ISSN 1000-3304CN 11-1857/O6

神经退行性疾病蛋白纤维化及其与界面的手性相互作用

殷强 刘晶晶 田梦婷 谢浩 沈雷 孙涛垒

引用本文: 殷强, 刘晶晶, 田梦婷, 谢浩, 沈雷, 孙涛垒. 神经退行性疾病蛋白纤维化及其与界面的手性相互作用[J]. 高分子学报, 2019, 50(6): 575-587. doi: 10.11777/j.issn1000-3304.2019.18276 shu
Citation1:  Qiang Yin, Jing-jing Liu, Meng-ting Tian, Hao Xie, Lei Shen and Tao-lei Sun. Protein Fibrillation in Neurodegenerative Diseases and Its Chiral Interaction with Interfaces[J]. Acta Polymerica Sinica, 2019, 50(6): 575-587. doi: 10.11777/j.issn1000-3304.2019.18276 shu

神经退行性疾病蛋白纤维化及其与界面的手性相互作用

    通讯作者: 沈雷, E-mail: leishen@whut.edu.cn 孙涛垒, E-mail: suntl@whut.edu.cn
  • 基金项目: 国家自然科学基金(基金号 21574051)资助项目

摘要: 神经退行性疾病(neurodegenerative diseases,NDs)的标志性病理特征是相关蛋白的错误折叠、聚集并纤维化,即淀粉样变性. 细胞膜界面在NDs病理过程中扮演了重要角色,这些过程包括NDs蛋白的产生、淀粉样单元的细胞内扩散、细胞间传播、细胞内吞及脑内清除. 因此,NDs蛋白与磷脂膜界面的相互作用显著影响蛋白纤维化和NDs病理过程. 手性是磷脂膜的基本化学属性,不同手性特征能产生不同生物物理效应. 因此,磷脂膜界面的手性特征会显著影响NDs蛋白纤维化以及NDs病理过程. 本文揭示了界面在NDs蛋白纤维化和NDs病理过程中的重要性,从分子水平重点阐述了界面的手性特征对NDs蛋白纤维化的影响,探讨了基于手性相互作用的NDs药物设计方法,有助于深入理解NDs病理机制,并对开发能够治愈NDs的药物具有重要意义.

English

    1. [1]

      Riek R, Eisenberg D S. Nature, 2016, 539: 227 − 235 doi: 10.1038/nature20416

    2. [2]

      Pannee J, Portelius E, Oppermann M, Atkins A, Hornshaw M, Zegers I, Hojrup P, Minthon L, Hansson O, Zetterberg H. Alzeimer’s Dis, 2013, 33: 1021 − 1032 doi: 10.3233/JAD-2012-121471

    3. [3]

      Li C Z, Gotz J. Nat Rev Drug Discov, 2017, 16: 863 − 883 doi: 10.1038/nrd.2017.155

    4. [4]

      Goedert M. Nat Rev Neurosci, 2001, 2: 492 − 501 doi: 10.1038/35081564

    5. [5]

      Ruegsegger C, Maharjan N, Goswami A, Filezac L, Weis J, Troost D, Heller M, Gut H, Saxena S. Acta Neuropathol, 2016, 131: 427 − 451 doi: 10.1007/s00401-015-1510-4

    6. [6]

      Ruiz-Arlandis G, Pieri L, Bousset L, Melki R. Neuropathol Appl Neurobiol, 2016, 42: 137 − 152 doi: 10.1111/nan.2016.42.issue-2

    7. [7]

      Chiti F, Dobson C M. Annu Rev Biochem, 2006, 75: 333 − 366 doi: 10.1146/annurev.biochem.75.101304.123901

    8. [8]

      Goedert M. Science, 2015, 349: 1255555 doi: 10.1126/science.1255555

    9. [9]

      Lorenzo A, Yankner B A. Proc Nat Acad Sci USA, 1994, 91: 12243 − 12247 doi: 10.1073/pnas.91.25.12243

    10. [10]

      Kayed R, Head E, Thompson J L, McIntire T M, Milton S C, Cotman C W, Glabe C G. Science, 2003, 300: 486 − 489 doi: 10.1126/science.1079469

    11. [11]

      Makin S. Nature, 2018, 559: S4 − S7 doi: 10.1038/d41586-018-05719-4

    12. [12]

      Butterfield S M, Lashuel H. A, Angew Chem Int Ed, 2010, 49: 5628 − 5654 doi: 10.1002/anie.v49:33

    13. [13]

      Shrivastava A N, Aperia A, Melki R, Triller A. Neuron, 2017, 95: 33 − 50 doi: 10.1016/j.neuron.2017.05.026

    14. [14]

      Baig A M. ACS Chem Neurosci, 2019, 10: 21 − 24 doi: 10.1021/acschemneuro.8b00409

    15. [15]

      Stopschinski B E, Diamond M I. Lancet Neurol, 2017, 16: 323 − 332 doi: 10.1016/S1474-4422(17)30037-6

    16. [16]

      Collinge J. Nature, 2016, 539: 217 − 226 doi: 10.1038/nature20415

    17. [17]

      LaFerla F M, Green K N, Oddo S. Nat Rev Neurosci, 2007, 8: 499 − 509 doi: 10.1038/nrn2168

    18. [18]

      Strooper B D, Karran E. Cell, 2016, 164: 603 − 615 doi: 10.1016/j.cell.2015.12.056

    19. [19]

      Matsuzaki K. Biochim Biophys Acta, 2007, 1768: 1935 − 1942 doi: 10.1016/j.bbamem.2007.02.009

    20. [20]

      Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Schiossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D. Nature, 1992, 359: 325 − 327 doi: 10.1038/359325a0

    21. [21]

      Shen L, Adachi T, Vanden Bout D, Zhu X Y. J Am Chem Soc, 2012, 134: 14172 − 14178 doi: 10.1021/ja305398f

    22. [22]

      Burke K A, Yates E A, Legleiter J. Front Neurol, 2013, 4: 1 − 17

    23. [23]

      Mason S F. Nature, 1984, 311: 19 − 23 doi: 10.1038/311019a0

    24. [24]

      Blackmond D G. Cold Spring Harb Perspect Biol, 2010, 2: a002147

    25. [25]

      Bada J L. Method Enzymology, 1984, 106: 98 − 115 doi: 10.1016/0076-6879(84)06011-0

    26. [26]

      Cintas P. Angew Chem Int Ed, 2002, 41: 1139 − 1145 doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Koo E H, Squazzo S L. J Biol Chem, 1994, 269: 17386 − 17389

    28. [28]

      Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Proc Natl Acad Sci USA, 2001, 98: 5815 − 5820 doi: 10.1073/pnas.081612998

    29. [29]

      Marquer C, Devauges V, Cossec J C, Liot G, Lecart S, Saudou F, Duyckaerts C, Leveque-Fort S, Potier M C. FASEB J, 2011, 25: 1295 − 1305 doi: 10.1096/fj.10-168633

    30. [30]

      Buffone M G, Verstraeten S V, Calamera J C, Doncel G F. J Androl, 2009, 30: 552 − 558 doi: 10.2164/jandrol.108.006551

    31. [31]

      Bodovitz S, Klein W L. J Biol Chem, 1996, 271: 4436 − 4440 doi: 10.1074/jbc.271.8.4436

    32. [32]

      Thompson A G, Gray E, Heman-Ackah S M, Mager I, Talbot K, Andaloussi, S E, Wood M J, Turner M R. Nat Rev Neurol, 2016, 8: 1 − 12

    33. [33]

      Arbor S C, LaFontaine M, Cumbay M. Yale J Biol Med, 2016, 89: 5 − 21

    34. [34]

      Bharadwaj P, Solomon T, Malajczuk C J, Mancera R L, Howard M, Arrigan D W M, Newsholme P, Martins R N. Biochim Biophys Acta Biomembr, 2018, 1860: 1639 − 1651 doi: 10.1016/j.bbamem.2018.03.015

    35. [35]

      Kayed R, Sokolov Y, Edmonds B, Mclntire T M, Milton S C, Hall J E, Glabe C G. J Biol Chem, 2004, 279: 46363 − 46366 doi: 10.1074/jbc.C400260200

    36. [36]

      Aisenbrey C, Borowik T, Bystrom R, Bokvist M, Lindstrom F, Misiak H, Sani M A, Grobner G. Eur Biophys J, 2008, 37: 247 − 255 doi: 10.1007/s00249-007-0237-0

    37. [37]

      Ehehalt R, Keller P, Haass C, Thiele C, Simons K. J Cell Biol, 2003, 160: 113 − 123 doi: 10.1083/jcb.200207113

    38. [38]

      Riddell D R, Christie G, Hussain I, Dingwall C. Curr Biol, 2001, 11: 1288 − 1293 doi: 10.1016/S0960-9822(01)00394-3

    39. [39]

      Rausch J M, Marks J R, Rathinakumar R, Wimley W C. Biochemistry, 2007, 46: 12124 − 12130 doi: 10.1021/bi700978h

    40. [40]

      Gonzalez M R, Bischofberger M, Pernot L, van der Goot F G, Freche B. Cell Mol Life Sci, 2008, 65: 493 − 507 doi: 10.1007/s00018-007-7434-y

    41. [41]

      Bechinger B, Lohner K. Biochim Biophys Acta Biomembr, 2006, 1758: 1529 − 1539 doi: 10.1016/j.bbamem.2006.07.001

    42. [42]

      Danzer K M, Haasen D, Karow A R, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M. J Neurosci, 2007, 27: 9220 − 9232 doi: 10.1523/JNEUROSCI.2617-07.2007

    43. [43]

      Lashuel H A. Sci Aging Konwl Environ, 2005, 38: 28 − 39

    44. [44]

      Pearce M M P, Spartz E J, Hong W, Luo L, Kopito R R. Nat Commun, 2015, 6: 6768 doi: 10.1038/ncomms7768

    45. [45]

      Wong Y C, Krainc D. Nat Med, 2017, 23: 1 − 13

    46. [46]

      Rajendran L, Honsho M, Zahn T R, Keller P, Geiger K D, Verkade P, Simons K. Proc Natl Acad Sci USA, 2006, 103: 11172 − 11177 doi: 10.1073/pnas.0603838103

    47. [47]

      Lee H J, Suk J E, Bae E J, Lee S J. Biochem Biophys Res Commun, 2008, 372: 423 − 428 doi: 10.1016/j.bbrc.2008.05.045

    48. [48]

      Yuyama K, Sun H, Mitsutake S, Igarashi Y. J Biol Chem, 2012, 287: 10977 − 10989 doi: 10.1074/jbc.M111.324616

    49. [49]

      Alvarez-Erviti L, Seow Y, Schapira A H, Gardiner C, Sargent I L, Wood M J A, Cooper J M. Neurobiol Dis, 2011, 42: 360 − 367 doi: 10.1016/j.nbd.2011.01.029

    50. [50]

      Saman S, Kim W H, Raya M, Visnick Y, Miro S, Saman S, Jackson B, McKee A C, Alvarez V E, Lee N C Y, Hall G F. J Biol Chem, 2012, 287: 3842 − 3849 doi: 10.1074/jbc.M111.277061

    51. [51]

      Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Kugler S, Ikezu T. Nat Neurosci, 2015, 18: 1584 − 1593 doi: 10.1038/nn.4132

    52. [52]

      Munch C, O’Brien J, Bertolotti A. Proc Natl Acad Sci USA, 2011, 108: 3548 − 3553 doi: 10.1073/pnas.1017275108

    53. [53]

      Kfoury N, Holmes B B, Jiang H, Holtzman D M, Diamond M I. J Biol Chem, 2012, 287: 19440 − 19451 doi: 10.1074/jbc.M112.346072

    54. [54]

      Wegmann S, Nicholls S, Takeda S, Fan Z, Hyman B T. J Neurochem, 2016, 139: 1163 − 1174 doi: 10.1111/jnc.2016.139.issue-6

    55. [55]

      Perrais D, Merrifield C J. Develop Cell, 2005, 9: 581 − 592 doi: 10.1016/j.devcel.2005.10.002

    56. [56]

      Fiandaca M S, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz J B, Abner E L, Petersen R C, Federoff H J, Miller B L, Goetzl E J. Alzheimers Dement, 2015, 11: 600 − 607 doi: 10.1016/j.jalz.2014.06.008

    57. [57]

      Lobb R J, Becker M, Wen S W, Wong C S F, Wiegmans A P, Leimgruber A, Moller A. J Extracell Vesicles, 2015, 4: 27031 doi: 10.3402/jev.v4.27031

    58. [58]

      Marcus M E, Leonard J N. Pharmaceuticals (Basel), 2013, 6: 659 − 680 doi: 10.3390/ph6050659

    59. [59]

      Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood M J. Nat Biotechnol, 2011, 29: 341 − 345 doi: 10.1038/nbt.1807

    60. [60]

      Wang H Y, Lee D H, D’Andrea M R, Peterson P A, Shank R P, Reitz A B. J Biol Chem, 2000, 275: 5626 − 5632 doi: 10.1074/jbc.275.8.5626

    61. [61]

      Nagele R G, D’Andrea M R, Anderson W J, Wang H Y. Neuroscience, 2002, 110: 199 − 211 doi: 10.1016/S0306-4522(01)00460-2

    62. [62]

      Kim T, Vidal G S, Djurisic M, William C M, Birnbaum M E, Garcia K C, Hyman B T, Sharz C J. Science, 2013, 341: 1399 − 1404 doi: 10.1126/science.1242077

    63. [63]

      Ohnishi T, Yanazawa M, Sasahara T, Kitamura Y, Hiroaki H, Fukazawa Y, Kii I, Nishiyama T, Kakita A, Takeda H. Proc Natl Acad Sci USA, 2015, 112: E4465 − E4474 doi: 10.1073/pnas.1421182112

    64. [64]

      Cisse M, Halabisky B, Harris J, Devidze N, Dubal D B, Sun B, Orr A, Lotz G, Kim D H, Hamto P. Nature, 2011, 469: 47 − 52 doi: 10.1038/nature09635

    65. [65]

      Snyder E M, Nong Y, Almeida C G, Paul S, Moran T, Choi E Y, Nairn A C, Salter M W, Lombroso P J, Gouras G K, Greengard P. Nat Neurosci, 2005, 8: 1051 − 1058 doi: 10.1038/nn1503

    66. [66]

      Lauren J, Gimbel D A, Nygaard H B, Gilbert J W, Strittmatter S M. Nature, 2009, 457: 1128 − 1132 doi: 10.1038/nature07761

    67. [67]

      Renner M, Lacor P N, Velasco P T, Xu J, Contractor A, Klein W L, Triller A. Neuron, 2010, 66: 739 − 754 doi: 10.1016/j.neuron.2010.04.029

    68. [68]

      Haas L T, Salazar S V, Kostylev M A, Um J W, Kaufman A C, Strittmatter S M. Brain, 2016, 139: 526 − 546 doi: 10.1093/brain/awv356

    69. [69]

      Hu N W, Nicoll A J, Zhang D, Mably A J, O’Malley, T, Pirro S A, Terry C, Collinge J, Walsh D M, Rowan M J. Nat Commun, 2014, 5: 3374 doi: 10.1038/ncomms4374

    70. [70]

      Gomez-Ramos A, Diaz-Hernandez M, Rubio A, Miras-Portugal M T, Avila J. Mol Cell Neurosci, 2008, 37: 673 − 681 doi: 10.1016/j.mcn.2007.12.010

    71. [71]

      Shrivastava A N, Redeker V, Fritz N, Pieri L, Almeida L G, Spolidoro M, Liebmann T, Bousset L, Renner M, Lena C. EMBO J, 2015, 34: 2408 − 2423 doi: 10.15252/embj.201591397

    72. [72]

      Mao X, Ou M T, Karuppagounder S S, Kam T I, Yin X, Xiong Y, Ge P, Umanah G E, Brahmachari S, Shin J H. Science, 2016, 353: 3374 doi: 10.1126/science.aah3374

    73. [73]

      Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C, Valtorta F, Chieregatti E. Cell Death Differ, 2014, 21: 1971 − 1983 doi: 10.1038/cdd.2014.111

    74. [74]

      Jackson K, Barisone G A, Diaz E, Jin L W, DeCarli C, Despa F. Ann Neurol, 2013, 74: 517 − 526 doi: 10.1002/ana.v74.4

    75. [75]

      Bharadwaj P, Wijesekara N, Liyanapathirana M, Newsholme P, Ittner L, Fraser P, Verdile G. J Alzheimers Dis, 2017, 59: 421 − 432 doi: 10.3233/JAD-161192

    76. [76]

      Tarasoff-Conway J M, Carare R O, Osorio R S, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic B V, Frangione B, Blennow K, Menard J, Zetterberg H, Wisniewski T, de Leon M J. Nat Rev Neurol, 2015, 11: 457 − 470 doi: 10.1038/nrneurol.2015.119

    77. [77]

      Shibata M, Yamada S, Kumar S R, Calero M, Bading J, Frangione B, Holtzman D M, Miller C A, Strickland D K, Ghiso J, Zlokovic B V. J Clin Invest, 2000, 106: 1489 − 1499 doi: 10.1172/JCI10498

    78. [78]

      Liu C C, Liu C C, Kanekiyo T, Xu H, Bu G. Nat Rev Neurol, 2013, 9: 106 − 118 doi: 10.1038/nrneurol.2012.263

    79. [79]

      Deane R, Du Yan S, Submamaryan R K, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt A M, Armstrong D L, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B. Nat Med, 2003, 9: 907 − 913 doi: 10.1038/nm890

    80. [80]

      Boland B, Wai H Y, Olga C, Bertrand M, Alexandre H, Erwan B, Olivier R M, Mark J M. Nat Rev Drug Dis, 2018, 17: 660 − 689 doi: 10.1038/nrd.2018.109

    81. [81]

      Schilling M A. J Alzheimers Dis, 2016, 51: 961 − 977 doi: 10.3233/JAD-150980

    82. [82]

      Duckworth W C, Bennett R G, Hamel F G. Endocr Rev, 1998, 19: 608 − 624

    83. [83]

      Del Campo M, Stargardt A, Veerhuis R, Reits E, Teunissen C E. Neurosci Lett, 2015, 589: 47 − 51 doi: 10.1016/j.neulet.2015.01.036

    84. [84]

      Xie L, Helmerhorst E, Taddei K, Plewright B, van Bronswijk W, Martins R. J Neurosci, 2002, 22: RC221 − RC226 doi: 10.1523/JNEUROSCI.22-10-j0001.2002

    85. [85]

      Perez A, Morelli L, Cresto J C, Castano E M. Neurochem Res, 2000, 25: 247 − 255 doi: 10.1023/A:1007527721160

    86. [86]

      Wilkinson K, El Khoury J. Int J Alzheimers Dis, 2012, 2012: 489456

    87. [87]

      Sevigny J, Chiao P, Bussiere T, Weinreb P H, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan M S, Quintero-Monzon O, Scannevin R H, Moore Arnold H, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch R M, Sandrock A. Nature, 2016, 537: 50 − 70 doi: 10.1038/nature19323

    88. [88]

      Brandenbury L O, Konrad M, Wruck C J, Koch T, Lucius R, Pufe T. J Neurochem, 2010, 113: 749 − 760 doi: 10.1111/jnc.2010.113.issue-3

    89. [89]

      Fujii N, Kaji Y, Fujii N. J Chromatogr B, 2011, 879: 3141 − 3147 doi: 10.1016/j.jchromb.2011.05.051

    90. [90]

      Nishikawa, T. J Chromatogr B, 2011, 879: 3169 − 3183 doi: 10.1016/j.jchromb.2011.08.030

    91. [91]

      Man E H, Sandhouse M E, Burg J, Fisher G H. Science, 1983, 220: 1407 − 1408 doi: 10.1126/science.6857259

    92. [92]

      Wiklund L, Toggenburger G, Cuenod M. Science, 1982, 216: 78 − 80 doi: 10.1126/science.6121375

    93. [93]

      Jonhson J W, Ascher P. Nature, 1987, 325: 529 − 530 doi: 10.1038/325529a0

    94. [94]

      Suzuki M, Imanishi N, Mita M, Hamase K, Aiso S, Sasabe J. ASN Neuro, 2017, 5: 1 − 10

    95. [95]

      Fisher G H, Payan I L, Chou S J, Man E H, Cerwinski S, Martin T, Emory C, Frey W H. Brain Res Bull, 1991, 28: 127 − 131

    96. [96]

      Payan I L, Chou S J, Fisher G H, Man E H, Emory C, Frey W H. Neurochem Res, 1992, 17: 187 − 191 doi: 10.1007/BF00966798

    97. [97]

      Chouinard M, Gaitan D, Wood P. J Neurochem, 1993, 61: 1561 − 1564 doi: 10.1111/jnc.1993.61.issue-4

    98. [98]

      Lowe S L, Bowen D M, Francis P T, Toru M. Neurosci, 1990, 38: 571 − 577 doi: 10.1016/0306-4522(90)90051-5

    99. [99]

      Sakai-Kato K, Naito M, Utsunomiya-Tate N. Biochem Biophys Res Commun, 2007, 364: 464 − 469 doi: 10.1016/j.bbrc.2007.10.014

    100. [100]

      Oda A, Kobayashi K, Takahashi O. Chem Biodiversity, 2010, 7: 1357 − 1363 doi: 10.1002/cbdv.200900299

    101. [101]

      Roher A E, Lowenson J D, Clarke S, Wolkow C, Wang R, Cotter R J, Reardon I M, Zurcher-Neely H A, Heinrikson R L, Ball M J, Greenberg B D. J Biol Chem, 1993, 268: 3072 − 3083

    102. [102]

      Wilson C C, Myles D, Ghosh M, Johnson L N, Wang W Q. New J Chem, 2005, 29: 1318 − 1322 doi: 10.1039/b419295h

    103. [103]

      Ollivaux C, Soyez D, Toullec J Y. J Peptide Sci, 2014, 20: 595 − 612 doi: 10.1002/psc.v20.8

    104. [104]

      Demarchi B, Collins M, Bergstrom E, Dowle A, Penkman K, Thomas-Oates J, Wilson J. Anal Chem, 2013, 85: 5835 − 5842 doi: 10.1021/ac4005869

    105. [105]

      Song X, Bao M, Li D, Li Y M. Mech Ageing Dev, 1999, 108: 239 − 251 doi: 10.1016/S0047-6374(99)00022-6

    106. [106]

      Wei H F, Li L, Song Q J, Ai H X, Chu J, Li W. Behav Brain Res, 2005, 157: 245 − 251 doi: 10.1016/j.bbr.2004.07.003

    107. [107]

      Rehman S U, Shah S A, Ali T, Chung J I, Kim M O. Mol Neurobiol, 2017, 54: 255 − 271 doi: 10.1007/s12035-015-9604-5

    108. [108]

      Lu J, Wu D W, Zheng Y L, Hu B, Zhang Z F, Ye Q, Liu C M, Shan Q, Wang Y J. Cereb Cortex, 2010, 20: 2540 − 2548 doi: 10.1093/cercor/bhq002

    109. [109]

      Yu Y, Bai F, Liu Y, Yang Y, Yuan Q, Zou D, Qu S, Tian G, Song L, Zhang T, Li S, Liu Y, Wang W, Ren G, Li D. Mol Cell Biochem, 2015, 403: 287 − 299 doi: 10.1007/s11010-015-2358-6

    110. [110]

      Qing G Y, Zhao S L, Xiong Y T, Lv Z Y, Jiang F L, Liu Y, Chen H, Zhang M X, Sun T L. J Am Chem Soc, 2014, 136: 10736 − 10742 doi: 10.1021/ja5049626

    111. [111]

      Gao G B, Zhang M X, Lu P, Guo G, Wang D, Sun T L. Angew Chem Int Ed, 2015, 54: 2245 − 2250 doi: 10.1002/anie.201410768

    112. [112]

      Malishev R, Arad E, Bhunia S K, Shaham-Niv S, Kolusheva S, Gazit E, Jelinek R. Chem Commun, 2018, 54: 7762 − 7767 doi: 10.1039/C8CC03235A

    113. [113]

      Wei W, Xu C, Gao N, Ren J S, Qu X G. Chem Sci, 2014, 5: 4367 − 4374 doi: 10.1039/C4SC01386G

    114. [114]

      Sen S, DasGupta S, DasGupta S. J Phys Chem C, 2017, 121: 18935 − 18946 doi: 10.1021/acs.jpcc.7b05354

    115. [115]

      Wadai H, Yamaguchi K, Takahashi S, Kanno T, Kawai T, Naiki H, Goto Y. Biochemistry, 2005, 44: 157 − 164 doi: 10.1021/bi0485880

    116. [116]

      Dutta S, Foley A R, Warner C J A, Zhang X, Rolandi M, Abrams B, Raskatov J A. Angew Chem Int Ed, 2017, 56: 11506 − 11510 doi: 10.1002/anie.201706279

    117. [117]

      Chalifour R J, McLaughlin R W, Lavoie L, Morissette C, Tremblay N, Boule M, Sarazin P, Stea D, Lacombe D, Tremblay P, Gervais F. J Biol Chem, 2003, 278: 34874 − 34881 doi: 10.1074/jbc.M212694200

    118. [118]

      Wiesehan K, Stohr J, Nagel-Steger L, van Groen T, Riesner D, Willbold D. Protein Eng Des Sel, 2008, 21: 241 − 246 doi: 10.1093/protein/gzm054

    119. [119]

      Leithold L H E, Jiang N, Post J, Ziehm T, Schartmann E, Kutzsche J, Jon Shah N, Breitkreutz J, Langen K J, Willuweit A, Willbold D. Pharm Res, 2016, 33: 328 − 336 doi: 10.1007/s11095-015-1791-2

    120. [120]

      Guan Y J, Du Z, Gao N, Cao Y, Wang X H, Scott P, Song H L, Ren J S, Qu X G. Sci Adv, 2018, 4: eaao6718 doi: 10.1126/sciadv.aao6718

    121. [121]

      Sood A, Abid M, Hailemichael S, Foster M, Török B, Török M. Bioorg Med Chem Lett, 2009, 19: 6931 − 6934 doi: 10.1016/j.bmcl.2009.10.066

    122. [122]

      Wang Y X, Zhou L, Wang J, Lin B, Wang X B, Huang X X, Song S J. Bioorg Chem, 2018, 77: 579 − 585 doi: 10.1016/j.bioorg.2018.02.001

    123. [123]

      Root-Bernstein R S, Holsworth D D. J Theor Biol, 1998, 190: 107 − 119 doi: 10.1006/jtbi.1997.0544

    124. [124]

      Heal J R, Roberts G W, Christie G, Miller A D. ChemBioChem, 2002, 3: 86 − 92 doi: 10.1002/(ISSN)1439-7633

    125. [125]

      Evers M M, Toonen L J A, van Roon-Mom W M C. Adv Drug Del Rev, 2015, 87: 90 − 103 doi: 10.1016/j.addr.2015.03.008

    126. [126]

      Baker S K, Chen Z L, Norris E H, Revenko A S, MacLeod A R, Strickland S. Proc Natl Acad Sci USA, 2018, 115: E9687 − E9696 doi: 10.1073/pnas.1811172115

    127. [127]

      Engel M F M, van den Akker C C, Schleeger M, Velikov K P, Koenderink G H, Bonn M. J Am Chem Soc, 2012, 134: 14781 − 14788 doi: 10.1021/ja3031664

    128. [128]

      Galvagnion C. J Parkinson’s Dis, 2017, 7: 433 − 450 doi: 10.3233/JPD-171103

    129. [129]

      Yang M, Wang K, Lin J, Wang L, Wei F, Zhu J, Zheng W, Shen L. Langmuir, 2018, 34: 8408 − 8414 doi: 10.1021/acs.langmuir.8b01315

    130. [130]

      Ikeda K, Matsuzaki K. Biochem Biophys Res Commun, 2008, 370: 525 − 529 doi: 10.1016/j.bbrc.2008.03.130

    131. [131]

      Rangachari V, Dean D N, Rana P, Vaidya A, Ghosh P. Biochim Biophy Acta Biomembr, 2018, 1860: 1652 − 1662 doi: 10.1016/j.bbamem.2018.03.004

    132. [132]

      Hong S, Beja-Glasser V F, Nfonoyim B M, Frouin A, Li S, Ramakrishnan S, Merry K M, Shi Q, Rosenthal A, Barres B A. Science, 2016, 352: 712 − 716 doi: 10.1126/science.aad8373

    133. [133]

      Liebmann T, Renier N, Bettayeb K, Greengard P, Tessier-Lavigne M, Flajolet M. Cell Rep, 2016, 16: 1138 − 1152 doi: 10.1016/j.celrep.2016.06.060

    134. [134]

      Ulmschneider J P, Ulmschneider M B. Acc Chem Res, 2018, 51: 1106 − 1116 doi: 10.1021/acs.accounts.7b00613

    135. [135]

      Press-Sandler O, Miller Y. Biochim Biophys Acta Biomembr, 2018, 1860: 1889 − 1905 doi: 10.1016/j.bbamem.2018.03.014

    1. [1]

      门菲张洁崔宇恒张立群岳冬梅 . 手性荧光聚合物微球的合成及表征. 高分子学报, 2015, (11): 1322-1327. doi: 10.11777/j.issn1000-3304.2015.15076

    2. [2]

      单星星陈文锐卿光焱孙涛垒雷家珩 . 手性水凝胶的制备与调控及其应用. 高分子学报, 2012, (10): 1082-1090. doi: 10.3724/SP.J.1105.2012.12090

    3. [3]

      柳蓓蓓路伟杜柑宏陈丹凌君江黎明沈之荃 . 含手性亚胺侧基聚苯乙烯衍生物的设计及其在酸碱诱导下的手光响应性质. 高分子学报, 2013, (4): 436-442. doi: 10.3724/SP.J.1105.2013.13007

    4. [4]

      谭珏郑裕东彭江吴健高爽田茹陈红谚 . 层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究. 高分子学报, 2012, (4): 351-356. doi: 10.3724/SP.J.1105.2012.11171

    5. [5]

      梁福鑫杨振忠 . Janus复合材料调控界面. 高分子学报, 2017, (6): 883-892. doi: 10.11777/j.issn1000-3304.2017.17012

    6. [6]

      王莉莉董侠刘祥贵邢倩黄淼铭胡海青王笃金 . 热塑性聚氨酯及其复合材料的界面形态与流变特性. 高分子学报, 2013, (3): 367-376. doi: 10.3724/SP.J.1105.2013.12279

    7. [7]

      李文林牛艳华王志刚 . 聚合物熔体界面扩散理论与研究方法. 高分子学报, 2013, (7): 817-826. doi: 10.3724/SP.J.1105.2013.13032

    8. [8]

      赵皎宏杨睿于建 . 界面对聚丙烯/碳酸钙复合材料光氧老化的影响. 高分子学报, 2014, (12): 1600-1605. doi: 10.11777/j.issn1000-3304.2014.14113

    9. [9]

      刘军沈建祥曹达鹏张立群 . 计算机模拟研究聚合物纳米复合材料的分散与界面. 高分子学报, 2016, (8): 1048-1061. doi: 10.11777/j.issn1000-3304.2016.16105

    10. [10]

      沈烈孟庆荣彭懋方征平 . 动态流变法在聚合物/聚合物界面分子链扩散研究中的应用. 高分子学报, 2012, (8): 794-800. doi: 10.3724/SP.J.1105.2012.12049

    11. [11]

      李肖夫王荣褚杨郑宜君张洁宛新华 . 乙烯基二联苯单体的螺旋选择性自由基聚合. 高分子学报, 2017, (10): 1609-1615. doi: 10.11777/j.issn1000-3304.2017.17157

    12. [12]

      杨树颜刘岚贾志欣贾德民罗远芳刘亚蓝 . 平衡溶胀法研究谷氨酸二硫代氨基甲酸镧对SBR/SiO2 复合材料界面作用的影响. 高分子学报, 2011, (7): 709-717. doi: 10.3724/SP.J.1105.2011.10184

    13. [13]

      陈叶辉张劲杨利文阳年发 . (S)-6-丙烯酰基-2-甲氧基-2-特戊酰氧基-1,1-联萘 负离子聚合合成螺旋聚, -不饱和酮. 高分子学报, 2014, (11): 1435-1441. doi: 10.11777/j.issn1000-3304.2014.14043

    14. [14]

      张双双刘江飞张键王来兵张伟朱秀林 . 溶剂手性转移法制备超支化共轭聚合物手性荧光纳米粒子. 高分子学报, 2013, (4): 426-435. doi: 10.3724/SP.J.1105.2013.12404

    15. [15]

      成桑李雨抒梁家杰李琦 . 介电高分子及其纳米复合材料的电容储能应用. 高分子学报, 2020, 51(5): 0-0. doi: 10.11777/j.issn1000-3304.2020.20001

    16. [16]

      韩高义陈凤恩袁金颖石高全 . 手性环境下的手性N-取代吡咯电化学聚合及其微结构. 高分子学报, 2004, (2): 165-170.

    17. [17]

      何保江陈文斌陈伟柏正武 . 基于酒石酸衍生物的聚合物型手性固定相的制备及手性识别. 高分子学报, 2015, (9): 1107-1113. doi: 10.11777/j.issn1000-3304.2015.15035

    18. [18]

      张丽丽沈军岡本佳男李玉龙 . 2-N-邻苯二甲酰亚胺壳聚糖基手性固定相的制备及手性识别能力研究. 高分子学报, 2016, (11): 1555-1562. doi: 10.11777/j.issn1000-3304.2016.16072

    19. [19]

      曾汉民孔柏岭 . 碳纤维-尼龙1010界面形态的研究. 高分子学报, 1989, (1): 75-80.

    20. [20]

      何流张树范金顺子漆宗能王佛松 . 手性丙烯酸酯液晶原位光聚合反应. 高分子学报, 1995, (2): 242-245.

  • Figure 1.  Sites of extracellular Aβ production. APP is localized in the plasma membrane, where it is cleaved by β-secretase, releasing soluble Aβ into the extracellular space. Aβ is produced within the exdoplasmic reticulum (ER) and Golgi systems. Extracellular Aβ can bind to cell-surface receptors (such as RAGE, LRP, FPRL1, NMDA receptors, α7-nAChR and so on). Intracellular accumulation of Aβ mainly occurs in the multivesicular body (MVB) and lysosome, but also in the mitochondria, ER, Golgi, and cytosol, where it influence proteasome function. (Adapted with permission from Ref.[17]; Copyright (2007) Macmillan Publishers Ltd.)

    Figure 2.  Two-dimensional representations of barrel-stave, toroidal pores, sinking-raft and carpet models for membrane permeabilization by pathogenic proteins and peptides (Adapted with permission from Ref.[12]; Copyright (2010) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

    Figure 3.  Misfolded protein assemblies spread from cell to cell

    Figure 4.  Overview of intracellular and extracellular mechanisms for the clearance of Aβ from the brain (Adapted with permission from Ref.[80]; Copyright (2018) Springer Nature Limited)

    Figure 5.  (a) The two mirror-image enantiomers of the amino acid; (b) and (c) are the 3D structures of wide-type Aβ42 and D-Asp23 containing Aβ42 obtained by MD simulation, respectively (Adapted with permission from Ref.[100]; Copyright (2010) Verlag Helvetica Chimica Acta AG, Zurich)

    Figure 6.  (a) Chiral nature of phospholipid double layer inspires us to introduce chirality into the study of amyloid formation on surface, in which grapheme is used as an ideal platform to perform this research. (b, c) AFM images of R-Cys-GO and S-Cys-GO after incubation in Aβ40 solution (25 μmol/L) at 37 °C for 10 h. (d, e) Interaction models of peptide with R-Cys and S-Cys. Hydrogen bonds are indicated by green dotted lines. (f) R-Cys-GO suppresses Aβ40 fibrillation, while S-Cys-GO promotes the Aβ40 fibrillation. (Adapted with permission from Ref.[110]; Copyright (2014) American Chemical Society)

    Figure 7.  (a, b) AFM images on NIBC-modified gold surfaces after incubation in Aβ40 solution (1 mmol/L) at 37 °C for 12 h: (a) D-surface, (b) L-surface. (c) Schematic illustration of the Aβ40 fibrillation at the D- and L-NIBC surfaces. (Adapted with permission from Ref.[111]; Copyright (2014) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

    Figure 8.  Schematic illustration of fibril formation of peptides made of L-amino acids (a) and D-amino acids (c) and no cross-reactivity of L- and D-peptides (b) in forming amyloid fibrils (Adapted with permission from Ref.[115]; Copyright (2005) American Chemical Society)

  • 加载中
图(9)
计量
  • PDF下载量:  33
  • 文章访问数:  806
  • HTML全文浏览量:  242
  • 引证文献数: 0
文章相关
  • 通讯作者:  沈雷, leishen@whut.edu.cn
    孙涛垒, suntl@whut.edu.cn
  • 收稿日期:  2018-12-27
  • 修稿日期:  2019-01-22
  • 网络出版日期:  2019-03-01
  • 刊出日期:  2019-06-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计