ISSN 1000-3304CN 11-1857/O6

有机胍催化法可控合成聚乳酸-聚丁二酸丁二醇酯多嵌段共聚物研究

丁申莹 徐云龙 丁马林 张延凯 李立衡 李弘 张全兴

引用本文: 丁申莹, 徐云龙, 丁马林, 张延凯, 李立衡, 李弘, 张全兴. 有机胍催化法可控合成聚乳酸-聚丁二酸丁二醇酯多嵌段共聚物研究[J]. 高分子学报, 2019, (8): 816-825. doi: 10.11777/j.issn1000-3304.2019.19041 shu
Citation:  Shen-ying Ding, Yun-long Xu, Ma-lin Ding, Yan-kai Zhang, Li-heng Li, Hong Li and Quan-xing Zhang. Controlled Synthesis of a Multi-block Copolymer Poly(L-lactic acid)-co-Poly(butylene succinate) with Creatinine-based Guanidine Catalysts[J]. Acta Polymerica Sinica, 2019, (8): 816-825. doi: 10.11777/j.issn1000-3304.2019.19041 shu

有机胍催化法可控合成聚乳酸-聚丁二酸丁二醇酯多嵌段共聚物研究

    通讯作者: 李弘, E-mail: hongli@nankai.edu.cn 张全兴, E-mail: zhqx@nju.edu.cn
  • 基金项目: 国家自然科学基金面上项目(基金号 21074057)和环保部重大水专项(项目号 2014ZX07204-005-3,2015ZX07204-007-2,2017ZX07602-001-4)资助

摘要: 以4种生物质肌酐(CR)系有机胍化合物及辛酸亚锡(Sn(Oct)2)为催化剂首先合成了寡聚L-乳酸(OPLLA)及寡聚丁二酸丁二醇酯(OPBS) 2种大分子单体,继而经熔融嵌段共缩聚(bc-MP)合成了一种中分子量(MMW)多嵌段共聚物(mb(PLLA-PBS)). 实验结果证明4种有机胍的催化性能均优于Sn(Oct)2.4种有机胍催化剂中以醋酸肌酐胍(CRA)催化性能最优,氢核磁共振谱(1H-NMR)分析证明所合成MMW-mb(PLLA-PBS)分子中二嵌段摩尔组成比(fOPLLA/fOPBS = 89.3/10.7)非常接近设计值( = 90/10),聚合物分子量(Mw = 28.6 kDa)、产率(82.02%)、力学性能(拉伸强度TS = 21.81 MPa,断裂伸长率BE = 49.24%)、热稳定性(起始分解温度,Td,0 = 270 °C)等均优于用Sn(Oct)2催化聚合结果. 这一优良性能嵌段共聚物可用作PLLA-PBS共混的增容剂. 利用CRA催化bc-MP反应还合成了一种高分子量(Mw = 114.0 kDa)的多嵌段共聚物(HMW-mb(PLA-PBS)),其拉伸强度(TS = 50.67 MPa)接近PLLA (TS = 54.10 MPa),断裂伸长率(BE = 60.66%)较PLLA提高15倍. 热重分析(TGA)证明,其起始热分解温度(Td,0 = 272 °C)较聚L-乳酸(PLLA)高22 °C. 1H-NMR结构分析指出其分子中二嵌段摩尔组成比值(fOPLLA/fOPBS = 89.7/10.3)极接近设计值(/ = 90/10). 上述实验结果证明,以无毒有机胍催化剂CRA实现了MMW-mb(PLLA-PBS)及HMW-mb(PLLA-PBS)的组成可控合成. 在实验研究的基础上推断了大分子单体bc-MP反应的机理.

English

    1. [1]

      Rasal R M, Janorkar A V, Hirt D E. Prog Polym Sci, 2010, 35: 338 − 356 doi: 10.1016/j.progpolymsci.2009.12.003

    2. [2]

      Inkinen S, Hakkarainen M, Albertsson A C. Biomacromolecules, 2011, 12(3): 523 − 532 doi: 10.1021/bm101302t

    3. [3]

      Nampoothiri K M, Nair N R, John R P. Bioresource Technol, 2010, 101: 8493 − 8501 doi: 10.1016/j.biortech.2010.05.092

    4. [4]

      Gupta A P, Kumar V. Eur Polym J, 2007, 43: 4053 − 4074 doi: 10.1016/j.eurpolymj.2007.06.045

    5. [5]

      Zeng J, Li Y, Li W, Yang K, Wang X. Ind Eng Chem Res, 2009, 48(4): 1706 − 1711 doi: 10.1021/ie801391m

    6. [6]

      Ulloa P A, Vidal J, Dicastillo C. J Appl Polym Sci, 2019, 136(8): 11

    7. [7]

      Cao Y L, Yin J B, Yan S F. Chin Sci Bull, 2006, 16(10): 90 − 97

    8. [8]

      Andreopoulos A G. J Mater Sci-Mater Med, 1999, 10(1): 29 − 33 doi: 10.1023/A:1008887910068

    9. [9]

      Bendix D. Polym Degrad Stab, 1998, 59(1-3): 129 − 135 doi: 10.1016/S0141-3910(97)00149-3

    10. [10]

      Xu Y, Zhang S, Peng X, Wang J. Eur Polym J, 2018, 99: 250 − 258 doi: 10.1016/j.eurpolymj.2017.12.032

    11. [11]

      Chen G, Kim H S, Kim E S. Polymer, 2005, 46(25): 11829 − 11836 doi: 10.1016/j.polymer.2005.10.056

    12. [12]

      Ferreira L P, Moreira A N, Pinto J C, de Souza F G. Polym Eng Sci, 2015, 55: 1889 − 1896 doi: 10.1002/pen.v55.8

    13. [13]

      Luo S, Li F, Yu J, Cao A. J Appl Polym Sci, 2010, 115(4): 2203 − 2211 doi: 10.1002/app.v115:4

    14. [14]

      Lu J, Qiu Z, Yang W. Polymer, 2007, 48(14): 4196 − 4204 doi: 10.1016/j.polymer.2007.05.035

    15. [15]

      Lee P C, Lee W G, Lee S Y, Chang H N. Biotechnol Bioeng, 2001, 72: 41 − 48 doi: 10.1002/(ISSN)1097-0290

    16. [16]

      Cheng K, Zhao X, Zeng J. Biofuel Bioprod Bior, 2012, 6: 302 − 318 doi: 10.1002/bbb.1327

    17. [17]

      Bretz K, Kabasci S. Biotechnol Bioeng, 2012, 109: 1187 − 1192 doi: 10.1002/bit.24387

    18. [18]

      Minh P D, Besson M, Pinel C, Fuertes P, Petitj J C. Top Catal, 2010, 53(15-18): 1270 − 1273 doi: 10.1007/s11244-010-9580-y

    19. [19]

      Zhang W, Xu Y, Wang P, Hong J, Liu J, Ji J, Pual K C. J Polym Environ, 2018, 26(7): 1 − 9

    20. [20]

      Jia L, Yin L, Li Y, Li Q, Yang J, Yu J, Shi Z, Fang Q, Cao A. Macromol Biosci, 2005, 5(6): 526 − 538 doi: 10.1002/(ISSN)1616-5195

    21. [21]

      Ba C, Yang J, Hao Q, Liu X, Cao A. Biomacromolecules, 2003, 4(6): 1827 − 1834 doi: 10.1021/bm034235p

    22. [22]

      Supthanyakul R, Kaabbuathong N, Chirachanchai S. Polym Degrad Stab, 2017, 142: 160 − 168 doi: 10.1016/j.polymdegradstab.2017.05.029

    23. [23]

      Zhang B, Bian X, Xiang S, Li G, Chen X. Polym Degrad Stab, 2017, 136: 58 − 70 doi: 10.1016/j.polymdegradstab.2016.11.022

    24. [24]

      Chan Woo Lee, Chao N, Yoshiharu Kimura, Kazunari Masutani. Macromol Mater Eng, 2016, 301: 1121 − 1131 doi: 10.1002/mame.v301.9

    25. [25]

      Tan L, Chen Y, Zhou W, Nie H, Li F, He X. Polym Degrad Stab, 2010, 95: 1920 − 1927 doi: 10.1016/j.polymdegradstab.2010.04.010

    26. [26]

      Supthanyakul R, Kaabbuathong N, Chirachanchai S. Polymer, 2016, 105: 1 − 9 doi: 10.1016/j.polymer.2016.10.006

    27. [27]

      Zhang M, Han W, Li W Q, Wang L, Qiu J H. Modern Chem Ind, 2007, 27(2): 39 − 43

    28. [28]

      Ma Lili(马丽莉), Shao Jun(邵俊), Yang Chenguang(杨晨光), Tang Zhaohui(汤朝晖), Chen Xuesi(陈学思). Chem J Chin Univ(高等学校化学学报), 2015, 36(11): 2329 − 2334

    29. [29]

      Ji Deyun(季得运), Liu Zhengying(刘正英), Lan Xiaorong(兰小蓉), Wu Feng(吴枫), Hua Sun(华笋), Yang Mingbo(杨鸣波). Acta Polymerica Sinica(高分子学报), 2012, (7): 694 − 697

    30. [30]

      Sionkowska A. Prog Polym Sci, 2011, 36: 1254 − 1276 doi: 10.1016/j.progpolymsci.2011.05.003

    31. [31]

      Yokohara T, Yamaguchi M. Eur Polym J, 2008, 44: 677 − 685 doi: 10.1016/j.eurpolymj.2008.01.008

    32. [32]

      Wang Ziyu(王子羽), He Wenwen(何文文), Xu Yunlong(徐云龙), Huang Wei(黄伟), Jiang Wei(江伟), Li Hong(李弘), Zhang Quanxing(张全兴). Acta Polymerica Sinica(高分子学报), 2018, (7): 786 − 796 doi: 10.11777/j.issn1000-3304.2018.18036

    33. [33]

      Huang W, Qi Y, Cheng N, Zong X, Zhang T, Jiang W, Li H, Zhang Q. Polym Degrad Stab, 2014, 101: 18 − 23 doi: 10.1016/j.polymdegradstab.2014.01.022

    34. [34]

      Sheng Jiaye(盛家业), Wang Ziyu(王子羽), Xu Yunlong(徐云龙), Huang Wei(黄伟), Jiang Wei(江伟), Li Hong(李弘), Zhang Quanxing(张全兴). Ion Exchange and Adsorption(离子交换与吸附), 2017, 33(3): 193 − 202

    35. [35]

      Wang Ch, Li H, Zhao X. Biomaterials, 2004, 25(27): 5797 − 5801 doi: 10.1016/j.biomaterials.2004.01.030

    36. [36]

      Li H, Wang C, Jin Y, Zhao X, Feng B. J Polym Sci, Part A: Polym Chem, 2004, 42(15): 3775 − 3781 doi: 10.1002/(ISSN)1099-0518

    37. [37]

      Li Hong(李弘), Zhang Saihui(张赛晖), Jiao Zhifeng(焦志峰), Zuo Jiaqing(左佳卿). Acta Polymerica Sinica(高分子学报), 2008, (7): 667 − 672 doi: 10.3321/j.issn:1000-3304.2008.07.007

    38. [38]

      Li H, Zhang S, Jiao J, Jiao Z, Kong L, Xu J, Zuo J, Zhao X, Li J. Biomacromolecules, 2009, 10(5): 1311 − 1314 doi: 10.1021/bm801479p

    39. [39]

      Li Hong(李弘), Jiao Jieping(焦洁平), Kong Lijun(孔丽君), Jiao Zhifeng(焦志峰), Zhang Donglai(张东来), Xu Jie(徐杰), He Peiru(何培茹). Chinese Journal of Organic Chemistry(有机化学), 2009, 29(5): 736 − 741

    40. [40]

      Pang Z, Li H, He P, Wang Y, Ren H, Wang H, Zhu X X. J Polym Sci, Part A: Polym Chem, 2012, 50(19): 4004 − 4009 doi: 10.1002/pola.v50.19

    41. [41]

      Lohmeijer B G G, Pratt R C, Leibfarth F, Logan J W, Long D A, Dove A P, Nederberg F, Choi J, Wade C, Waymouth R M, Hedrick J L. Macromolecules, 2006, 39(25): 8574 − 8583 doi: 10.1021/ma0619381

    42. [42]

      Li Hong(李弘), Kong Lijun(孔丽君), Zong Xupeng(宗绪鹏), Jiao Jieping(焦洁平). China patent(中国发明专利), ZL200810053913.4. 2011-11-03

    43. [43]

      Dove A P, Li H, Pratt R C, Lohmeijer B G G, Culkin D A, Waymouth R M, Hedrick J L. Chem Commun, 2006, 0(27): 2881 − 2883

    44. [44]

      Li Hong(李弘). Synthesis of biodegradable polymer using organic catalysts(有机催化剂法可控合成生物降解聚合). In: Dong Jianhua(董建华) ed. Frontiers and Advances in Polymer Science II(高分子科学前沿与进展II). Beijing(北京): China Science Publishing & Media Ltd.(科学出版社), 2009. 54

    45. [45]

      Woo H G, Li H. Advanced Functional Materials. Berlin, Heidelberg: Springer, 2011. 227

    46. [46]

      Jiang W, Huang W, Cheng N, Qi Y, Zong X, Li H, Zhang Q. Polymer, 2012, 53(24): 5476 − 5479 doi: 10.1016/j.polymer.2012.09.044

    47. [47]

      Li Hong(李弘), Zhang Quanxing(张全兴), Song Yiting(宋易婷), Sun Xiangqian(孙向前), Huang Wei(黄伟), Li Aimin(李爱民). China patent(中国发明专利), CN201510173741.4. 2015-41-13

    48. [48]

      Huang W, Cheng N, Qi Y, Zhang T, Jiang W, Li H, Zhang Q. Polymer, 2014, 55(6): 1491 − 1496 doi: 10.1016/j.polymer.2014.01.054

    1. [1]

      王子羽何文文徐云龙黄伟江伟李弘张全兴 . 有机胍催化法可控合成聚乳酸系环境友好材料. 高分子学报, 2018, 0(7): 786-796. doi: 10.11777/j.issn1000-3304.2018.18036

    2. [2]

      刘志瑶王铮尹玉华蒋润李宝会 . 溶剂对嵌段共聚物AB/均聚物C共混体系增容效果的模拟研究. 高分子学报, 2019, 50(11): 1220-1228. doi: 10.11777/j.issn1000-3304.2019.19072

    3. [3]

      王健卢宇源徐玉赐阮永金李良一安立佳 . 嵌段共聚物增容剂对不相容均聚物共混体系相行为和界面性质的影响. 高分子学报, 2016, (3): 271-287. doi: 10.11777/j.issn1000-3304.2016.15340

    4. [4]

      魏志勇周城宋平陈广义战美秋梁继才张万喜 . 聚丁二酸丁二醇酯/笼型低聚倍半硅氧烷纳米复合材料的结晶行为研究. 高分子学报, 2013, (10): 1253-1261. doi: 10.3724/SP.J.1105.2013.13008

    5. [5]

      汤双凤吴进蔡林君颜竹君 . 聚(-苄基-L-谷氨酸)-b-聚(-十二烷基-L-谷氨酸)二嵌段共聚物的合成与表征. 高分子学报, 2012, (8): 887-894. doi: 10.3724/SP.J.1105.2012.11392

    6. [6]

      李晓露王锐杨春芳董振峰张秀芹王笃金王德义 . 含柔性链段聚右旋乳酸嵌段共聚物对聚左旋乳酸拉伸行为的影响. 高分子学报, 2018, 0(5): 598-606. doi: 10.11777/j.issn1000-3304.2017.17197

    7. [7]

      王洪振秦亚伟董金勇 . 聚丙烯-聚磷酸酯嵌段共聚物的设计与合成. 高分子学报, 2013, (4): 518-525. doi: 10.3724/SP.J.1105.2013.12273

    8. [8]

      别妙杨杰尹逊迪包永忠 . 聚(偏氯乙烯-丙烯酸甲酯)-b-聚丙烯酸嵌段共聚物的胶束化行为. 高分子学报, 2016, (4): 443-448. doi: 10.11777/j.issn1000-3304.2016.15228

    9. [9]

      张方张航天杨甜孔波郭安儒章琦吴一弦 . 官能化聚四氢呋喃-b-聚异丁烯-b-聚四氢呋喃三嵌段共聚物的合成与性能. 高分子学报, 2020, 51(1): 1-19. doi: 10.11777/j.issn1000-3304.2020.19151

    10. [10]

      尤劼叶霖张爱英冯增国 . 适配双链与非适配单链包结γ-CD聚准轮烷嵌段共聚物合成与表征. 高分子学报, 2017, (8): 1320-1330. doi: 10.11777/j.issn1000-3304.2017.16357

    11. [11]

      段荣涛董雪李德福汪秀丽王玉忠 . 含异山梨醇的全生物基PBS嵌段共聚酯的制备及性能. 高分子学报, 2016, (1): 70-77. doi: 10.11777/j.issn1000-3304.2016.15135

    12. [12]

      陈福泉郭锐标冯彦洪瞿金平 . 叶片挤出机对PBS/木质素共混体系加工性及性能影响. 高分子学报, 2014, (4): 482-490. doi: 10.3724/SP.J.1105.2014.13317

    13. [13]

      龚颖袁倩聂静杨曙光 . 聚苯乙烯-聚(4-乙烯基吡啶)嵌段共聚物LB膜结构形态的研究. 高分子学报, 2017, (6): 967-973. doi: 10.11777/j.issn1000-3304.2017.16307

    14. [14]

      徐一丁沈志豪范星河周其凤 . 聚苯乙烯-b-聚2(5)-乙烯基对(间)苯二甲酸二钠嵌段共聚物的合成及其对PET结晶行为的影响. 高分子学报, 2011, (9): 1053-1059. doi: 10.3724/SP.J.1105.2011.11015

    15. [15]

      鲍锋刘程宋媛媛邬祚强王锦艳蹇锡高 . 含二氮杂萘酮联苯结构耐高温、可溶解嵌段聚芳醚酮的合成. 高分子学报, 2018, 0(6): 692-699. doi: 10.11777/j.issn1000-3304.2017.17265

    16. [16]

      严永新尹婷婷刘登峰刘娜殷俊朱元元吴宗铨 . 聚噻吩-b-聚喹喔啉共轭嵌段聚合物对Co2+离子的高选择性可视化检测. 高分子学报, 2015, (3): 319-325. doi: 10.11777/j.issn1000-3304.2015.140279

    17. [17]

      张怀文杜淼王楠郑强 . 拒水型有机硅改性聚氨酯嵌段共聚物的合成与表征. 高分子学报, 2013, (1): 63-69. doi: 10.3724/SP.J.1105.2013.12139

    18. [18]

      师楠张洁宛新华 . 基于多酸/嵌段共聚物的刺激响应性杂化功能材料. 高分子学报, 2016, (12): 1645-1653. doi: 10.11777/j.issn1000-3304.2016.16265

    19. [19]

      秦江雷陈永明 . 由嵌段共聚物制备有形状的核壳结构聚合物纳米颗粒. 高分子学报, 2011, (6): 572-585. doi: 10.3724/SP.J.1105.2011.11132

    20. [20]

      林瑞崇郭绍伟 . 调控氢键作用力在多组分嵌段共聚物共混体系中的自组装结构. 高分子学报, 2018, 0(8): 1016-1032. doi: 10.11777/j.issn1000-3304.2018.18020

  • Figure 1.  Synthesis route of mb(PLLA-PBS) via MP with CR-based guanidine catalysts

    Figure 2.  GPC trace of medium molecular weight mb(PLLA-PBS) synthesized with CRA

    Figure 3.  1H-NMR spectrum of medium molecular weight mb(PLLA-PBS) synthesized with CRA

    Figure 4.  Proposed mechanism for bc-MP of OPLLA and OPBS with CR-based guanidine catalysts

    Figure 5.  Competitive reactions in bc-MP of OPLLA and OPBS

    Figure 6.  Proposed mechanism of LA-formation side reaction in the synthesis of mb(PLLA-PBS) with Sn(Oct)2

    Figure 7.  TG thermgrams of PLLA and synthesized medium molecular weight mb(PLLA-PBS) with the molar ratio of OPLLA to OPBS at 90:10 (a, cat. CEA; b, cat Sn(Oct)2)

    Figure 8.  GPC trace of high molecular weight mb(PLLA-PBS) synthesized with CRA

    Figure 9.  1H-NMR spectrum of high molecular weight mb(PLLA-PBS) synthesized with CRA

    Table 1.  Synthesis of medium molecular weight mb(PLLA-PBS) via bc-MP with CR-based guanidine catalysts a

    No. Cat. Cat. Dos. b × 10–4 (mol) Mw (kDa) PDI Yield c (%) LAd (wt%)
    I CR 2.7 17.0 1.81 80.04 1.63
    II CRCl 2.7 14.2 1.74 76.17 1.97
    III CRG 2.7 27.4 1.78 74.15 6.71
    IV CRA 2.7 28.6 1.80 82.02 1.08
    Ve Sn(Oct)2 7.4 12.9 1.78 60.80 20.7
    VIf Sn(Oct)2 7.4 12.7 1.41 nr g nr
    a Reaction conditions: 800 Pa, 165 °C, OPLLA0/OPBS0 = 90/10 (molar ratio of feed); b Catalyst dosage; c Apparent yield: product weight/feed weight; d By-product; e Experiment was carried out according to the Ref.[26]; f Experimental results reported by Supthanyakul[26]; g Not reported
    下载: 导出CSV

    Table 2.  Influence of catalyst dosage over the properties of synthesized medium molecular weight mb(PLLA-PBS) a

    No. Cat. b × 10–4 (mol) Mw c
    (kDa)
    PDI d Yield
    (%)
    1 0.9 19.2 1.89 80.02
    2 2.7 28.6 1.80 82.02
    3 4.5 19.4 1.94 78.19
    4 7.2 17.6 1.78 70.47
    a 800 Pa,165 °C,CRA catalyst, feed molar ratio of OPLLA/ OPBS = 90/10; b Relative to the feed; c,d Measured by GPC
    下载: 导出CSV

    Table 3.  Comparison of molar ratio of OPLLA/OPBS in the synthesized medium molecular weight mb(PLLA-PBS) over that in feed

    Cat. ALLa a ASA b fOPLLA/fOPBS c
    CR 1 0.083 88.9/11.1
    CRCl 1 0.082 89.0/11.0
    CRG 1 0.085 88.6/11.4
    CRA 1 0.080 89.3/10.7
    Sn(Oct)2 1 0.11 85.9/14.1
    aδ = 1.57; bδ = 2.63; c Molar ratio of OPLLA/OPBS in feed
    下载: 导出CSV

    Table 4.  Influence of block molar ratio of OPLLA/OPBS over the mechanical properties of synthesized medium molecular weight mb(PLLA-PBS)

    No. Cat. OPLLA/OPBS
    (molar ratio)
    TS
    (MPa)
    BE
    (%)
    1 100/0 47.34 1.25
    2 CRAa 90/10 21.81 49.24
    3 Sn(Oct)2b 90/10 18.78 45.90
    4 CRAa 80/20 11.53 130.33
    5 CRAa 70/30 7.67 178.9
    6 CRAa 60/40 0.71 220.03
    aMw = 28.6 kDa;bMw = 12.9 kDa
    下载: 导出CSV

    Table 5.  Synthesis and properties of high molecular weight mb(PLLA-PBS) with CR-based guanidine catalyst CRA a

    Cat. Cat. Dos. × 10–4 (mol) OPLLA/OPBS b (molar ratio) Mw c (kDa) PDI c Yield (wt%) LA (wt%) OPLLA/OPBS (molar ratio) TS (MPa) BE
    (%)
    Td,0
    (°C)
    CRA 2.7 90/10 114 1.78 81.80 1.12 89.7/10.3 50.67 60.66 272
    a Polymerization conditions are the same as shown in Table 1; b Designed value; c Measured by GPC; d Measured by 1H-NMR
    下载: 导出CSV
  • 加载中
图(10)表(5)
计量
  • PDF下载量:  40
  • 文章访问数:  685
  • HTML全文浏览量:  390
  • 引证文献数: 0
文章相关
  • 通讯作者:  李弘, hongli@nankai.edu.cn
    张全兴, zhqx@nju.edu.cn
  • 收稿日期:  2019-02-26
  • 修稿日期:  2019-03-24
  • 网络出版日期:  2019-04-30
  • 刊出日期:  2019-08-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计