ISSN 1000-3304CN 11-1857/O6

高分子囊泡渗透性与微结构协同调控

姚陈志 汪枭睿 胡进明 刘世勇

引用本文: 姚陈志, 汪枭睿, 胡进明, 刘世勇. 高分子囊泡渗透性与微结构协同调控[J]. 高分子学报, 2019, 50(6): 553-566. doi: 10.11777/j.issn1000-3304.2019.19031 shu
Citation1:  Chen-zhi Yao, Xiao-rui Wang, Jin-ming Hu and Shi-yong Liu. Cooperative Modulation of Bilayer Permeability and Microstructures of Polymersomes[J]. Acta Polymerica Sinica, 2019, 50(6): 553-566. doi: 10.11777/j.issn1000-3304.2019.19031 shu

高分子囊泡渗透性与微结构协同调控

    作者简介: 刘世勇,男,1972年生. 中国科学技术大学高分子科学与工程系教授. 1993年、1996年分别获得武汉大学环境化学和高分子化学与物理专业学士、硕士学位. 2000年获复旦大学高分子科学系博士学位,其后分别在英国Sussex University和美国University of Delaware从事博士后研究. 2003年12月至今在中国科学技术大学工作. 曾获中国科学院百人计划(2003年)、国家杰出青年科学基金(2004年)和教育部“长江学者奖励计划”特聘教授 (2009年)等项目资助. 现担任美国化学会Chem. Mater.期刊和Chinese J. Polym. Sci.期刊副主编. 研究领域:针对单分子光刻胶,纳米/生物界面蛋白质冠调控,功能性蛋白质药物高效递送等应用目标,创新发展功能材料合成化学和超分子聚集体微结构调控策略;
    通讯作者: 刘世勇, E-mail: sliu@ustc.edu.cn
  • 基金项目: 国家自然科学基金(基金号 51690150, 51690154, 21674103, 51722307, 51673179)和国家重点研发计划“政府间国际科技创新合作”重点专项(项目号 2016YFE0129700)资助项目

摘要: 高分子囊泡通常由疏水的双层膜包覆亲水的空腔构成. 这种独特的形貌使得高分子囊泡被广泛地用于构筑人工细胞(器)、纳米反应器和药物递送载体. 为了实现这些功能应用,调控高分子囊泡双层膜的渗透性并保持囊泡结构的稳定性极为重要. 然而传统调控囊泡渗透性的方法步骤相对繁琐、常导致组装体的解离. 本文总结了我们近期在协同调控高分子囊泡稳定性和渗透性方面的研究进展. 首先,提出了“无痕”交联的策略并实现了高分子囊泡渗透性和稳定性的协同增强. 其次,利用多重协同非共价键相互作用,实现了高分子囊泡渗透性的可逆调节. 这些新型的调控策略解决了高分子囊泡结构稳定性和渗透性的矛盾并展现了良好的应用前景.

English

    1. [1]

      Hill J P, Jin W S, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science, 2004, 304(5676): 1481 − 1483 doi: 10.1126/science.1097789

    2. [2]

      Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547): 1684 − 1688 doi: 10.1126/science.1063187

    3. [3]

      Marguet M, Bonduelle C, Lecommandoux S. Chem Soc Rev, 2013, 42(2): 512 − 529 doi: 10.1039/C2CS35312A

    4. [4]

      Checot F, Lecommandoux S, Gnanou Y, Klok H A. Angew Chem Int Ed, 2002, 41(8): 1339 − 1343 doi: 10.1002/1521-3773(20020415)41:8<>1.0.CO;2-M

    5. [5]

      Vanhest J C M, Delnoye D A P, Baars M W P L, Vangenderen M H P, Meijer E W. Science, 1995, 268(5217): 1592 − 1595 doi: 10.1126/science.268.5217.1592

    6. [6]

      Du J Z, O’Reilly R K. Chem Soc Rev, 2011, 40(5): 2402 − 2416 doi: 10.1039/c0cs00216j

    7. [7]

      Zhu J H, Zhang S Y, Zhang K, Wang X J, Mays J W, Wooley K L, Pochan D J. Nat Commun, 2013, 4: 2297 doi: 10.1038/ncomms3297

    8. [8]

      Li Yaming(李亚明), Liu Shiyong(刘世勇). Acta Polymerica Sinica(高分子学报), 2017, (7): 1178 − 1190

    9. [9]

      Bai Y, Xie F Y, Tian W. Chinese J Polym Sci, 2018, 36(3): 406 − 416 doi: 10.1007/s10118-018-2086-y

    10. [10]

      Chen S L, Shi P F, Zhang W Q. Chinese J Polym Sci, 2017, 35(4): 455 − 479 doi: 10.1007/s10118-017-1907-8

    11. [11]

      Feng X R, Ding J X, Gref R, Chen X S. Chinese J Polym Sci, 2017, 35(6): 693 − 699 doi: 10.1007/s10118-017-1932-7

    12. [12]

      Gan Y A, Wang Z D, Lu Z X, Shi Y, Tan H Y, Yan C F. Chinese J Polym Sci, 2018, 36(6): 728 − 735 doi: 10.1007/s10118-018-2066-2

    13. [13]

      Jing X W, Huang Z Y, Lu H S, Wang B G. Chinese J Polym Sci, 2018, 36(1): 18 − 24 doi: 10.1007/s10118-018-2008-z

    14. [14]

      Li X X, Huo X, Han H J, Lin S L. Chinese J Polym Sci, 2017, 35(11): 1363 − 1372 doi: 10.1007/s10118-017-1963-0

    15. [15]

      Liu D, Wang Y Y, Sun Y C, Han Y Y, Cui J, Jiang W. Chinese J Polym Sci, 2018, 36(7): 888 − 896 doi: 10.1007/s10118-018-2106-y

    16. [16]

      Lu B B, Wei L L, Meng G H, Hou J, Liu Z Y, Guo X H. Chinese J Polym Sci, 2017, 35(8): 924 − 938 doi: 10.1007/s10118-017-1947-0

    17. [17]

      Lu X J, Yang X Y, Meng Y, Li S Z. Chinese J Polym Sci, 2017, 35(4): 534 − 546 doi: 10.1007/s10118-017-1916-7

    18. [18]

      Lyu X L, Pan H B, Shen Z H, Fan X H. Chinese J Polym Sci, 2018, 36(7): 811 − 821 doi: 10.1007/s10118-018-2115-x

    19. [19]

      Meng F D, Ni Y X, Ji S F, Fu X H, Wei Y H, Sun J, Li Z B. Chinese J Polym Sci, 2017, 35(10): 1243 − 1252 doi: 10.1007/s10118-017-1959-9

    20. [20]

      Xu M M, Liu R J, Yan Q. Chinese J Polym Sci, 2018, 36(3): 347 − 365 doi: 10.1007/s10118-018-2080-4

    21. [21]

      Xu Y L, Qu A T, Ma R J, Li A, Zhang Z K, Shang Z Q, Zhang Y F, Bu L X, An Y L. Chinese J Polym Sci, 2018, 36(11): 1262 − 1268 doi: 10.1007/s10118-018-2149-0

    22. [22]

      Zhang W M, Zhang J, Qiao Z, Yin J. Chinese J Polym Sci, 2018, 36(3): 273 − 287 doi: 10.1007/s10118-018-2035-9

    23. [23]

      Zheng C X, Zhao Y, Liu Y. Chinese J Polym Sci, 2018, 36(3): 322 − 346 doi: 10.1007/s10118-018-2078-y

    24. [24]

      Wang X R, Liu G H, Hu J M, Zhang G Y, Liu S Y. Angew Chem Int Ed, 2014, 53(12): 3138 − 3142 doi: 10.1002/anie.201310589

    25. [25]

      Discher D E, Ortiz V, Srinivas G, Klein M L, Kim Y, David C A, Cai S S, Photos P, Ahmed F. Prog Polym Sci, 2007, 32(8-9): 838 − 857 doi: 10.1016/j.progpolymsci.2007.05.011

    26. [26]

      Meng F H, Zhong Z Y, Feijen J. Biomacromolecules, 2009, 10(2): 197 − 209 doi: 10.1021/bm801127d

    27. [27]

      Wang F Y K, Xiao J G, Chen S, Sun H, Yang B, Jiang J H, Zhou X, Du J Z. Adv Mater, 2018, 30(17): 1705674 doi: 10.1002/adma.v30.17

    28. [28]

      Xiao Y F, Sung H, Du J Z. J Am Chem Soc, 2017, 139(22): 7640 − 7647 doi: 10.1021/jacs.7b03219

    29. [29]

      Wilson D A, Nolte R J M, van Hest J C M. Nat Chem, 2012, 4(4): 268 − 274 doi: 10.1038/nchem.1281

    30. [30]

      Vriezema D M, Garcia P M L, Oltra N S, Hatzakis N S, Kuiper S M, Nolte R J M, Rowan A E, van Hest J C M. Angew Chem Int Ed, 2007, 46(39): 7378 − 7382 doi: 10.1002/(ISSN)1521-3773

    31. [31]

      Wang X R, Hu J M, Liu G H, Tian J, Wang H J, Gong M, Liu S Y. J Am Chem Soc, 2015, 137(48): 15262 − 15275 doi: 10.1021/jacs.5b10127

    32. [32]

      Yao C, Wang X, Liu G, Hu J, Liu S. Macromolecules, 2016, 49(21): 8282 − 8295 doi: 10.1021/acs.macromol.6b01374

    33. [33]

      Zhu K, Liu G, Zhang G, Hu J, Liu S. Macromolecules, 2018, 51(21): 8530 − 8538 doi: 10.1021/acs.macromol.8b01653

    34. [34]

      Sun Z, Liu G, Hu J, Liu S. Biomacromolecules, 2018, 19(6): 2071 − 2081 doi: 10.1021/acs.biomac.8b00253

    35. [35]

      Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Acc Chem Res, 2011, 44(10): 1039 − 1049 doi: 10.1021/ar200036k

    36. [36]

      Bian B, Zhang Y Y, Dong Y C, Wu F, Wang C, Wang S, Xu Y, Liu D S. Sci China Chem, 2018, 61(12): 1568 − 1571 doi: 10.1007/s11426-018-9309-5

    37. [37]

      Wu S X, Li J, Liang H, Wang L P, Chen X, Jin G X, Xu X P, Yang H H. Sci China Chem, 2017, 60(5): 628 − 634 doi: 10.1007/s11426-016-0351-5

    38. [38]

      Xiao J G, Hu Y, Du J Z. Sci China Chem, 2018, 61(5): 569 − 575 doi: 10.1007/s11426-017-9209-3

    39. [39]

      Yang S, Luan Z L, Gao C, Yu J J, Qu D H. Sci China Chem, 2018, 61(3): 306 − 310 doi: 10.1007/s11426-017-9104-x

    40. [40]

      Zhang Y Y, Li M, Li Z H, Li Q, Aldalbahi A, Shi J Y, Wang L H, Fan C H, Zuo X L. Sci China Chem, 2017, 60(11): 1474 − 1480 doi: 10.1007/s11426-017-9036-0

    41. [41]

      Zhou Y B, Liu H X, Zhao N, Wang Z M, Michael M Z, Xie N, Tang B Z, Tang Y H. Sci China Chem, 2018, 61(8): 892 − 897 doi: 10.1007/s11426-018-9287-x

    42. [42]

      Discher D E, Eisenberg A. Science, 2002, 297(5583): 967 − 973 doi: 10.1126/science.1074972

    43. [43]

      Broz P, Driamov S, Ziegler J, Ben-Haim N, Marsch S, Meier W, Hunziker P. Nano Lett, 2006, 6(10): 2349 − 2353 doi: 10.1021/nl0619305

    44. [44]

      Kim K T, Cornelissen J J L M, Nolte R J M, van Hest J C M. Adv Mater, 2009, 21(27): 2787 − 2791 doi: 10.1002/adma.200900300

    45. [45]

      Amstad E, Kim S H, Weitz D A. Angew Chem Int Ed, 2012, 51(50): 12499 − 12503 doi: 10.1002/anie.201206531

    46. [46]

      Hu J M, Zhang G Q, Liu S Y. Chem Soc Rev, 2012, 41(18): 5933 − 5949 doi: 10.1039/c2cs35103j

    47. [47]

      Yan Q, Wang J B, Yin Y W, Yuan J Y. Angew Chem Int Ed, 2013, 52(19): 5070 − 5073 doi: 10.1002/anie.201300397

    48. [48]

      Koide A, Kishimura A, Osada K, Jang W D, Yamasaki Y, Kataoka K. J Am Chem Soc, 2006, 128(18): 5988 − 5989 doi: 10.1021/ja057993r

    49. [49]

      Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N. J Am Chem Soc, 2013, 135(24): 9204 − 9212 doi: 10.1021/ja404175x

    50. [50]

      Chambon P, Blanazs A, Battaglia G, Armes S P. Langmuir, 2012, 28(2): 1196 − 1205 doi: 10.1021/la204539c

    51. [51]

      Read E S, Armes S P. Chem Commun, 2007, 43(29): 3021 − 3035

    52. [52]

      Habault D, Zhang H J, Zhao Y. Chem Soc Rev, 2013, 42(17): 7244 − 7256 doi: 10.1039/c3cs35489j

    53. [53]

      Zhu K, Deng Z, Liu G, Hu J, Liu S. Macromolecules, 2017, 50(3): 1113 − 1125 doi: 10.1021/acs.macromol.6b02162

    54. [54]

      Deng H, Zhong Y, Du M, Liu Q, Fan Z, Dai F, Zhang X. Theranostics, 2014, 4(9): 904 − 918 doi: 10.7150/thno.9448

    55. [55]

      He J, Huang X, Li Y C, Liu Y, Babu T, Aronova M A, Wang S, Lu Z, Chen X, Nie Z. J Am Chem Soc, 2013, 135(21): 7974 − 7984 doi: 10.1021/ja402015s

    56. [56]

      Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G, Leapman R D, Nie Z, Chen X. Angew Chem Int Ed, 2013, 52(52): 13958 − 13964 doi: 10.1002/anie.201308986

    57. [57]

      Wang C, Zhang G Y, Liu G H, Hu J M, Liu S Y. J Control Release, 2017: 259149 − 159

    58. [58]

      Marguet M, Sandre O, Lecommandoux S. Langmuir, 2012, 28(4): 2035 − 2043 doi: 10.1021/la204018w

    59. [59]

      Xu W, Ledin P A, Iatridi Z, Tsitsilianis C, Tsukruk V V. Angew Chem Int Ed, 2016, 55(16): 4908 − 4913 doi: 10.1002/anie.201600383

    60. [60]

      Li Y M, Liu G H, Wang X R, Hu J M, Liu S Y. Angew Chem Int Ed, 2016, 55(5): 1760 − 1764 doi: 10.1002/anie.201509401

    61. [61]

      Ding Y, Kang Y T, Zhang X. Chem Commun, 2015, 51(6): 996 − 1003 doi: 10.1039/C4CC05878J

    62. [62]

      Hotamisligil G S. Nature, 2006, 444(7121): 860 − 867 doi: 10.1038/nature05485

    63. [63]

      Circu M L, Aw T Y. Free Radical Biol Med, 2010, 48(6): 749 − 762 doi: 10.1016/j.freeradbiomed.2009.12.022

    64. [64]

      Deng Z, Qian Y, Yu Y, Liu G, Hu J, Zhang G, Liu S. J Am Chem Soc, 2016, 138(33): 10452 − 10466 doi: 10.1021/jacs.6b04115

    65. [65]

      Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y. J Control Release, 2011, 152(1): 2 − 12 doi: 10.1016/j.jconrel.2011.01.030

    66. [66]

      Deng Z Y, Yuan S, Xu R X, Liang H J, Liu S Y. Angew Chem Int Ed, 2018, 57(29): 8896 − 8900 doi: 10.1002/anie.201802909

    67. [67]

      Che H L, van Hest J C M. J Mater Chem, 2016, 4(27): 4632 − 4647 doi: 10.1039/C6TB01163B

    68. [68]

      Che H L, Cao S P, van Hest J C M. J Am Chem Soc, 2018, 140(16): 5356 − 5359 doi: 10.1021/jacs.8b02387

    69. [69]

      Yan Q, Zhou R, Fu C K, Zhang H J, Yin Y W, Yuan J Y. Angew Chem Int Ed, 2011, 50(21): 4923 − 4927 doi: 10.1002/anie.v50.21

    70. [70]

      Feng A C, Zhan C B, Yan Q, Liu B W, Yuan J Y. Chem Commun, 2014, 50(64): 8958 − 8961 doi: 10.1039/C4CC03156C

    71. [71]

      Hu X L, Zhai S D, Liu G H, Xing D, Liang H J, Liu S Y. Adv Mater, 2018, 30(21): 1706307 doi: 10.1002/adma.v30.21

    72. [72]

      Liu G H, Shi G H, Sheng H Y, Jiang Y Y, Liang H J, Liu S Y. Angew Chem Int Ed, 2017, 56(30): 8686 − 8691 doi: 10.1002/anie.v56.30

    73. [73]

      Liu G H, Zhang G F, Hu J M, Wang X R, Zhu M Q, Liu S Y. J Am Chem Soc, 2015, 137(36): 11645 − 11655 doi: 10.1021/jacs.5b05060

    74. [74]

      Hu X L, Liu G H, Li Y, Wang X R, Liu S Y. J Am Chem Soc, 2015, 137(1): 362 − 368 doi: 10.1021/ja5105848

    75. [75]

      Liu G H, Wang X R, Hu J M, Zhang G Y, Liu S Y. J Am Chem Soc, 2014, 136(20): 7492 − 7497 doi: 10.1021/ja5030832

    1. [1]

      刘慧慧陈秋霞赵趱王力彦 . 一种卤键高分子多层膜的层层组装及其稳定性的提高. 高分子学报, 2011, (9): 1092-1097. doi: 10.3724/SP.J.1105.2011.11127

    2. [2]

      方维娜樊春海柳华杰 . pH对DNA折纸纳米结构折叠与溶液稳定性的影响. 高分子学报, 2017, (12): 1993-2000. doi: 10.11777/j.issn1000-3304.2017.17064

    3. [3]

      李勃天江一明王吉帅张红金青君阚成友 . 新型可聚合蒽醌染料单体及其共聚物乳液的制备及性能. 高分子学报, 2013, (11): 1445-1452. doi: 10.3724/SP.J.1105.2013.13099

    4. [4]

      严庆徐文英Bengt Ranby . 光交联聚乙烯材料的光稳定性研. 高分子学报, 1990, (5): 559-563.

    5. [5]

      龚淑玲胡才仲王巍孟令芝陈远荫 . 杯芳烃交联聚硅氧烷热稳定性能研究. 高分子学报, 2006, (1): 180-184.

    6. [6]

      冯知明刘汉范 . 高分子膦-钯络合催化剂的氢化催化活性和稳定性的考察. 高分子学报, 1982, (4): 260-265.

    7. [7]

      王清正师彤谢择民孙羡王金亭李光亮 . 硅氮聚合物交联剂交联的室温硫化硅橡胶的热稳定性. 高分子学报, 1994, (5): 573-577.

    8. [8]

      林梅钦辛见李明远董朝霞吴肇亮 . 低浓度部分水解聚丙烯酰胺/柠檬酸铝交联体系剪切稳定性研究. 高分子学报, 2008, (1): 8-12. doi: 10.3724/SP.J.1105.2008.00008

    9. [9]

      刘晓霞江明 . 高分子囊泡和空心球的制备和几个研究亮点. 高分子学报, 2011, (9): 1007-1019. doi: 10.3724/SP.J.1105.2011.11169

    10. [10]

      何祚云胡兴洲潘江庆 . 聚氯乙烯结构缺陷和热不稳定性之间关系的研究——Ⅰ.在单体不饱和蒸汽压下聚氯乙烯的合成及其热稳定性与分子量之间的关系. 高分子学报, 1992, (2): 246-250.

    11. [11]

      胡亚东徐佩罗霄左新钢陈放丁运生 . P[MMA-IL]修饰石墨烯协同调控PVDF复合物结晶与介电行为. 高分子学报, 2017, (5): 776-784. doi: 10.11777/j.issn1000-3304.2017.16231

    12. [12]

      邱琨宋义虎朱肖楠郑强 . 部分水解聚甲基丙烯酸甲酯/氢氧化钙复合物对硬质聚氯乙烯热稳定性与透明性及塑化行为的影响. 高分子学报, 2013, (4): 556-562. doi: 10.3724/SP.J.1105.2013.12317

    13. [13]

      赛霆冉诗雅郭正虹方征平 . 一种镧基金属有机框架的制备及其对聚碳酸酯火安全性和热稳定性的影响. 高分子学报, 2019, 50(12): 1338-1347. doi: 10.11777/j.issn1000-3304.2019.19108

    14. [14]

      魏庆云 . 环氧树脂热稳定性的初步研究. 高分子学报, 1964, 6(3): 244-247.

    15. [15]

      蒋舰郑知敏彭文庆徐彩虹谢择民 . 硅氮烷添加剂的水解稳定性对硅橡胶热稳定性的影响. 高分子学报, 2002, (5): 623-627.

    16. [16]

      王茂功钟顺和 . 聚酰亚胺/SnO2杂化膜的制备和表征及其气体渗透性测定. 高分子学报, 2006, (6): 833-837.

    17. [17]

      李其山谢择民 . 主链含环二硅氮烷硅橡胶的热稳定性. 高分子学报, 1986, (3): 208-213.

    18. [18]

      刘振海吴庸烈金淑芳陈仲庆田鹤琴 . 酰亚胺类高聚物热稳定性与化学结构的关系. 高分子学报, 1981, (3): 186-193.

    19. [19]

      陈彦徐懋 . 聚丙烯成核剂成核效应及热稳定性研究. 高分子学报, 1998, (4): 387-392.

    20. [20]

      周重光贝小来周长忍 . 双马来酰亚胺在改进硅橡胶热稳定性中的作用. 高分子学报, 1991, (1): 26-30.

  • Figure 1.  (A) Chemical structure of photo-responsive PEO-b-PNBOC amphiphilic block copolymer and UV irradiation actuates decaging reactions with the in situ generation of highly reactive primary amine groups, which then implemented intra/interchain amidation reactions with partial primary amines being protonated, thereby concurrently cross-linking and permeabilizing the as-assembled polymersomes. (B) Representative (a, b) TEM images, (c, d) SEM images, and (e – h) AFM height images of PEO45-b-PNBOC30 vesicles (a, c, e) before and (b, d, g) after UV irradiation; the insets in (a – d) show individual vesicle at high magnification; (f) and (h) represent cross-sectional profiles of vesicles (Reproduced with permission from Ref.[24]; Copyright (2014) John Wiley & Sons)

    Figure 2.  (a) Schematic illustration of the co-release of hydrophilic DOX·HCl and hydrophobic Nile red from the vesicles upon UV irradiation; (b, c) Release profiles of (b) Nile red and (c) DOX·HCl in the absence and presence of UV light irradiation (Reproduced with permission from Ref.[24]; Copyright (2014) John Wiley & Sons)

    Figure 3.  (A) Schematics of the formation of amphiphilic AuNP@PEO/PNBOC via post-modification of AuNPs with PEO-b-PMALA and PNBOC-b-PMALA copolymers by taking advantage of the formation of multivalent dative Au-S bonds. The resulting amphiphilic AuNP@PEO/PNBOC self-assembled into vesicles in aqueous solution that can be further cross-linked under UV light irradiation. (B) TEM images recorded for (a, b) hybrid AuNP3@PEO113/PNBOC27 and AuNP13@PEO45/PNBOC50 vesicles (a, c) before and (b, d) after UV 365 nm irradiation. The insets show enlarged individual hybrid vesicle (Reproduced with permission from Ref.[33]; Copyright (2018) American Chemical Society)

    Figure 4.  (A) Synthesis of photo- and thermo-responsive diblock copolymer PNIPAM-b-PNBOCA via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization. (B) Typical (a – d) TEM images and (e – h) SEM images recorded for the aqueous dispersion of PNIPAM31-b-PNBOCA53 without (a, e) UV irradiation at 25 °C and with (b – d, f – h) UV irradiation at (b, f) 25 °C, (c, g) 40 °C, and (d, h) 50 °C, respectively (Reproduced with permission from Ref.[32]; Copyright (2016) American Chemical Society)

    Figure 5.  (a) Structure transitions of photo- and reduction-responsive PEO-b-PCSSMA vesicles under sequential light irradiation (430 nm) and GSH treatment. Upon irradiation, the coumarin moieties are cleaved with the generation of highly reactive primary amine moieties, which spontaneously undergo protonation, intramolecular acyl migration, and intra/interchain amidation reactions. As such, the bilayer membranes of vesicles are cross-linked that only allows the selective release of small molecule payloads. Moreover, further addition of glutathione (GSH) leads to the disassembly of cross-linked vesicles that actuates the release of large molecule payloads. Release profiles of (b) DOX and (c) TR-dextran from PEO45-b-PCSSMA22 vesicles. (d) DOX and TR-dextran release extents after 12 h incubation from PEO45-b-PCSSMA22 vesicles. (Reproduced with permission from Ref.[34]; Copyright (2018) American Chemical Society)

    Figure 6.  Schematic of enzyme-triggered release of antibacterial agents from enzyme-responsive polymersomes. Lipase (Lip)- and nitroreductase (NTR)-responsive polymersomes are subjected to enzyme-triggered cleavage of terminal groups, resulting in the release of highly reactive primary amine moieties that further implement inter/intrachain aminolysis reactions and the formation of core cross-linked (CCL) micelles. Hydrophobic triclosan (TCN), hydrophilic antibacterial peptide, Parasin I, and antibacterial protein, lysozyme (Lyz), are used as the antibacterial agents, which could be loaded into either the bilayer membranes or the aqueous lumens of enzyme-responsive polymersomes and could be released by taking advantage of enzyme-triggered morphological transition from vesicle-to-CCL micelle. (Reproduced with permission from Ref.[8]; Copyright (2017) Springer Publishing Company)

    Figure 7.  Representative (a, b) TEM and (c, d) SEM images of PEO45-b-PNBMA16 vesicles (a, c) before and (b, d) after incubation with H2O2 (1 mmol/L) for 12 h in PBS buffer (pH = 7.4, 10 mmol/L) (Reproduced with permission from Ref.[64]; Copyright (2016) American Chemical Society)

    Figure 8.  Schematics of photochromic vesicles assembled from PEO-b-PSPA diblock copolymers exhibiting photo-switchable and reversible bilayer permeability. Initially, the hydrogen bonding interactions and hydrophobic association of SP moieties stabilize the bilayer of SP polymersomes. Notably, spiropyran moieties within polymersome bilayers undergo photo-triggered isomerization (λ1 < 420 nm) from hydrophobic spiropyran (SP) to zwitterionic merocyanine (MC), the emerging π-π stacking, paired electrostatic (zwitterionic) interactions of the MC moieties and the residual hydrogen bonding interactions of carbamate linkages surpassed the partial loss of hydrophobic association of SP moieties that protects the integrity of MC polymersomes from disassembly. The SP/MC polymersome transition is accompanied with selective release of encapsulated payloads. Moreover, the photochromic transition from SP to MC isomers could be reversed upon irradiation with a longer wavelength (λ2 > 450 nm) and reversible switching the polymersome permeability can be achieved (Reproduced with permission from Ref.[31]; Copyright (2015) American Chemical Society)

    Figure 9.  (Top) Spatiotemporal manipulation of the selective intracellular release of DNA-staining agent, DAPI, from DAPI/Dextran-TR loaded PEO45-b-PSPA19 vesicles by alternate 405 and 543 nm laser irradiation that reversibly switched the polymersome permeability: (red line) vesicle-internalized cell inside the irradiated square box area and (black line) vesicle-internalized cells outside the irradiated square box area. (Bottom) Representative CLSM images of blue (DAPI, 450 – 470 nm), red (600 – 630 nm; dextran-TR: 10 kDa, loaded within vesicles), and green (630 – 700 nm, vesicles) channels, and merged images recorded for HeLa cells after irradiating the white square box region with 405 nm laser light for 2 scans at time points of 0, 60 and 120 min and 543 nm laser light for 10 scans at time points of 30, 90 and 150 min, respectively (Reproduced with permission from Ref.[31]; Copyright (2015) American Chemical Society) (The online version is colorful.)

  • 加载中
图(10)
计量
  • PDF下载量:  104
  • 文章访问数:  999
  • HTML全文浏览量:  360
  • 引证文献数: 0
文章相关
  • 通讯作者:  刘世勇, sliu@ustc.edu.cn
  • 收稿日期:  2019-02-10
  • 修稿日期:  2019-03-26
  • 网络出版日期:  2019-04-26
  • 刊出日期:  2019-06-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计