ISSN 1000-3304CN 11-1857/O6

一种高强度速黏纳米杂化水凝胶创可贴

崔春燕 陈薪羽 刘博 武腾玲 范川川 刘文广

引用本文: 崔春燕, 陈薪羽, 刘博, 武腾玲, 范川川, 刘文广. 一种高强度速黏纳米杂化水凝胶“创可贴”[J]. 高分子学报, 2019, 50(6): 613-622. doi: 10.11777/j.issn1000-3304.2019.18270 shu
Citation1:  Chun-yan Cui, Xin-yu Chen, Bo Liu, Teng-ling Wu, Chuan-chuan Fan and Wen-guang Liu. A High Strength Instant Adhesive Nano-hybrid Hydrogel as First-aid Bandage[J]. Acta Polymerica Sinica, 2019, 50(6): 613-622. doi: 10.11777/j.issn1000-3304.2019.18270 shu

一种高强度速黏纳米杂化水凝胶创可贴

    通讯作者: 刘文广, E-mail: wgliu@tju.edu.cn
  • 基金项目: 国家自然科学基金(基金号 51325305, 51733006)资助项目

摘要: 报道了一种制备具有高强度、高黏附性和良好生物相容性的黏合水凝胶的极其简便的方法. 将N-丙烯酰-2-氨基乙酸(ACG)水溶液与纳米生物活性玻璃(BG)混合,紫外光引发自由基聚合即可快速制备PACG-BG纳米复合水凝胶. 在该水凝胶体系中PACG分子链之间形成的氢键、PACG末端的羧基与BG中的金属离子形成的离子络合以及PACG分子链与BG纳米粒子之间发生的物理吸附作用共同构成了网络的多重物理交联,由此显著提高了凝胶的强度. 通过调节凝胶体系中ACG和BG的含量赋予了水凝胶可调节的黏附性、机械性能以及室温自修复特性. 利用搭接剪切拉伸的方式对水凝胶的黏附性能进行测试,结果显示当水凝胶中ACG的含量为25 wt%,BG占ACG含量为6 wt%时,水凝胶的表面黏附能和内聚能可达平衡,其对猪皮、铁片和陶瓷的瞬时最大黏附强度分别为120、142和125 kPa. 同时,水凝胶最高拉伸强度可达0.9 MPa,撕裂能可达1500 J/m2. 动物体内埋植结果显示水凝胶具有良好的生物相容性. 鉴于水凝胶对生物软组织有优异的黏附性能,对其进行了体外修补胃穿孔的模拟实验,结果表明,水凝胶可以牢固地黏附在胃的穿孔处,防止模拟胃液的外泄.

English

    1. [1]

      Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R, Zimmerman S C. J Am Chem Soc, 2013, 135: 7288 − 7295 doi: 10.1021/ja4005283

    2. [2]

      Bu Y Z, Zhang L C, Liu J H, Zhang L H, Li T T, Shen H, Wang X, Yang F, Tang P F, Wu D C. ACS Appl Mater Interfaces, 2016, 8: 12674 − 12683 doi: 10.1021/acsami.6b03235

    3. [3]

      Sun L, Huang Y, Bian Z, Petrosino J, Fan Z, Wang Y, Park K H, Yue T, Schmidt M, Galster S. ACS Appl Mater Interfaces, 2016, 8: 2423 − 2434 doi: 10.1021/acsami.5b11811

    4. [4]

      Jeon E Y, Wang B H, Yang Y J, Kim B J, Choi B H, Jung G Y, Cha H J. Biomaterials, 2015, 67: 11 − 19 doi: 10.1016/j.biomaterials.2015.07.014

    5. [5]

      Zhao Q, Lee D W, Ahn B K, Seo S, Kaufman Y, Israelachvili J N, Waite J H. Nat Mater, 2016, 15: 407 − 412 doi: 10.1038/nmat4539

    6. [6]

      Sedo J, Poseu J S, Busque F, Molina D R. Adv Mater, 2013, 25: 653 − 658 doi: 10.1002/adma.201202343

    7. [7]

      Walte J H. Integr Comp Biol, 2002, 42: 1172 − 1180 doi: 10.1093/icb/42.6.1172

    8. [8]

      Shin M, Park S G, Oh B C, Kim K, Jo S, Lee M S, Song S, Hong S H, Shin E C, Kim K S, Kang S W, Lee H. Nat Mater, 2017, 3: 147 − 154

    9. [9]

      Wang R, Li J Z, Chen W, Xu T T, Yun S F, Xu Z, Xu Z Q, Sato T, Chi B, Xu H. Adv Funct Mater, 2017, 27: 1604894 doi: 10.1002/adfm.v27.8

    10. [10]

      Shin J, Lee J S, Lee C, Park H J, Yang K, Jin Y, Ryu J H, Hong K S, Moon S H, Chung H M, Yang H S, Um S H, Oh J W, Kim D I, Lee H, Cho S W. Adv Funct Mater, 2015, 25: 3814 − 3824 doi: 10.1002/adfm.v25.25

    11. [11]

      Zhang H, Bre L, Zhao T Y, Newland B, Costa M D, Wang W X. J Mater Chem B, 2014, 2: 4067 − 4071

    12. [12]

      Bouten J M, Zonjee M, Bender J, Yauw T K, Goor H V, Hoogenboom R. Prog Polym Sci, 2014, 39: 1375 − 1405 doi: 10.1016/j.progpolymsci.2014.02.001

    13. [13]

      Burkett J R, Hight L M, Kenny P, Wilker J J. J Am Chem Soc, 2010, 132: 12531 − 12533 doi: 10.1021/ja104996y

    14. [14]

      Walker G J. Mar Biol, 1972, 52: 429 − 435

    15. [15]

      Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M. Soft Matter, 2014, 10: 2479 − 2502 doi: 10.1039/c3sm52132j

    16. [16]

      Cui C Y, Wu T L, Gao F, Fan C C, Xu Z Y, Wang H B, Liu B, Liu W G. Adv Funct Mater, 2018, 28: 1804925 doi: 10.1002/adfm.201804925

    17. [17]

      Li A, Jia Y F, Sun S T, Yu Y S, Minsky B, Colfen H, Guo X H. ACS Appl Mater Interfaces, 2018, 28: 10471 − 10479

    18. [18]

      Meredith H J, Jenkins C L, Wilker J J. Adv Funct Mater, 2014, 24: 3259 − 3267 doi: 10.1002/adfm.201303536

    19. [19]

      Nicola R, Kamada J, Wassen A V, Matyjaszewski K. Macromolecules, 2010, 43: 4355 − 4361 doi: 10.1021/ma100378r

    20. [20]

      Montarnal D, Capelot M, Tournilhac F, Leibler L. Science, 2011, 334: 965 − 967 doi: 10.1126/science.1212648

    21. [21]

      Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L. Nature, 2014, 505: 382 − 385 doi: 10.1038/nature12806

    22. [22]

      Gao F, Zhang Y Y, Li Y M, Xu B, Cao Z Q, Liu W G. ACS Appl Mater Interfaces, 2016, 8: 8956 − 8966 doi: 10.1021/acsami.6b00912

    23. [23]

      Yang Weizhong(杨为中), Zhou Dali(周大利), Yin Guangfu(尹光福), Zheng Changqiong(郑昌琼). J Biomed Eng(生物医学工程学杂志), 2003, 20: 541 − 545 doi: 10.3321/j.issn:1001-5515.2003.03.043

    24. [24]

      Han Y J, Bai T, Liu W G. Sci Rep, 2014, 4: 5815 − 5821

    25. [25]

      Zhang Y Y, Li Y M, Liu W G. Adv Funct Mater, 2015, 25: 471 − 480 doi: 10.1002/adfm.201401989

    1. [1]

      王丽媛程平章郭明雨 . 基于聚β-环糊精模板效应的可拉伸功能性超分子水凝胶. 高分子学报, 2018, 0(8): 1097-1106. doi: 10.11777/j.issn1000-3304.2018.18041

    2. [2]

      袁涛孙俊奇 . 具有优异自恢复性能的高强度聚电解质复合物水凝胶. 高分子学报, 2019, 50(12): 1263-1271. doi: 10.11777/j.issn1000-3304.2019.19093

    3. [3]

      卢汉民吴仲岿刘远朋陈曦朱龑昭王艺峰 . 基于Pickering乳液的磁性高强水凝胶的制备及性能表征. 高分子学报, 2013, (4): 504-510. doi: 10.3724/SP.J.1105.2013.12250

    4. [4]

      蒋绍阶李晓恩冯欣蕊 . 有机-无机杂化高分子絮凝剂PAC-PDMDAAC的合成与表征. 高分子学报, 2014, (4): 466-472. doi: 10.3724/SP.J.1105.2014.13294

    5. [5]

      李云龙林松柏张青海李大刚 . PAMPS/SiO2 杂化水凝胶的合成及电场敏感性研究. 高分子学报, 2012, (7): 728-734. doi: 10.3724/SP.J.1105.2012.11339

    6. [6]

      肖燕何金林陶云锋张明祖胡健倪沛红 . 基于功能化聚磷酸酯嵌段共聚物的微凝胶和水凝胶的制备与表征. 高分子学报, 2014, (1): 122-130. doi: 10.3724/SP.J.1105.2014.13177

    7. [7]

      候娜娜孙强张宁倪梦飞林晨王乐勇 . 基于柱[5]芳烃聚合物水凝胶的制备及对百草枯的可视化检测. 高分子学报, 2017, (1): 86-92. doi: 10.11777/j.issn1000-3304.2017.16243

    8. [8]

      陈红邵正中 . 基于桑蚕丝蛋白的多肽/两亲性多肽及其组装和功能化. 高分子学报, 2018, 0(8): 987-996. doi: 10.11777/j.issn1000-3304.2018.18083

    9. [9]

      毛云增王昊汪东沈衡杨曙光马敬红赵宁刘瑞刚徐坚 . 溶液预凝胶化对再生纤维素水凝胶膜性能的影响. 高分子学报, 2014, (7): 1023-1028. doi: 10.11777/j.issn1000-3304.2014.14004

    10. [10]

      张青松彭喆张库陈莉赵义平 . 亲水链段长度对液晶模板水凝胶形态和温敏性的影响. 高分子学报, 2013, (7): 841-848. doi: 10.3724/SP.J.1105.2013.12275

    11. [11]

      吕晓文李露林章碧崔树勋 . 离子液体再生纤维素水凝胶的形成机理及其在凝胶电泳中的应用. 高分子学报, 2011, (9): 1026-1032. doi: 10.3724/SP.J.1105.2011.10353

    12. [12]

      李文迪容建华林志丹张秀菊 . 细菌纤维素(BC)增强PVA/PVP复合水凝胶的制备及性能表征. 高分子学报, 2012, (4): 357-364. doi: 10.3724/SP.J.1105.2012.11175

    13. [13]

      张鸿鑫鲁路李立华焦延鹏周长忍 . 海藻酸动态共价交联水凝胶的制备及其自愈合性能. 高分子学报, 2016, (3): 368-374. doi: 10.11777/j.issn1000-3304.2016.15211

    14. [14]

      张宝萍许戈文黄毅萍 . 丝素蛋白-聚氨酯复合水凝胶的制备及性能研究. 高分子学报, 2012, (9): 965-971. doi: 10.3724/SP.J.1105.2012.12009

    15. [15]

      张晶晶容建华李文迪林志丹张秀菊 . 细菌纤维素/聚丙烯酰胺水凝胶的制备及性能表征. 高分子学报, 2011, (6): 602-607. doi: 10.3724/SP.J.1105.2011.10137

    16. [16]

      刘进营秦明高Dang-iY. Auphedeous刘志伟窦晓秋冯传良 . 奇偶效应诱导的苯丙氨酸类水凝胶手性反转. 高分子学报, 2018, (1): 80-89. doi: 10.11777/j.issn1000-3304.2018.17179

    17. [17]

      邓超王荣陈维孟凤华程茹钟志远 . 具生物活性的快速光交联生物可降解水凝胶的设计合成. 高分子学报, 2013, (5): 695-704. doi: 10.3724/SP.J.1105.2013.12426

    18. [18]

      宋涛奚悦静杜建忠 . 基于聚谷氨酸囊泡的抗菌水凝胶. 高分子学报, 2018, (1): 119-128. doi: 10.11777/j.issn1000-3304.2018.17229

    19. [19]

      张静王晓工 . 温度敏感水凝胶包覆长周期光纤光栅传感器研究. 高分子学报, 2012, (3): 307-312. doi: 10.3724/SP.J.1105.2012.11199

    20. [20]

      单星星陈文锐卿光焱孙涛垒雷家珩 . 手性水凝胶的制备与调控及其应用. 高分子学报, 2012, (10): 1082-1090. doi: 10.3724/SP.J.1105.2012.12090

  • Figure 1.  Schematic illustration of the formation of PACG-BG-based organic-inorganic hybrid hydrogel

    Figure 2.  FTIR spectra of (a) BG, (b) PACG-BG-25-6 hydrogel, (c) PACG hydrogel, and (d) ACG powder

    Figure 3.  (a) Equilibrium water contents of the PACG-BG-25-X hydrogels; (b) Tensile stress-strain curves of the PACG-BG-25-X hydrogels; (c) Tensile stress-strain curves of the PACG-Ca-25-N hydrogels; (d) Fracture energies of the PACG-BG-25-X hydrogels with varied BG/ACG ratios; (e) XRD patterns of PACG, BG and PACG-BG-25-X hydrogels; (f) SEM surface morphologies of the PACG and PACG-BG-25-X hydrogels

    Figure 4.  (a – d) Evaluation of the self-healing ability of the hydrogels: Tensile stress-strain curves of (a) the PACG-BG-25-6 and (b) PACG-BG-25-8 hydrogels repaired at room temperature immediately, for 12 and 24 h, respectively; (c) Self-healing efficiency of the PACG-BG-25-X hydrogels repaired at room temperature immediately, for 12 and 24 h; (d) Photographs depicting the tensile test of the PACG-BG-25-8 hydrogel after repair at room temperature for 12 h (The circle is the cut site of the hydrogel.)

    Figure 5.  (a) Lap-shear adhesion curves of the hydrogels to (a1) porcine skin, (a2) iron sheet, and (a3) ceramic; (b) Adhesion strengths of the hydrogels to (b1) porcine skin tissue, (b2) iron sheets, and (b3) ceramics

    Figure 6.  Adhesion strengths of the PACG-BG hydrogels with varied ACG contents: (a1) Lap-shear adhesion curves of the PACG-BG-20-X hydrogels to porcine skin; (b1) Adhesion strengths of the PACG-BG-20-X hydrogels to porcine skin tissue; (a2) Lap-shear adhesion curves of the PACG-BG-30-X hydrogels to porcine skin; (b2) Adhesion strengths of the PACG-BG-30-X hydrogels to porcine skin tissue

    Figure 7.  Photomicrographs of (a) H&E and (b) Masson stained wound histological sections after 3 days, 1, 2, and 4 weeks of subcutaneous implantation of the PACG-BG-25-6 hydrogel. Control: non-operated tissue.

    Figure 8.  Instant mending of the rabbits’ broken stomach with the PACG-BG-25-6 hydrogel patch: (1) Complete rabbit stomach; (2) One section of stomach was cut with a scalpel; (3) Remove the hydrogel from the mold; (4) The broken stomach was anastomosed with the gel patch; (5, 6) Fill the repaired stomach with simulated gastric juice; (7) the stomach was completely repaired with no occurrence of liquid leakage; (8) Place the repaired stomach filled with simulated gastric juice for 3 days and the hydrogel still adheres well to the incision without liquid leakage

  • 加载中
图(9)
计量
  • PDF下载量:  187
  • 文章访问数:  1099
  • HTML全文浏览量:  518
  • 引证文献数: 0
文章相关
  • 通讯作者:  刘文广, wgliu@tju.edu.cn
  • 收稿日期:  2018-12-18
  • 修稿日期:  2019-01-24
  • 网络出版日期:  2019-03-05
  • 刊出日期:  2019-06-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计