ISSN 1000-3304CN 11-1857/O6

基于动态硼酸酯键的水凝胶的模块化组装和智能形变

吴宝意 徐亚文 乐晓霞 简钰坤 路伟 张佳玮 陈涛

引用本文: 吴宝意, 徐亚文, 乐晓霞, 简钰坤, 路伟, 张佳玮, 陈涛. 基于动态硼酸酯键的水凝胶的模块化组装和智能形变[J]. 高分子学报, 2019, 50(5): 496-504. doi: 10.11777/j.issn1000-3304.2019.18281 shu
Citation:  Bao-yi Wu, Ya-wen Xu, Xiao-xia Le, Yu-kun Jian, Wei Lu, Jia-wei Zhang and Tao Chen. Smart Hydrogel Actuators Assembled via Dynamic Boronic Ester Bonds[J]. Acta Polymerica Sinica, 2019, 50(5): 496-504. doi: 10.11777/j.issn1000-3304.2019.18281 shu

基于动态硼酸酯键的水凝胶的模块化组装和智能形变

    通讯作者: 张佳玮, E-mail: zhangjiawei@nimte.ac.cn 陈涛, E-mail: tao.chen@nimte.ac.cn
  • 基金项目: 国家自然科学基金(基金号 51873223, 21774138, 51773215)、中国科学院前沿科学重点研究项目(项目号 QYZDB-SSWSLH036)和中国科学院青年创新促进会(项目号 2017337)资助

摘要: 将苯硼酸基团引入水凝胶网络中,以聚乙烯醇(PVA)为胶水,在碱性条件下通过水凝胶表面与PVA形成动态硼酸酯键,实现了含有苯硼酸基团的水凝胶的模块化组装. 通过显微红外表征,证明了在2块水凝胶界面形成了硼酸酯键,并且组装后的水凝胶黏合强度大于水凝胶本体. 随后引入聚阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(METAC)以及N-异丙基丙烯酰胺(NIPAm)实现了双层水凝胶的离子与温度双重刺激响应,并且通过胶水黏合位置的选择,实现了二维与三维复杂形变. 最后通过刺激响应的双重正向叠加制备了抓取力可调的软机械夹具.

English

    1. [1]

      Yao C, Liu Z, Yang C, Wang W, Ju X J, Xie R, Chu L Y. Adv Funct Mater, 2015, 25: 2980 − 2991 doi: 10.1002/adfm.201500420

    2. [2]

      Yao C, Liu Z, Yang C, Wang W, Ju X J, Xie R, Chu L Y. ACS Appl Mater Interfaces, 2016, 8: 21721 − 21730 doi: 10.1021/acsami.6b07713

    3. [3]

      Zeng Jinfeng(曾金凤), Yang Wendi(杨雯迪), Shi Dongjian(施冬健), Li Xiaojie(李小杰), Chen Mingqing(陈明清). Acta Polymerica Sinica(高分子学报), 2018, (10): 1297 − 1306 doi: 10.11777/j.issn1000-3304.2018.18048

    4. [4]

      Xiao S W, Zhang M Z, He X M, Huang L, Zhang Y X, Ren B P, Zhong M Q, Chang Y, Yang J T, Zheng J. ACS Appl Mater Interfaces, 2018, 10: 21642 − 21653 doi: 10.1021/acsami.8b06169

    5. [5]

      Xiao S W, Yang Y, Zhong M Q, Chen H, Zhang Y X, Yang J T. ACS Appl Mater Interfaces, 2017, 9: 20843 − 20851 doi: 10.1021/acsami.7b04417

    6. [6]

      Gong X L, Xiao Y Y, Pan M, Kang Y, Li B J, Zhang S. ACS Appl Mater Interfaces, 2016, 8: 27432 − 27437 doi: 10.1021/acsami.6b09605

    7. [7]

      Ma C X, Le X X, Tang X L, He J, Xiao P, Zheng J, Xiao H, Lu W, Zhang J W, Huang Y J, Chen T. Adv Funct Mater, 2016, 26: 8670 − 8676 doi: 10.1002/adfm.v26.47

    8. [8]

      Zhang Ying(张滢), Liu Liang(刘梁), Wang Tinghong(王庭宏), Tian Huayu(田华雨), Chen Xuesi(陈学思). Acta Polymerica Sinica(高分子学报), 2017, (7): 1150 − 1158

    9. [9]

      Yan X Z, Wang F, Zheng B, Huang F H. Chem Soc Rev, 2012, 41: 6042 − 6065 doi: 10.1039/c2cs35091b

    10. [10]

      Ionov L. Mater Today, 2014, 17: 494 − 503 doi: 10.1016/j.mattod.2014.07.002

    11. [11]

      Zheng J, Xiao P, Le X X, Lu W, Théato P, Ma C X, Du B Y, Zhang J W, Huang Y J, Chen T. J Mater Chem C, 2018, 6: 1320 − 1327 doi: 10.1039/C7TC04879C

    12. [12]

      Ma C X, Lu W, Yang X X, He J, Le X X, Wang L, Zhang J W, Serpe M J, Huang Y J, Chen T. Adv Funct Mater, 2018, 28: 1704568 − 1704575 doi: 10.1002/adfm.v28.7

    13. [13]

      Wang L, JianY K, Le X X, Lu W, Ma C X, Zhang J W, Huang Y J, Huang C F, Chen T. Chem Commun, 2018, 54: 1229 − 1232 doi: 10.1039/C7CC09456F

    14. [14]

      Yuk H, Lin S, Ma C, Takaffoli M, Fang N X, Zhao X. Nat Commun, 2017, 8: 14230 − 14242 doi: 10.1038/ncomms14230

    15. [15]

      Lee Y, Cha S H, Kim Y W, Choi D, Sun J Y. Nat Commun, 2018, 9: 1804 − 1812 doi: 10.1038/s41467-018-03954-x

    16. [16]

      Han D, Farino C, Yang C, Scott T, Browe D, Choi W, Freeman J W, Lee H. ACS Appl Mater Interfaces, 2018, 10: 17512 − 17518 doi: 10.1021/acsami.8b04250

    17. [17]

      Oh M S, Song Y S, Kim C, Kim J, You J B, Kim T S, Lee C S, Im S G. ACS Appl Mater Interfaces, 2016, 8: 8782 − 8788 doi: 10.1021/acsami.5b12704

    18. [18]

      Liu Y, Zhang K H, Ma J H, Vancso G J. ACS Appl Mater Interfaces, 2017, 9: 901 − 908 doi: 10.1021/acsami.6b13097

    19. [19]

      Ionov L. Adv Funct Mater, 2013, 23: 4555 − 4570 doi: 10.1002/adfm.v23.36

    20. [20]

      Kim S J, Kim M S, Kim S I, Spinks G M, Kim B C, Wallace G G. Chem Mater, 2006, 18: 5805 − 5809 doi: 10.1021/cm060988h

    21. [21]

      Lou R C, Wu J, Dinh N D, Chen C H. Adv Funct Mater, 2015, 25: 7272 − 7279 doi: 10.1002/adfm.v25.47

    22. [22]

      Asoh T, Matsusaki M, Kaneko T, Akashi M. Adv Mater, 2008, 20: 2080 − 2083 doi: 10.1002/(ISSN)1521-4095

    23. [23]

      Kim Y S, Liu M J, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Takata M, Aida T. Nat Commun, 2015, 14: 1002 − 1007

    24. [24]

      Liu M J, Ishida Y, Ebina Y, Sasaki T, Takara M, Aida T. Nat Mater, 2015, 517: 68 − 72

    25. [25]

      Cheng M J, Zhu G Q, Li L, Zhang S, Zhang D Q, Kuehne A J C, Shi F. Angew Chem Int Ed, 2018, 57: 14106 − 14110 doi: 10.1002/anie.201808294

    26. [26]

      Ju G N, Guo F L, Zhang Q, Kuehne A J C, Cui S X, Cheng M J, Shi F. Adv Mater, 2017, 29: 1702444 − 1702450 doi: 10.1002/adma.v29.37

    27. [27]

      Ju G N, Cheng M J, Guo F L, Zhang Q, Shi F. Angew Chem Int Ed, 2018, 130: 9101 − 9105 doi: 10.1002/ange.201803632

    28. [28]

      Zhao Q, Yang X X, Ma C X, Chen D, Bai H, Li T F, Yang W, Xie T. Mater Horiz, 2016, 3: 422 − 428 doi: 10.1039/C6MH00167J

    29. [29]

      Tamesue S, Yasuda K, Endo T. ACS Appl Mater Interfaces, 2018, 10: 29925 − 29932 doi: 10.1021/acsami.8b09136

    30. [30]

      Gladman A S, Matsumoto E A, Nuzzo R G, Mahadevan L, Lewis J A. Nat Mater, 2016, 15: 413 − 418 doi: 10.1038/nmat4544

    31. [31]

      Ge Q, Qi H J, Dunn M L. Appl Phys Lett, 2013, 103: 131901 − 13906 doi: 10.1063/1.4819837

    32. [32]

      Wang X J, Guo X G, Ye J L, Zheng N, Kogli P, Choi D, Zhang Y, Xie Z Q, Zhang Q H, Luan H W, Nan K, Kim B H, Xu Y M, Shan X W, Bai W.B, Sun R J, Wang Z Z, Jang H, Zhang F, Ma Y J, Xu Z, Feng X, Xie T, Huang Y H, Zhang Y H, Rogers J A. Adv Mater, 2018, 31(2): 1805615 – 1805624

    33. [33]

      Ma C X, Li T F, Zhao Q, Yang X X, Wu J J, Luo Y W, Xie T. Adv Mater, 2014, 26: 5665 − 5669 doi: 10.1002/adma.201402026

    34. [34]

      Cromwell O R, Chung J, Guan Z B. J Am Chem Soc, 2015, 137: 6492 − 6495 doi: 10.1021/jacs.5b03551

    35. [35]

      Hong S H, Kim S, Park J P, Shin M, Kim K, Ryu J H, Lee H. Biomacromolecules, 2018, 19: 2053 − 2061 doi: 10.1021/acs.biomac.8b00144

    36. [36]

      Brewer S H, Allen A M, Lappi S E, Chasse T L, Briggman K A, Gorman C B, Franzen S. Langmuir, 2004, 20: 5512 − 5520 doi: 10.1021/la035037m

    37. [37]

      Chen Y, Tang Z, Zhang X, Liu Y, Wu S, Guo B. ACS Appl Mater Interfaces, 2018, 10: 24224 − 24231 doi: 10.1021/acsami.8b09863

    1. [1]

      魏炜杜娟娟李颉刘阳阎明诸静胡祖明 . 沉淀聚合制备粒径可控的温度响应型蛋白纳米胶囊. 高分子学报, 2013, (3): 383-390. doi: 10.3724/SP.J.1105.2013.12294

    2. [2]

      魏炜杜娟娟阎明于俊荣陈蕾胡祖明 . 温度响应型HRP纳米胶囊用于酶的高效固定和回收. 高分子学报, 2013, (4): 542-548. doi: 10.3724/SP.J.1105.2013.12295

    3. [3]

      刘欣宇胡瑾郭建文王贵林高卫平 . 温度响应性高分子偶联干扰素-α有效提高抗肿瘤功效. 高分子学报, 2018, (1): 90-98. doi: 10.11777/j.issn1000-3304.2018.17195

    4. [4]

      刘佳威张强刘继广 . 具有温敏导电多重响应的智能磁性颗粒制备及性能. 高分子学报, 2019, 50(7): 695-701. doi: 10.11777/j.issn1000-3304.2018.18252

    5. [5]

      丁晓亚王宇李杲肖春生陈学思 . 基于亚胺硼酸盐和硼酸酯键的可注射自修复水凝胶及其多重响应性能研究. 高分子学报, 2019, 50(5): 505-515. doi: 10.11777/j.issn1000-3304.2019.19015

    6. [6]

      陈巧梅杨洋危岩吉岩 . 含可交换动态共价键的液晶聚合物驱动器. 高分子学报, 2019, 50(5): 451-468. doi: 10.11777/j.issn1000-3304.2019.19004

    7. [7]

      杨挺杜福胜李子臣 . 基于PVA-b-PEO-b-PVA和含苯硼酸PEO交联剂形成的葡萄糖响应性动态共价凝胶. 高分子学报, 2019, 50(5): 516-526. doi: 10.11777/j.issn1000-3304.2019.19017

    8. [8]

      杨挺邓鑫星杜福胜李子臣 . 基于含苯硼酸三嵌段共聚物的糖响应性水凝胶. 高分子学报, 2014, (11): 1553-1560. doi: 10.11777/j.issn1000-3304.2014.14201

    9. [9]

      张高奇查刘生梁伯润 . 在NaCl溶液中以海藻酸钠为致孔剂制备快速温度响应型多孔聚(N-异丙基丙烯酰胺)水凝胶. 高分子学报, 2009, (7): 633-637. doi: 10.3724/SP.J.1105.2009.00633

    10. [10]

      杨 军刘晓云阎 捷李 兰查刘生 . 基于互穿网络结构的pH/温度双重刺激响应性微凝胶的研究. 高分子学报, 2009, (7): 638-644. doi: 10.3724/SP.J.1105.2009.00638

    11. [11]

      郑云华刘根起程永清杨世文 . 聚乙烯醇磷酸酯水凝胶电刺激响应行为的研究. 高分子学报, 2009, (9): 922-928. doi: 10.3724/SP.J.1105.2009.00922

    12. [12]

      柴仕淦张金枝皮蒙唯杨婷婷袁建军程时远 . 阳离子化热响应微凝胶的合成及在二氧化硅矿化中的应用. 高分子学报, 2010, (2): 178-184. doi: 10.3724/SP.J.1105.2010.00178

    13. [13]

      屈小中杨振忠 . 苯甲酰亚胺动态化学键在构筑pH响应药物载体中的应用. 高分子学报, 2011, (10): 1118-1124. doi: 10.3724/SP.J.1105.2011.11181

    14. [14]

      叶丹锋申迎华杨振芳杜海燕刘旭光 . pH响应性阳离子微凝胶-纳米Pd催化剂的制备及性能. 高分子学报, 2014, (6): 815-821. doi: 10.3724/SP.J.1105.2014.13373

    15. [15]

      张静王晓工 . 温度敏感水凝胶包覆长周期光纤光栅传感器研究. 高分子学报, 2012, (3): 307-312. doi: 10.3724/SP.J.1105.2012.11199

    16. [16]

      李斌陈文广王晓工周其庠 . 聚丙烯表面接枝PNIPAAm膜Ⅱ.表面特性和温度响应性研究. 高分子学报, 2003, (1): 7-12.

    17. [17]

      代正伟赵书梅薛元 . PU/PNIPAM semi-IPN微孔膜温度响应性研究. 高分子学报, 2012, (5): 508-512. doi: 10.3724/SP.J.1105.2012.11418

    18. [18]

      王龙海洪春雁 . 响应性支化聚合物的合成、组装及其生物医药应用. 高分子学报, 2017, (2): 200-213. doi: 10.11777/j.issn1000-3304.2017.16305

    19. [19]

      潘怀忠阎雁唐莉吴志强李福绵 . 含吡咯烷酮基的衣康酸酯聚合物及其水凝胶的热响应性. 高分子学报, 1998, (4): 490-493.

    20. [20]

      黄铂扬林松柏张弦李云龙 . 一种快速响应电场敏感多孔水凝胶的合成及其性能研究. 高分子学报, 2010, (5): 594-600. doi: 10.3724/SP.J.1105.2010.09226

  • Figure 1.  Schematic illustration of the bilayer hydrogel actuator with ionic strength and thermal dual responsiveness

    Figure 1.  (a) Illustration showing the bending and stretching behavior of the bilayer hydrogel; (b) Cross section SEM image of the PAAm-co-PMETAC-co-PAAPBA bilayer hydrogel; (c) FTIR spectra of the bilayer hydrogel; (d1, d2) Digital photographs showing the binding behavior of different kinds of bilayer hydrogels; (e) Digital photographs showing the stretching behavior of PAAm-co-PMETAC-co-PAAPBA bilayer hydrogel

    Figure 2.  (a) Illustration showing the ionic strength and thermal actuating process of the bilayer hydrogel; (b) Ion actuating and recovering processes of bilayer hydrogels with different thickness ratios; (c) Reversibility study of the bilayer hydrogel with a thickness ratio of 0.5:1 when treated alternatively by NaOH (0.01 mol/L) and NaCl (0.1 mol/L) + NaOH (0.01 mol/L) solutions; (d) Thermal actuation of the bilayer hydrogel with different thickness ratios; (e) Ion and thermal actuation of the bilayer hydrogel with a thickness ratio of 0.5:1

    Figure 3.  (a) Illustration showing the forming process of an “arch bridge” shaped hydrogel by swelling and deswelling; Deformability measurement of “arch bridge” shaped hydrogels (b) with different thickness ratios in 0.01 mol/L NaOH and (c) with a thickness ratio of 0.5:1 but different NaCl concentrations; (d) Illustration showing the shape transformation from 2D architeture to 3D architeture and (e, f) the corresponding images.

    Figure 4.  (a) Various deformations derived from the varied binding position; (b) Illustration showing the ion and thermally actuating process of a grip-shaped hydrogel and the corresponding photographs of (c) an unloaded hydrogel and (d) the hydrogel grabbing a small fish

  • 电子支持信息-gfzxb20180281.pdf

  • 加载中
图(6)
计量
  • PDF下载量:  256
  • 文章访问数:  1883
  • HTML全文浏览量:  936
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计