ISSN 1000-3304CN 11-1857/O6

“一锅法”聚合诱导自组装制备嵌段共聚物纳米粒子

苏志鹏 谈梦婷 曹艳玲 石艳 付志峰

引用本文: 苏志鹏, 谈梦婷, 曹艳玲, 石艳, 付志峰. “一锅法”聚合诱导自组装制备嵌段共聚物纳米粒子[J]. 高分子学报, 2019, (8): 808-815. doi: 10.11777/j.issn1000-3304.2019.19026 shu
Citation:  Zhi-peng Su, Meng-ting Tan, Yan-ling Cao, Yan Shi and Zhi-feng Fu. One-pot Preparation of Block Copolymer Nanoparticles byPolymerization-induced Self-assembly[J]. Acta Polymerica Sinica, 2019, (8): 808-815. doi: 10.11777/j.issn1000-3304.2019.19026 shu

“一锅法”聚合诱导自组装制备嵌段共聚物纳米粒子

    通讯作者: 石艳, E-mail: shiyan@mail.buct.edu.cn
摘要: 采用“一锅法”合成了聚4-乙烯基吡啶-b-聚(4-乙烯基吡啶-r-苯乙烯) (P4VP-b-P(4VP-r-St))两亲性共聚物纳米粒子. 采用可逆加成-断裂链转移(RAFT)聚合制备了结构明确的P4VP三硫代碳酸酯(P4VP-TTC);以P4VP-TTC为大分子链转移剂在醇/水混合溶剂中进行St和4VP的RAFT分散共聚合反应,得到了球状、蠕虫状和囊泡状的共聚物胶束;考察了亲溶剂链段和疏溶剂链段的聚合度之比、P(4VP-r-St)嵌段中共聚单体4VP的用量、溶剂组成对嵌段共聚物纳米粒子形貌、尺寸及形貌发展过程的影响. 与相同条件下St的分散聚合相比,亲溶剂单体4VP和St的分散共聚能有效调控嵌段共聚物纳米粒子的形貌和尺寸,更易发展出囊泡胶束. 利用透射电子显微镜(TEM)、凝胶渗透色谱(GPC)、动态光散射(DLS)和核磁共振氢谱(1H-NMR)表征了共聚物的组成和纳米粒子结构.

English

    1. [1]

      Warren N J, Armes S P. J Am Chem Soc, 2014, 136(29): 10174 − 10185 doi: 10.1021/ja502843f

    2. [2]

      Canning S L, Smith G N, Armes S P. Macromolecules, 2016, 49(6): 1985 − 2001 doi: 10.1021/acs.macromol.5b02602

    3. [3]

      Cai W, Wan W, Hong C, Huang C, Pan C. Soft Matter, 2010, 6: 5554 − 5561 doi: 10.1039/c0sm00284d

    4. [4]

      Kang H, Song Z, Shen X, Zhang S, Li J, Zhang W. Polymer, 2015, 66: 8 − 15 doi: 10.1016/j.polymer.2015.04.009

    5. [5]

      Liu Z, Zhang G, Lu W, Huang Y, Zhang J, Chen T. Polym Chem, 2015, 6(34): 6129 − 6132 doi: 10.1039/C5PY00907C

    6. [6]

      Zhou J, Zhang W, Hong C, Pan C. Polym Chem, 2016, 7(19): 3259 − 3267 doi: 10.1039/C6PY00164E

    7. [7]

      Ladmiral V, Charlot A, Semsarilar M, Armes S P. Polym Chem, 2015, 6(10): 1805 − 1816 doi: 10.1039/C4PY01556H

    8. [8]

      Zhang W, Hong C, Pan C. Macromolecules, 2014, 47(5): 1664 − 1671 doi: 10.1021/ma402497y

    9. [9]

      He W, Sun X, Wan W, Pan C. Macromolecules, 2011, 44(9): 3358 − 3365 doi: 10.1021/ma2000674

    10. [10]

      Jones E R, Semsarilar M, Wyman P, Boerakker M, Armes S P. Polym Chem, 2016, 7(4): 851 − 859 doi: 10.1039/C5PY01795E

    11. [11]

      Zehm D, Ratcliffe L P D, Armes S P. Macromolecules, 2013, 46(1): 128 − 139 doi: 10.1021/ma301459y

    12. [12]

      Wan W, Sun X, Pan C. Macromol Rapid Commun, 2010, 31(4): 399 − 404 doi: 10.1002/marc.v31:4

    13. [13]

      Guo L, Jiang Y, Chen S, Qiu T, Li X. Macromolecules, 2014, 47(1): 165 − 174 doi: 10.1021/ma402167d

    14. [14]

      Song Z, He X, Gao C, Khan H, Shi P, Zhang W. Polym Chem, 2015, 6(36): 6563 − 6572 doi: 10.1039/C5PY01065A

    15. [15]

      Su Y, Xiao X, Li S, Dan M, Wang X, Zhang W. Polym Chem, 2014, 5(2): 578 − 587 doi: 10.1039/C3PY00995E

    16. [16]

      Qu Y, Wang S, Khan H, Gao C, Zhou H, Zhang W. Polym. Chem, 2016, 7(10): 1953 − 1962 doi: 10.1039/C5PY01917F

    17. [17]

      Shi P, Gao C, He X, Sun P, Zhang W. Macromolecules, 2015, 48(5): 1380 − 1389 doi: 10.1021/acs.macromol.5b00021

    18. [18]

      Liu H, Ding M, Ding Z, Gao C, Zhang W. Polym Chem, 2017, 8(20): 3203 − 3210 doi: 10.1039/C7PY00473G

    19. [19]

      Gao C, Wu J, Zhou H, Qu Y, Li B, Zhang W. Macromolecules, 2016, 49(12): 4490 − 4500 doi: 10.1021/acs.macromol.6b00771

    20. [20]

      Li Q, Gao C, Li S, Huo F, Zhang W. Polym Chem, 2014, 5(8): 2961 − 2972 doi: 10.1039/C3PY01699D

    21. [21]

      Huang C, Wang Y, Hong C, Pan C. Macromol Rapid Commun, 2011, 32(15): 1174 − 1179 doi: 10.1002/marc.v32.15

    22. [22]

      Shi P, Zhou H, Gao C, Zhang WQ, Wang S, Sun P, Zhang W. Polym Chem, 2015, 6(27): 4911 − 4920 doi: 10.1039/C5PY00697J

    23. [23]

      Figg C A, Carmean R N, Bentz K C, Mukherjee S, Savin A D, Sumerlin B S. Macromolecules, 2017, 50(3): 935 − 943 doi: 10.1021/acs.macromol.6b02754

    24. [24]

      Tan M, Shi Y, Fu Z, Yang W. Polym Chem, 2018, 9: 1082 − 1094 doi: 10.1039/C7PY01905J

    25. [25]

      Lai J T, Filla D, Shea R. Macromolecules, 2002, 35(18): 6754 − 6756 doi: 10.1021/ma020362m

    26. [26]

      Warren N J, Mykhaylyk O O, Mahmood D, Ryan A J, Armes S P. J Am Chem Soc, 2014, 136(3): 1023 − 1033 doi: 10.1021/ja410593n

    27. [27]

      Turner Alfrey J R, Price C C. J Polym Sci, Part A: Polym Chem, 1996, 34(2): 101 − 106

    28. [28]

      Kuchanov S I, Zharnikov T V. Eur Phys J E, 2002, 7: 183 − 202

    29. [29]

      Canning S L, Cunningham V J, Ratcliffe L P D, Armes S P. Polym Chem, 2017, 8: 4811 − 4821 doi: 10.1039/C7PY01161J

    30. [30]

      Zhang X, Rieger J, Charleux B. Polym Chem-UK, 2012, 3(6): 152 − 159

    31. [31]

      Liu H, Gao C, Ding Z, Zhang W. Macromol Chem Phys, 2016, 217(3): 467 − 476 doi: 10.1002/macp.v217.3

    32. [32]

      Huo F, Wang X, Zhang Y, Zhang X, Xu J, Zhang W. Macromol Chem Phys, 2013, 214(8): 902 − 911 doi: 10.1002/macp.v214.8

    1. [1]

      郑晋文王晓安泽胜 . RAFT聚合诱导自组装制备不同嵌段序列氧化响应性聚合物囊泡. 高分子学报, 2019, 50(11): 1167-1176. doi: 10.11777/j.issn1000-3304.2019.19070

    2. [2]

      陈圣典胡方振盛瑞隆曹阿民 . 可逆加成-断裂链转移方法合成两亲液晶嵌段功能大分子及其自组装的研究. 高分子学报, 2013, (1): 102-111. doi: 10.3724/SP.J.1105.2013.12156

    3. [3]

      万贤徐军郭宝华谢续明 . 分散聚合与水热处理相结合制备单分散聚苯乙烯微球的研究. 高分子学报, 2013, (1): 81-87. doi: 10.3724/SP.J.1105.2013.12150

    4. [4]

      王腾宋然刘念庹新林 . 一种含氟聚氨酯的聚合诱导自组装行为研究. 高分子学报, 2015, (11): 1328-1335. doi: 10.11777/j.issn1000-3304.2015.15080

    5. [5]

      叶齐全郑明心陈曦李丹田卫国张军袁金颖 . 聚合原位合成含螺吡喃组装体及其光响应研究. 高分子学报, 2019, 50(4): 344-351. doi: 10.11777/j.issn1000-3304.2018.18256

    6. [6]

      黄振舒鑫冉千平刘加平 . 阳离子聚丙烯酰胺水分散液的制备及表征. 高分子学报, 2013, (8): 1013-1019. doi: 10.3724/SP.J.1105.2013.12329

    7. [7]

      曹乐刘莲英杨万泰 . 光敏性单分散核-壳树莓状PSt/PAM微球制备. 高分子学报, 2012, (2): 117-124. doi: 10.3724/SP.J.1105.2012.11098

    8. [8]

      方艳曹赟张爱萍翟光群孔立智张东亮 . 苯乙烯与N-取代马来酰亚胺的可逆加成-断裂链转移交替共聚合. 高分子学报, 2010, (1): 51-58. doi: 10.3724/SP.J.1105.2010.00051

    9. [9]

      朱明强魏柳荷周鹏杜福胜李子臣李福绵 . 马来酸酐和苯乙烯的可逆加成-断链链转移聚合及新型嵌段共聚物的合成. 高分子学报, 2001, (3): 415-417.

    10. [10]

      辛秀强王延梅潘才元 . 甲基丙烯酸N,N-二甲氨基乙酯/丙烯酸N,N-二甲氨基乙酯的可逆加成断裂链转移聚合研究. 高分子学报, 2005, (3): 398-402.

    11. [11]

      李卫丁小斌林晓琴张文传邓金根彭宇行李蓓陈新滋 . 分散聚合制备聚苯乙烯/聚氧乙烯两亲聚合物微球. 高分子学报, 2001, (1): 62-67.

    12. [12]

      李志海潘俊星张进军孙敏娜郭宇琦岑建勇武海顺 . 掩膜诱导的光敏性三组分聚合物混合体系的自组装. 高分子学报, 2017, (5): 768-775. doi: 10.11777/j.issn1000-3304.2017.16270

    13. [13]

      马世营汪蓉 . 嵌段共聚物调控纳米粒子自组装的研究进展. 高分子学报, 2016, (8): 1030-1041. doi: 10.11777/j.issn1000-3304.2016.16082

    14. [14]

      沈忠连虹艳周艺峰聂王焰 . 硫酸铵水溶液中分散聚合法制备两性共聚物P(AM-co-AA-co-DAC-co-DMC). 高分子学报, 2010, (5): 530-535. doi: 10.3724/SP.J.1105.2010.09155

    15. [15]

      欧玉春杨锋庄严漆宗能 . 在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究. 高分子学报, 1997, (2): 199-205.

    16. [16]

      叶强张新峰葛学武张志成 . 极性介质中醋酸乙烯酯的辐照引发分散聚合. 高分子学报, 2003, (5): 718-723.

    17. [17]

      汪威刘莲英黄振华杨万泰 . 紫外光引发丙烯酰胺分散聚合研究. 高分子学报, 2005, (3): 320-326.

    18. [18]

      邓字巍徐祖顺易昌凤 . 微波辐射分散聚合制备单分散聚苯乙烯-g-聚氧乙烯微球. 高分子学报, 2006, (1): 185-188.

    19. [19]

      李青霄王铮尹玉华蒋润李宝会 . 聚合物接枝纳米粒子两亲性分子在溶液中自组装行为的模拟研究. 高分子学报, 2018, 0(10): 1351-1358. doi: 10.11777/j.issn1000-3304.2018.18072

    20. [20]

      向略朱雯隆美林张科陈永明 . 三嵌段刷状共聚物的合成及溶液组装制备多孔纳米粒子. 高分子学报, 2018, 0(7): 917-929. doi: 10.11777/j.issn1000-3304.2018.18043

  • Figure 1.  1H-NMR spectrum of P4VP19-b-(P4VP6-r-PSt240)

    Figure 2.  TEM images of the diblock copolymer nano-objects obtained under different molar ratios of residual 4VP and St mediated by P4VP19-TTC: (a − d) n(4VP):n(St) = 6:250, (e − h) n(4VP):n(St) = 6:200. Polymerization conditions: ethanol/water (55.64 g, 80/20, W/W); 19.6 wt% solid content; 70 °C. The 4VP monomer conversion was 75.2% with the molar ratio of n(4VP):n(DDMAT):n(AIBN) = 25:1:0.2

    Figure 3.  TEM images of the diblock copolymer nano-objects obtained with different molar ratios of n(P4VP):n(St) (a) 1:200, (b) 1:250, (c) 1:300, (d) 1:250. Polymerization conditions: ethanol/water (55.64 g, 80/20, W/W); 19.6 wt%, solid content; 70 °C. Note: The 4VP monomer conversion was 97.0% (a − c) and 75.2% (d) with the molar ratio of n(4VP): n(DDMAT):n(AIBN) = 25:1:0.2, respectively

    Figure 4.  TEM images of the morphology transition of P4VP19-b-P(4VP-r-St) diblock copolymer obtained under different molar ratios of n(4VP):n(St) (a − c) 6:150, (d) 6:120, (e − h) 16:250, (i − l) 26:250. Polymerization conditions: St (12.35 g,9.5 × 10−2 mol), ethanol/water mixture (55.64 g, 80/20, W/W); 70 °C

    Figure 5.  TEM images of PAA-b-PSt nano-objects prepared via dispersion RAFT polymerization in ethanol or ethanol/water with different weight ratios: (a) 70/30, (b) 80/20, (c) 90/10, (d) 100/0. n(4VP19-TTC):n(4VP):n(ST):n(AIBN) = 1:6:250:0.2; St (12.35 g,9.5 × 10−2 mol); 19.6 wt% solid content; 70 °C

    Table 1.  The experimental details and result summary of P4VP-TTC, P4VP-b-PSt and P4VP-b-(P4VP-r-PSt)

    Polymer Time (h) Conv. a (%) Mn (g·mol−1) PDI e
    Mn,th b Mn,GPC c Mn,NMR d
    P4VP19-TTC 12.5 75.2 2300 3700 2400 1.08
    P4VP25-TTC 24 97.0 2900 4000 3000 1.08
    P4VP25-b-PSt190 21 95.2 2.26 × 104 1.38 × 104 2.13 × 104 1.32
    P4VP25-b-PSt245 23 97.9 2.84 × 104 1.72 × 104 2.77 × 104 1.23
    P4VP25-b-PSt286 21 95.3 3.27 × 104 2.69 × 104 3.12 × 104 1.12
    P4VP19-b-P(4VP6-r-St180) 15 74.8 2.17 × 104 1.83 × 104 2.23 × 104 1.10
    P4VP19-b-P(4VP6-r-St240) 22 97.6 2.79 × 104 2.29 × 104 2.67 × 104 1.11
    a The St/4VP conversion calculated by gravimetric analysis; b Mn,th(P4VP-TTC) = × Conv.4VP + MRAFT, Mn,th(P4VP-b-PSt or P4VP-b-P(4VP-r-St)) = n(St) × MSt/n(RAFT) × Conv.St + MP4VP25-TTC; c The Mn,GPC determined by GPC analysis; d The Mn,NMR determined by 1H-NMR analysis; e The PDI determined by GPC analysis
    下载: 导出CSV

    Table 2.  The experimental details and results summary of P4VP-b-PSt and P4VP-b-P(4VP-r-St) in ethanol/water (80/20, W/W) mixture a

    Polymer Time
    (h)
    n(St):n(4VP):
    n(P4VP-TTC):n(AIBN)
    Conv.
    (%)
    Morphology DTEM
    (nm)
    DDLS, nm (PDI)
    P4VP25-b-PSt190 21 200:0:1:0.2 95.2 Spheres 38 115(0.091)
    P4VP25-b-PSt245 23 250:0:1:0.2 97.9 Spheres/Vesicles 42/93 143(0.139)
    P4VP25-b-PSt286 21 300:0:1:0.2 95.3 Vesicles 239 222(0.189)
    P4VP19-b-P(4VP6-r-St240) 22 250:6:1:0.2 97.6 Vesicles 205 209(0.139)
    P4VP19-b-P(4VP6-r-St192) 20.5 200:6:1:0.2 96.1 Vesicles 189 207(0.159)
    a The dispersion RAFT polymerization of St mediated by P4VP-TTC was carried out in ethanol/water (80/20, W/W) mixture under different molar radios of St/4VP/P4VP-TTC at 70 °C.
    下载: 导出CSV

    Table 3.  The final morphology of nano-objects obtained under different molar ratios of 4VP/St a

    Experiment n(4VP):n(St) Time (h) Conv. (%) Morphology Size (nm) DDLS, nm (PDI)
    1 6:250 22 97.6 Vesicles 205 209(0.139)
    2 16:250 24 99.0 Vesicles 226 221(0.284)
    3 26:250 24 86.0 Vesicles 242 334(0.265)
    4 6:150 33.5 99.0 Vesicles 177 200(0.126)
    5 6:120 27.5 96.0 Spheres 30 67(0.143)
    a The dispersion RAFT copolymerization of 4VP and St mediated by P4VP19-TTC was carried out in ethanol/water (80/20, W/W) mixture under different molar ratios of 4VP/St.
    下载: 导出CSV

    Table 4.  The final morphology of copolymer nano-objects obtained in the medium with different ratios of water/ethanol a

    Polymer Ethanol/water Time (h) Conv. (%) Morphology Size (nm) DDLS,nm (PDI)
    P4VP19-b-P(4VP6-r-St102) 100/0 36.5 40.7 Vesicles 1500
    P4VP19-b-P(4VP6-r-St234) 90/10 33.5 93.5 Vesicles 385 441 (0.146)
    P4VP19-b-P(4VP6-r-St244) 80/20 22 97.6 Vesicles 205 209 (0.139)
    P4VP19-b-P(4VP6-r-St228) 70/30 24 91.2 Vesicles 178 197 (0.124)
    a Molar ratio of n( P4VP19-TTC):n(4VP):n(St):n(AIBN) = 1:6:250:0.2; St (12.35 g,9.5 × 10−2 mol); 19.6 wt% solid content; 70 °C
    下载: 导出CSV
  • 加载中
图(6)表(4)
计量
  • PDF下载量:  63
  • 文章访问数:  1177
  • HTML全文浏览量:  551
  • 引证文献数: 0
文章相关
  • 通讯作者:  石艳, shiyan@mail.buct.edu.cn
  • 收稿日期:  2019-01-31
  • 修稿日期:  2019-03-11
  • 网络出版日期:  2019-04-19
  • 刊出日期:  2019-08-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计