ISSN 1000-3304CN 11-1857/O6

基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备

王怡 冯展彬 左洪礼 于冰 宁南英 田明 张立群

引用本文: 王怡, 冯展彬, 左洪礼, 于冰, 宁南英, 田明, 张立群. 基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备[J]. 高分子学报, 2019, 50(5): 485-495. doi: 10.11777/j.issn1000-3304.2019.18280 shu
Citation:  Yi Wang, Zhan-bin Feng, Hong-li Zuo, Bing Yu, Nan-ying Ning, Ming Tian and Li-qun Zhang. Preparation of Thermally Reversible Silicone Rubber/Carbon Nanotubes Composite with High Electrical Conductivity Based on Diels-Alder Reaction[J]. Acta Polymerica Sinica, 2019, 50(5): 485-495. doi: 10.11777/j.issn1000-3304.2019.18280 shu

基于Diels-Alder反应的热可逆高导电硅橡胶/碳管复合材料的制备

    通讯作者: 宁南英, E-mail: ningny@mail.buct.edu.cn 田明, E-mail: tianm@mail.buct.edu.cn
  • 基金项目: 国家重点基础研究发展计划项目(973计划,项目号 2015CB654700, 2015CB654704)和国家杰出青年科学基金(基金号 51525301)资助项目

摘要: 使用碳纳米管(CNTs)作为亲二烯体,制备了接枝呋喃官能团的硅橡胶(SiR-Fu)作为二烯体,二者进行Diels-Alder反应,在CNTs与SiR-Fu基体之间构建了可逆共价交联网络,制备了一种同时具有良好的界面粘结、较好的力学强度、高导电性和较好热可逆性质的导电硅橡胶(SiR)复合材料. 其中,CNTs既作为增强填料和导电填料,又能与SiR主链上的呋喃官能团发生Diels-Alder反应而形成动态共价键,使得复合材料具有热可逆性、可回收再利用性且能提高复合材料的界面粘结和力学强度. 较之纯SiR,CNTs含量为10 wt%的复合材料的电导率从2.5 × 10−14 S/cm提高到0.9 S/cm;拉伸强度从0.2 MPa提高到2.3 MPa;对样品进行二次模压成型之后,其拉伸强度回复率为77%,断裂伸长率回复率为88%,电导率回复率为86%.

English

    1. [1]

      Stoyanov H, Kollosche M, Risse S, Wache R, Kofod G. Adv Mater, 2013, 25(4): 578 − 583 doi: 10.1002/adma.201202728

    2. [2]

      Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I. Adv Mater, 2014, 26(21): 3451 − 3458 doi: 10.1002/adma.v26.21

    3. [3]

      Polgar L M, van Duin M, Broekhuis A A, Picchioni F. Macromolecules, 2015, 48(19): 7096 − 7105 doi: 10.1021/acs.macromol.5b01422

    4. [4]

      Polgar L, Hagting E, Koek W J, Picchioni F, van Duin M. Polymers, 2017, 9(3): 81

    5. [5]

      Zhang H, Cai C, Liu W, Li D D, Zhang J W, Zhao N, Xu J. Sci Rep, 2017, 7(1): 11833 doi: 10.1038/s41598-017-11485-6

    6. [6]

      Zhang B L, Zhang P, Zhang H Z, Y an, Casey Y, Zheng Z J, Wu B, Yu, Y. Macromol Rapid Commun, 2017, 38(15): 1700110 doi: 10.1002/marc.v38.15

    7. [7]

      Amamoto Y, Kikuchi M, Masunaga H, Sasaki S, Otsuka H, Takahara A. Macromolecules, 2010, 43(4): 1785 − 1791 doi: 10.1021/ma902413f

    8. [8]

      Zhao Hanwen(赵翰文), Feng Libang(冯利邦), Shi Xueting(史雪婷), Wang Yanping(王彦平). Acta Polymerica Sinica(高分子学报), 2018, (3): 395 − 401

    9. [9]

      Diels O, Alder K. Justus Liebigs Ann Chem, 1928, 460(1): 98 − 122 doi: 10.1002/(ISSN)1099-0690

    10. [10]

      Polgar M L, Hagting E, Raffa P, Mauri M, Simonutti R, Picchioni F, Duin M. Macromolecules, 2017, 50(22): 8955 − 8964 doi: 10.1021/acs.macromol.7b01541

    11. [11]

      Trovatti E, Lacerda T M, Carvalho A J, Gandini A. Adv Mater, 2015, 27(13): 2242 − 2245 doi: 10.1002/adma.201405801

    12. [12]

      Zhao J, Xu R, Luo G X, Wu J, Xia H S. J Mater Chem B, 2016, 4(5): 982 − 989 doi: 10.1039/C5TB02036K

    13. [13]

      Xiang Hongping(向洪平), Rong Zhimin(容敏智), Zhang Mingqiu(章明秋). Acta Polymerica Sinica(高分子学报), 2017, (7): 1130 − 1140

    14. [14]

      Roy S, Das T, Zhang L, Li Y, Ming Y, Ting S, Hu X, Yue C Y. Polymer, 2015, 58: 153 − 161 doi: 10.1016/j.polymer.2014.12.032

    15. [15]

      Xue S M, Xu Z L, Tang Y J, Ji C H. ACS Appl Mater Interfaces, 2016, 8(29): 19135 − 44 doi: 10.1021/acsami.6b05545

    16. [16]

      Dumitru A, Mamlouk M, Scott K. Electrochi Acta, 2014, 135: 428 − 438 doi: 10.1016/j.electacta.2014.04.123

    17. [17]

      Miller S G, Williams T S, Baker J S, Sola F, Lebron-Colon M, McCorkle L S, Wilmoth N G, Gaier J, Chen M, Meador M A. ACS Appl Mater Interfaces, 2014, 6(9): 6120 − 6126 doi: 10.1021/am4058277

    18. [18]

      Araya-Hermosilla R, Pucci A, Raffa P, Santosa D, Pescarmona P P, Gengler N Y R, Rudolf P, Moreno-Villoslada I, Picchioni F. Polymers, 2018, 10(10): 1076 doi: 10.3390/polym10101076

    19. [19]

      Li Y, Osuna S, Garcia-Borras M, Qi X, Liu S, Houk K N, Lan Y. Chem Eur J, 2016, 22(36): 12819 − 24 doi: 10.1002/chem.v22.36

    20. [20]

      Mata D, Amaral M, Fernandes A J, Colaco B, Gama A, Paiva M C, Gomes P S, Silva R F, Fernandes M H. Nanoscale, 2015, 7(20): 9238 − 9251 doi: 10.1039/C5NR01829C

    21. [21]

      Willocq B, Lemaur V, Garah E M, Ciesielski A, Samori P, Raquez J M, Dubois P, Cornil J. Chem Commun, 2016, 52(48): 7608 − 7611 doi: 10.1039/C6CC01427E

    22. [22]

      Willocq B, Bose R K, Khelifa F, Garcia S J, Dubois P, Raquez J M. J Mater Chem A, 2016, 4(11): 4089 − 4097 doi: 10.1039/C5TA09793B

    23. [23]

      Zhang W, Zhou Z, Li Q, Chen G X. Ind Eng Chem Res, 2014, 53(16): 6699 − 6707 doi: 10.1021/ie404204g

    24. [24]

      Lowe A B. Polym Chem, 2010, 1(1): 17 − 36 doi: 10.1039/B9PY00216B

    25. [25]

      Schenzel A M, Klein C, Rist K, Moszner N, Barner-Kowollik C. Adv Sci, 2016, 3(3): 1500361 doi: 10.1002/advs.201500361

    26. [26]

      Inglis A J, Sinnwell S, Stenzel M H, Barner-Kowollik C. Angew Chem Int Ed, 2009, 48(13): 2411 − 2414 doi: 10.1002/anie.200805993

    27. [27]

      Gacal B, Durmaz H, Tasdelen M A, Hizal G, Tunca U, Yagci Y, Demirel A L. Macromolecules, 2006, 39(16): 5330 − 5336 doi: 10.1021/ma060690c

    28. [28]

      Xiong X Q, Chen Y M. Eur Polym J, 2012, 48(3): 569 − 579 doi: 10.1016/j.eurpolymj.2011.12.010

    29. [29]

      Xiong X Q, Xu Y H. Polym Bull, 2010, 65(5): 455 − 463 doi: 10.1007/s00289-009-0221-1

    30. [30]

      Durmaz H, Colakoglu B, Tunca U, Gurkan H. J Polym Sci, Part A: Polym Chem, 2006, 44(5): 1667 − 1675 doi: 10.1002/pola.21275

    31. [31]

      Yusuke I, Hideaki I, Kensuke N, Yoshiki C. Macromolecules, 2000, 33(12): 4343 − 4346 doi: 10.1021/ma991899b

    32. [32]

      Chen X, Dam M A, Ono K, Ajit M, Hongbin S, Steven R N, Kevin S, Fred W. Science, 2002, 295(5560): 1698 − 1702 doi: 10.1126/science.1065879

    33. [33]

      Chen X X, Fred W, Ajit K M, Shen H B, Steven R N. Macromolecules, 2003, 36(6): 1082 − 1807

    34. [34]

      Michael L S, Dominic V M, David R W, Thomas Z, James R M. Macromolecules, 2007, 40(4): 818 − 823 doi: 10.1021/ma062093w

    1. [1]

      张文静曲家利李齐方陈广新 . 基于Diels-Alder反应与原子转移自由基聚合制备核壳型碳纳米管-笼型倍半硅氧烷杂化材料. 高分子学报, 2014, (4): 508-513. doi: 10.3724/SP.J.1105.2014.13323

    2. [2]

      于正洋冯利邦柴昌盛王彦平刘艳花强小虎 . 基于Diels-Alder反应的自修复聚氨酯的结构与修复行为. 高分子学报, 2016, (11): 1579-1586. doi: 10.11777/j.issn1000-3304.2016.16073

    3. [3]

      赵翰文冯利邦史雪婷王彦平刘艳花 . 热可逆自修复环氧树脂的合成与修复行为. 高分子学报, 2018, (3): 395-401. doi: 10.11777/j.issn1000-3304.2017.17083

    4. [4]

      张震贺超良徐清华庄秀丽陈学思 . 聚(L-谷氨酸)水凝胶的Diels-Alder制备及其生物分子响应性研究. 高分子学报, 2018, (1): 99-108. doi: 10.11777/j.issn1000-3304.2018.17221

    5. [5]

      吴德峰孙玉蓉周卫东张明 . 碳纳米管对聚酯相容共混体系酯交换反应的影响. 高分子学报, 2011, (12): 1425-1432. doi: 10.3724/SP.J.1105.2011.10387

    6. [6]

      曹宁宁郑玉婴樊志敏王翔 . 氧化石墨烯纳米带-碳纳米管/TPU复合材料薄膜的制备及表征. 高分子学报, 2015, (8): 963-972. doi: 10.11777/j.issn1000-3304.2015.14455

    7. [7]

      阳京京方华高章亚琼施文涛陈鹏王志刚 . 黏弹性对聚丙烯/碳纳米管复合材料熔体挤出特性影响研究. 高分子学报, 2013, (10): 1325-1333. doi: 10.3724/SP.J.1105.2013.13080

    8. [8]

      金杰陈卫张玲李春忠 . 静电吸附制备玻璃纤维/乙烯-马来酸酐共聚物/碳纳米管混杂结构增强尼龙6复合材料. 高分子学报, 2013, (10): 1262-1269. doi: 10.3724/SP.J.1105.2013.13014

    9. [9]

      刘元培张青任杰郭杰蔡志江 . 聚羟基丁酸酯/碳纳米管复合纳米纤维膜的制备及其对重金属离子吸附分离性能的研究. 高分子学报, 2017, (5): 820-829. doi: 10.11777/j.issn1000-3304.2017.16217

    10. [10]

      李莎莎郝晓刚贾金兰侯彩英管涛涛王忠德 . 聚吡咯/多壁碳纳米管及其聚氨酯导电复合材料的制备和性能. 高分子学报, 2017, (3): 524-533. doi: 10.11777/j.issn1000-3304.2017.16148

    11. [11]

      胡玉玺乔立军秦玉升王献红赵晓江王佛松 . 呋喃甲基缩水甘油醚/二氧化碳共聚物的Diels-Alder反应. 高分子学报, 2011, (11): 1336-1340. doi: 10.3724/SP.J.1105.2011.11059

    12. [12]

      章明秋容敏智 . 结构用自修复型高分子材料的制备. 高分子学报, 2012, (11): 1183-1199. doi: 10.3724/SP.J.1105.2012.12171

    13. [13]

      申亚茹栾云博李永存韩志军郭章新 . 微波调控石墨烯-碳纳米管协同增强聚氨酯损伤自修复研究. 高分子学报, 2017, (4): 624-632. doi: 10.11777/j.issn1000-3304.2017.16183

    14. [14]

      张博媛辛菲郭朝霞于建 . 玻璃纤维对聚甲醛基导电复合材料性能的影响. 高分子学报, 2012, (2): 174-179. doi: 10.3724/SP.J.1105.2012.11138

    15. [15]

      胡晓兰曾海涛周花余荣禄杨柳林董炎明曾志群沈新元 . 壳聚糖衍生物处理碳纳米管改性聚丙烯腈基碳纤维. 高分子学报, 2011, (10): 1166-1172. doi: 10.3724/SP.J.1105.2011.10235

    16. [16]

      张朝晖杨潇张华斌张明磊罗丽娟陈星聂利华 . 多壁碳纳米管表面熊果酸印迹聚合物的制备及固相萃取. 高分子学报, 2011, (12): 1470-1476. doi: 10.3724/SP.J.1105.2011.11016

    17. [17]

      傅思睿杨静晖傅强 . 碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究. 高分子学报, 2012, (3): 344-350. doi: 10.3724/SP.J.1105.2012.11293

    18. [18]

      王艳艳方飞丁欣陈小璇郑康陈林田兴友张献 . 碳纳米管基杂化涂层的自组装构筑及对棉织物阻燃性能的影响. 高分子学报, 2016, (12): 1695-1703. doi: 10.11777/j.issn1000-3304.2016.16097

    19. [19]

      孙达李齐方陈广新 . 自由基引发八甲基丙烯酸酯基笼型倍半硅氧烷在多壁碳纳米管表面的可控包覆. 高分子学报, 2013, (11): 1424-1429. doi: 10.3724/SP.J.1105.2013.13084

    20. [20]

      郑香允陈晓婷李道克冯传义 . 聚离子液体修饰碳纳米管及其对环氧树脂力学性能的影响. 高分子学报, 2016, (2): 264-270. doi: 10.11777/j.issn1000-3304.2016.15248

  • Figure 1.  Synthetic route to thermally reversible SiR-Fu/CNTs composites: (a) Synthesis of SiR with high vinyl content; (b) Synthesis of SiR-Fu; (c) DA reaction and reversible DA reaction between SiR-Fu and CNTs

    Figure 2.  FTIR spectra of D4, V4, and SiR containing 30% vinyl groups

    Figure 3.  1H-NMR spectra of SiR with different contents of vinyl groups

    Figure 4.  FTIR spectra of SiR, Fu and SiR-Fu

    Figure 5.  1H-NMR spectra of SiR and SiR-Fu

    Figure 6.  1H-NMR spectra of SiR-Fu prepared by (A) SiR with different vinyl contents for 5 min and (B) SiR with 30% vinyl groups for different reaction time

    Figure 7.  FTIR spectra of Si-Fu, CNTs, and SiR-Fu/CNTs composites

    Figure 8.  SEM images of CNTs and SiR-Fu/CNTs composites: (a, a') raw CNTs; (b, b') SiR-Fu/5wt% CNTs composites; (c, c') SiR-Fu/10wt% CNTs composites; (d, d') SiR-Fu/20wt% CNTs composites; (a – d) low magnification, (a' – d') high magnification

    Figure 9.  Diameter distribution of raw CNTs and SiR-Fu/CNTs composites

    Figure 10.  Stress-strain curves of SiR-Fu and SiR-Fu/CNTs composites with different contents of CNTs

    Figure 11.  Solubility of SiR-Fu/10wt% CNTs composite when (a) placed in DMSO solvent at room temperature or (b) heated at 150 °C for 6 h; (c) Reprocessing of SiR-Fu/CNTs composites

    Figure 12.  Stress-strain curves of SiR-Fu/CNTs composites before and after reprocessing

    Table 1.  Formulation of SiR with different vinyl contents

    Vinyl content in SiR (%)Content of D4 (g)Content of V4 (g)Content of decamethyltetrasiloxane (blocking agent) (g)Content of tetramethyl ammonium hydroxide (catalyst) (g)
    2076.7522.300.0600.88
    3066.1332.940.0590.87
    5045.8353.260.0580.85
    下载: 导出CSV

    Table 2.  Yield, vinyl content, Mn, Mw, PDI, and Tg of as-prepared SiR

    Theoretical vinyl
    content (%)
    Actual vinyl
    content (%)
    Mn × 10−5
    (g/mol)
    Mw × 10−5
    (g/mol)
    PDIYield
    (%)
    Tg
    (°C)
    2021.72.44.71.9289.4%−129.8
    3030.82.45.02.1286.2%−133.1
    5052.62.04.62.3585.6%−135.6
    下载: 导出CSV

    Table 3.  Grafting ratio of Fu on SiR-Fu under different reaction conditions

    Vinyl content in SiR (%)Reaction time (min)Grafting ratio of Fu on SiR-Fu (%)
    20510.36
    30513.44
    5059.61
    301018.37
    302022.58
    303039.06
    下载: 导出CSV

    Table 4.  Tensile strength and elongation at break of SiR-Fu/CNTs composites with different content of CNTs before and after reprocessing

    Content of CNTs
    (wt%)
    Initial mechanical properties Mechanical properties after 1st reprocessing
    Tensile strength (MPa)Elongation at break (%)Tensile strength (MPa)Elongation at break (%)
    00.2142
    50.61290.491
    102.31211.8106
    2012.946
    下载: 导出CSV

    Table 5.  Electrical conductivity and corresponding recovery efficiency of SiR-Fu/CNTs composites with different contents of CNTs

    SampleInitial electrical conductivity (S/cm)Electrical conductivity after
    1st reprocessing (S/cm)
    Recovery efficiency of
    electrical conductivity (%)
    SiR2.5 × 10−14
    SiR-Fu/5wt% CNTs2.0 × 10−31.6 × 10−377.2
    SiR-Fu/10wt% CNTs9.1 × 10−17.8 × 10−186.1
    SiR-Fu/20wt% CNTs5
    下载: 导出CSV
  • 加载中
图(13)表(5)
计量
  • PDF下载量:  202
  • 文章访问数:  1291
  • HTML全文浏览量:  582
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计