sci, Part B: Polym Phys, 1992, 30(9): 1055 − 1067 doi: 10.1002/polb.1992.090300913

    47. [47]

      Hsu T P, Ma D S, Cohen C. Polymer, 1983, 24(10): 1273 − 1278 doi: 10.1016/0032-3861(83)90058-7

    48. [48]

      Chujo Y, Sada K, Naka A, Nomura R, Saegusa T. Macromolecules, 1993, 26(5): 883 − 887 doi: 10.1021/ma00057a001

    49. [49]

      Lei Z Q, Xiang H P, Yuan Y J, Rong M Z, Zhang M Q. Chem Mater, 2014, 26(6): 2038 − 2046 doi: 10.1021/cm4040616

    50. [50]

      Laer K V, Hamilton C J, Messens J. Antioxid Redox Sign, 2013, 18(13): 1642 − 1653 doi: 10.1089/ars.2012.4964

    51. [51]

      Fernandes P A, Ramos M J. Chem Eur J, 2004, 10(1): 257 − 266 doi: 10.1002/(ISSN)1521-3765

    52. [52]

      Zhang L, Liu W G, Lin L, Chen D Y, Stenzel M H. Biomacromolecules, 2008, 9(11): 3321 − 3331 doi: 10.1021/bm800867n

    53. [53]

      You Y Z, Hong C Y, Pan C Y. Macromolecules, 2009, 42(3): 573 − 575 doi: 10.1021/ma802403w

    54. [54]

      You Y Z, Yu Z Q, Cui M M, Hong C Y. Angew Chem Int Ed, 2010, 49(6): 1099 − 1102 doi: 10.1002/anie.v49:6

    55. [55]

      Wu D C, Loh X J, Wu Y L, Lay C L, Liu Y. J Am Chem Soc, 2012, 132(43): 15140 − 15143

    56. [56]

      Cheng W R, Wu D C, Liu Y. Biomacromolecules, 2016, 17(10): 3115 − 3126 doi: 10.1021/acs.biomac.6b01043

    57. [57]

      Yang Y Y, Wang X, Hu Y, Hu H, Wu D C, Xu F J. ACS Appl Mater Interfaces, 2014, 6(2): 1044 − 1052 doi: 10.1021/am404585d

    58. [58]

      Wang X, Yang Y Y, Gao P Y, Li D, Yang F, Shen H, Guo H X, Xu F J, Wu D C. Chem Commun, 2014, 50(46): 6126 − 6129 doi: 10.1039/c4cc01859a

    59. [59]

      Bu Y Z, Sun G F, Zhang L C, Liu J H, Yang F, Tang P F, Wu D C. Chinese J Polym Sci, 2017, 35(10): 1231 − 1242 doi: 10.1007/s10118-017-1958-x

    60. [60]

      Wang X, Li D, Yang F, Shen H, Li Z B, Wu D C. Polym Chem, 2013, 4(17): 4596 − 4600 doi: 10.1039/c3py00811h

    61. [61]

      Xu S J, Liu J H, Zhang L C, Yang F, Tang P F, Wu D C. J Mater Chem B, 2017, 5(30): 6110 − 6118 doi: 10.1039/C7TB00790F

    62. [62]

      Zhuang Y P, Shen H, Yang F, Wang X, Wu D C. RSC Adv, 2016, 6(59): 53804 − 53812 doi: 10.1039/C6RA08404D

    63. [63]

      Huang D, Yang F, Wang X, Shen H, You Y Z, Wu D C. Polym Chem, 2016, 7(40): 6154 − 6158 doi: 10.1039/C6PY01511E

    64. [64]

      Wang L H, Wu D C, Xu H X, You Y Z. Angew Chem Int Ed, 2016, 55(2): 755 − 759 doi: 10.1002/anie.201508695

    65. [65]

      Liu B X, Zhou X, Yang F, Shen H, Wang S G, Zhang B, Zhi G, Wu D C. Polym Chem, 2014, 5(5): 1693 − 1701 doi: 10.1039/C3PY01144E

    66. [66]

      Wang X, Wang J, Yang Y Y, Yang F, Wu D C. Polym Chem, 2017, 8(26): 3901 − 3909 doi: 10.1039/C7PY00698E

    67. [67]

      Li D W, Niu Y G, Yang Y Y, Wang X, Yang F, Shen H, Wu D C. Chem Commun, 2015, 51(39): 8296 − 8299 doi: 10.1039/C5CC01338K

    68. [68]

      Wang L L, Li L, Wang X, Huang D, Yang F, Shen H, Li Z C, Wu D C. Polym Chem, 2016, 7(7): 1429 − 1438 doi: 10.1039/C5PY01925G

    69. [69]

      Wang J, Wang X, Yang F, Shen H, You Y Z, Wu D C. Langmuir, 2015, 31(51): 13834 − 13841 doi: 10.1021/acs.langmuir.5b03823

    70. [70]

      Wang J, Wang X, Yang F, Shen H, You Y Z, Wu D C. Langmuir, 2014, 30(43): 13014 − 13020 doi: 10.1021/la503295z

    71. [71]

      Wang J, Li B X, Wang X, Yang F, Shen H, Wu D C. Langmuir, 2016, 32(51): 13706 − 13715 doi: 10.1021/acs.langmuir.6b03550

    72. [72]

      Wang X, Yang Y Y, Yang F, Shen H, Wu D C. Polymer, 2017, 118(2): 75 − 84

    73. [73]

      Wang X, Yang Y Y, Gao P Y, Yang F, Shen H, Guo H X, Wu D C. ACS Macro Lett, 2015, 4(12): 1321 − 1326 doi: 10.1021/acsmacrolett.5b00698

    74. [74]

      Hu X B, Tong Z, Lyon A. J Am Chem Soc, 2010, 132(33): 11470 − 11472 doi: 10.1021/ja105616v

    75. [75]

      Lu Y, Ballauff M. Prog Polym Sci, 2011, 36(6): 767 − 792 doi: 10.1016/j.progpolymsci.2010.12.003

    76. [76]

      Xiong M H, Bao Y, Yang X Z, Wang Y C, Sun B L, Wang J. J Am Chem Soc, 2012, 134(9): 4355 − 4362 doi: 10.1021/ja211279u

    77. [77]

      Zhang J, Yang F, Shen H, Wu D C. ACS Macro Lett, 2012, 1(11): 1295 − 1299 doi: 10.1021/mz300489n

    78. [78]

      Chen Y, Chen H R, Zeng D P, Tian Y B, Chen F, Feng J W, Shi J L. ACS Nano, 2010, 4(10): 6001 − 6013 doi: 10.1021/nn1015117

    79. [79]

      Mitragotri S, Anderson D G, Chen X Y, Chow E K, Ho D, Kabanov A V, Karp J M, Kataoka K, Mirkin C A, Petrosko S H, Shi J J, Stevens M M, Sun S H, Teoh S, Venkatraman S S, Xia Y N, Wang S T, Gu Z, Xu C J. ACS Nano, 2015, 9(7): 6644 − 6654 doi: 10.1021/acsnano.5b03569

    80. [80]

      Zhang J, Jia J P, Kim J P, Yang F, Wang X, Shen H, Xu S J, Yang J, Wu D C. Bioact Mater, 2018, 3: 87 − 96 doi: 10.1016/j.bioactmat.2017.06.003

    81. [81]

      Wang X, Gao P Y, Yang Y Y, Guo H X, Wu D C. Nat Commun, 2018, 9: 2772 doi: 10.1038/s41467-018-05142-3

    82. [82]

      Cao Q C, Wang X, Wu D C. Chinese J Polym Sci, 2018, 36(1): 8 − 17 doi: 10.1007/s10118-018-2061-7

    83. [83]

      Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv Mater, 2003, 15(14): 1155 − 1158 doi: 10.1002/adma.200304907

    84. [84]

      Liu X Y, Zhong M, Shi F K, Xu H, Xie X M. Chinese J Polym Sci, 2017, 35(10): 1253 − 1267 doi: 10.1007/s10118-017-1971-0

    85. [85]

      Yang Y Y, Wang X, Yang F, Shen H, Wu D C. Adv Mater, 2016, 28(33): 7178 − 7184 doi: 10.1002/adma.201601742

    86. [86]

      Yang Y Y, Wang X, Yang F, Wang L N, Wu D C. Adv Mater, 2018, 30(18): 1707071 doi: 10.1002/adma.201707071

    87. [87]

      Bu Y Z, Shen H, Yang F, Yang Y Y, Wang X, Wu D C. ACS Appl Mater Interfaces, 2017, 9(3): 2205 − 2212 doi: 10.1021/acsami.6b15364

    88. [88]

      Bu Y Z, Zhang L C, Liu J H, Zhang L H, Li T T, Shen H, Wang X, Yang F, Tang P F, Wu D C. ACS Appl Mater Interfaces, 2016, 8(20): 12674 − 12683 doi: 10.1021/acsami.6b03235

    1. [1]

      . 生物医用高分子专辑前言. 高分子学报, 2019, 50(6): 1-1.

    2. [2]

      邓超王荣陈维孟凤华程茹钟志远 . 具生物活性的快速光交联生物可降解水凝胶的设计合成. 高分子学报, 2013, (5): 695-704. doi: 10.3724/SP.J.1105.2013.12426

    3. [3]

      张震贺超良徐清华庄秀丽陈学思 . 聚(L-谷氨酸)水凝胶的Diels-Alder制备及其生物分子响应性研究. 高分子学报, 2018, (1): 99-108. doi: 10.11777/j.issn1000-3304.2018.17221

    4. [4]

      李聪张喆贺超良庄秀丽陈莉蔡青薛妍张宾王世振孟维艳陈学思 . 生物可降解温度敏感性水凝胶用于甲状旁腺相关肽的可控释放. 高分子学报, 2012, (7): 778-783. doi: 10.3724/SP.J.1105.2012.12013

    5. [5]

      朱申敏路涛张荻 . 生物结构刺激响应光子晶体的研究进展. 高分子学报, 2017, (2): 229-244. doi: 10.11777/j.issn1000-3304.2017.16271

    6. [6]

      郑云华刘根起程永清杨世文 . 聚乙烯醇磷酸酯水凝胶电刺激响应行为的研究. 高分子学报, 2009, (9): 922-928. doi: 10.3724/SP.J.1105.2009.00922

    7. [7]

      李永三徐艳双陶磊危岩 . 基于动态共价键的自愈性水凝胶及其在医学领域的应用. 高分子学报, 2020, 51(1): 30-38. doi: 10.11777/j.issn1000-3304.2020.19144

    8. [8]

      李永三徐艳双陶磊危岩 . 基于动态共价键的自愈性水凝胶及其在医学领域的应用. 高分子学报, 2020, 51(1): 0-0. doi: 10.11777/j.issn1000-3304.2020.19144

    9. [9]

      杨 军刘晓云阎 捷李 兰查刘生 . 基于互穿网络结构的pH/温度双重刺激响应性微凝胶的研究. 高分子学报, 2009, (7): 638-644. doi: 10.3724/SP.J.1105.2009.00638

    10. [10]

      贺超良汤朝晖田华雨陈学思 . 3D打印技术制备生物医用高分子材料的研究进展. 高分子学报, 2013, (6): 722-732. doi: 10.3724/SP.J.1105.2013.12430

    11. [11]

      刘根起赵晓鹏唐韬 . 明胶水凝胶电刺激响应行为的研究. 高分子学报, 2003, (3): 398-402.

    12. [12]

      丁晓亚王宇李杲肖春生陈学思 . 基于亚胺硼酸盐和硼酸酯键的可注射自修复水凝胶及其多重响应性能研究. 高分子学报, 2019, 50(5): 505-515. doi: 10.11777/j.issn1000-3304.2019.19015

    13. [13]

      陈海明董侠赵莹王笃金 . 废弃一次性医用口罩的回收利用与化学升级再造. 高分子学报, 2020, 51(11): 1-12. doi: 10.11777/j.issn1000-3304.2020.20136

    14. [14]

      杨挺杜福胜李子臣 . 基于PVA-b-PEO-b-PVA和含苯硼酸PEO交联剂形成的葡萄糖响应性动态共价凝胶. 高分子学报, 2019, 50(5): 516-526. doi: 10.11777/j.issn1000-3304.2019.19017

    15. [15]

      郭兴林陈广强李福绵张树霖 . 以双甲基丙烯酸乙二醇酯类为交联剂的丙烯酸β-羟乙酯类水凝胶中水的拉曼光谱学研究. 高分子学报, 2000, (5): 659-662.

    16. [16]

      胡丹宁孙亚飞陶磊袁金颖隋晓锋危岩 . 具有环境响应性的纤维素基水凝胶. 高分子学报, 2020, 51(8): 880-889. doi: 10.11777/j.issn1000-3304.2020.20131

    17. [17]

      张丹武伟蒋锡群 . 单分子聚合物纳米材料的可控合成及生物应用. 高分子学报, 2019, 50(3): 199-208. doi: 10.11777/j.issn1000-3304.2019.18191

    18. [18]

      黄吉甫梁贤张保龙丁培元杜宗杰 . 脲衍生物对环氧树脂/双氰双胺固化体系潜伏性促进作用研究. 高分子学报, 1989, (3): 329-336.

    19. [19]

      王建全吴文辉 . 不同交联剂对甲基丙烯酸-β-羟乙酯/E-51双甲基丙烯酸酯聚合物水凝胶性能的影响. 高分子学报, 2005, (6): 868-873.

    20. [20]

      殷以华孟亚斌杨亚江徐辉碧 . pH-敏感的疏水型凝胶在直流电场中的刺激响应. 高分子学报, 2002, (4): 414-418.

  • Figure 1.  Schematic illustration of controlled disulfide exchange for constructing hydrogels and hydrogel particles

    Figure 2.  Schematic illustration of UV, pH, and redox responsive to thiol-disulfide exchange reaction

    Figure 3.  (a) Outline of the prepared core-shell nanostructures responsive to temperature and DTT (Reprinted with permission from Ref.[53]; Copyright (2009) American Chemical Society); (b) Schematic depiction of formation of the nanorings by assembly of HPAA12 and spherical nanoparticles by assembly of disulfide-containing linear poly(amido amine) with plasmid DNA, respectively, and AFM images of plasmid DNA before and after condensation with disulfide-containing HPAA12 and linear poly(amido amine) (Reprinted with permission from Ref.[54]; Copyright (2010) Wiley); (c) A dynamic hydrogel with an environmental adaptive self-healing ability and dual responsive sol-gel transitions based on acylhydrazone and disulfide chemistry (Reprinted with permission from Ref.[38]; Copyright (2012) American Chemical Society)

    Figure 4.  “Living” controlled in situ gelling systems based on disulfide-linked core/shell amphiphilic polymers (Reprinted with permission from Ref.[55]; Copyright (2010) American Chemical Society)

    Figure 5.  Schematic illustration of forming microgels/nanogels (Reprinted with permission from Ref.[77]; Copyright (2012) American Chemical Society)

    Figure 6.  Schematic depiction of synthetic approach to controlled formation of (multilayered) hydrogel particles (Reprinted with permission from Ref.[77]; Copyright (2012) American Chemical Society)

    Figure 7.  The fabrication process of various multilayered composite nanoparticles: (a) Controlled formation of the nanogel cores, silica shell-nanogel core NPs (GS), pH-responsive poly(acrylic acid) (PAA)-silica-nanogel NPs (GSP), and hydroxyapatite (HA) coated PAA-silica-nanogel NPs (GSPH); (b) Magnetic-responsive release produced by magnetic silica-nanogel NPs under high-frequency alternating magnetic fields (HFMF) and pH-responsive release of PAA-silica-nanogel NPs; (c) In vivo translation of multilayered composite nanoparticles toward periosteum-mimetic biomaterials for bone repair (Reprinted with permission from Ref.[80]; Copyright (2018) KeAi Communications)

    Figure 8.  (a) TEM images showing self-assembled evolution of POSS-(SS-PEG)8 with concentration of 1 mg/mL in pH 8 solutions for various time. Insets are the correspondingly schematic structures; (b) The whole self-assembled evolution process of POSS-(SS-PEG)8 in aqueous solutions, including possible formation mechanisms of these typical morphologies, such as unimolecular micelles, cylinders, vesicles, worm-like micelles, hollow spheres, dense and elliptic nanoparticles. The orange cube represents the POSS core, the red ellipsoid represents the disulfide linkage and the cyan chain represents the PEG shell. (c) Schematic representation of the pH-triggered self-assembled evolution (Reprinted with permission from Ref.[81]; Copyright (2018) Nature)

    Figure 9.  The mechanism of forming hydrogels via thiol-disulfide exchange reaction (Reprinted with permission from Ref.[55]; Copyright (2010) American Chemical Society)

  • 加载中
图(10)
计量
  • PDF下载量:  391
  • 文章访问数:  2137
  • HTML全文浏览量:  953
  • 引证文献数: 0
文章相关
  • 通讯作者:  吴德成, dcwu@iccas.ac.cn
  • 收稿日期:  2018-12-07
  • 修稿日期:  2019-01-14
  • 网络出版日期:  2019-02-26
  • 刊出日期:  2019-05-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计