ISSN 1000-3304CN 11-1857/O6

ABA三嵌段共聚物在油/水乳化液滴中自组装行为的Monte Carlo模拟研究

郑玲飞 王铮 尹玉华 蒋润 李宝会

引用本文: 郑玲飞, 王铮, 尹玉华, 蒋润, 李宝会. ABA三嵌段共聚物在油/水乳化液滴中自组装行为的Monte Carlo模拟研究[J]. 高分子学报, 2019, 50(9): 915-924. doi: 10.11777/j.issn1000-3304.2019.19051 shu
Citation:  Ling-fei Zheng, Zheng Wang, Yu-hua Yin, Run Jiang and Bao-hui Li. Monte Carlo Simulations of the Self-assembly of ABA Tri-block Copolymers inside an Oil-in-water Emulsion Droplet[J]. Acta Polymerica Sinica, 2019, 50(9): 915-924. doi: 10.11777/j.issn1000-3304.2019.19051 shu

ABA三嵌段共聚物在油/水乳化液滴中自组装行为的Monte Carlo模拟研究

    通讯作者: 李宝会, E-mail: baohui@nankai.edu.cn
摘要: 采用Monte Carlo方法,研究了溶剂蒸发条件下对称ABA三嵌段共聚物在油/水乳化液滴中的自组装行为,并与AB双嵌段共聚物体系的模拟结果进行了比较. 构建了随表面活性剂浓度(φ)和B嵌段体积分数(fB)变化的相图;观察到无孔粒子、闭孔粒子、开孔粒子、胶囊和胶束等形态,以及不同fB下bridge链的比例随φ的变化. 研究表明,当fB ≤ 1/2时,随着φ的增大,体系出现从无孔粒子到闭孔粒子再到开孔粒子的形态转变;当fB > 1/2时,在较大的φ区间范围内形成胶束. 上述形态中bridge链的比例均远小于对应的体相值. 由于链构象的影响,当fB ≤ 1/2时,ABA三嵌段共聚物体系中没有出现胶囊结构,这与AB双嵌段共聚物体系不同. 相同形态粒子的比表面积大致落在相同的p区间内,表明粒子的形态很大程度上决定了其比表面积;而通过计算粒子的形成能,证实体系中的表面活性剂是多孔粒子形成的关键. 这些均与AB双嵌段共聚物体系相同.

English

    1. [1]

      Gong X, Wen W, Sheng P. Langmuir, 2009, 25: 7072 − 7077 doi: 10.1021/la900120c

    2. [2]

      Macintyre F S, Sherrington D C. Macromolecules, 2004, 37: 7628 − 7636 doi: 10.1021/ma0491053

    3. [3]

      Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem Rev, 2012, 112: 3959 − 4015 doi: 10.1021/cr200440z

    4. [4]

      Cai Y, Chen Y, Hong X, Liu Z, Yuan W. Int J Nanomed, 2013, 8: 1111 − 1120

    5. [5]

      Li G, Yang X, Wang B, Wang J, Yang X. Polymer, 2008, 49: 3436 − 3443 doi: 10.1016/j.polymer.2008.06.004

    6. [6]

      Yang X, Chen L, Huang B, Bai F, Yang X. Polymer, 2009, 50: 3556 − 3563 doi: 10.1016/j.polymer.2009.06.027

    7. [7]

      Desforges A, Arpontet M, Deleuze H, Mondain-Monval O. React Funct Polym, 2002, 53: 183 − 192 doi: 10.1016/S1381-5148(02)00172-4

    8. [8]

      Gao F, Su Z G, Wang P, Ma G H. Langmuir, 2009, 25: 3832 − 3838 doi: 10.1021/la804173b

    9. [9]

      Fujibayashi T, Komatsu Y, Konishi N, Yamori H, Okubo M. Ind Eng Chem Res, 2008, 47: 6445 − 6449 doi: 10.1021/ie800188f

    10. [10]

      Perrier-Cornet R, Heroguez V, Thienpont A, Babot O, Toupance T. J Chromatogr A, 2008, 1179: 2 − 8 doi: 10.1016/j.chroma.2007.09.064

    11. [11]

      Zhou W Q, Gu T Y, Su Z G, Ma G H. Eur Polym J, 2007, 43: 4493 − 4502 doi: 10.1016/j.eurpolymj.2007.07.010

    12. [12]

      Wan J, Bick A, Sullivan M, Stone H A. Adv Mater, 2008, 20: 3314 − 3318 doi: 10.1002/adma.v20:17

    13. [13]

      Serra C A, Chang Z. Chem Eng Technol, 2008, 31: 1099 − 1115 doi: 10.1002/ceat.v31:8

    14. [14]

      He X, Ge X, Liu H, Wang M, Zhang Z. Chem Mater, 2005, 17: 5891 − 5892 doi: 10.1021/cm051694j

    15. [15]

      Zhu J, Hayward R C. Angew Chem, 2008, 120: 2143 − 2146 doi: 10.1002/(ISSN)1521-3757

    16. [16]

      Zhu J, Ferrer N, Hayward R C. Soft Matter, 2009, 5: 2471 − 2478 doi: 10.1039/b818065b

    17. [17]

      Zhu J, Hayward R C. J Colloid Interf Sci, 2012, 365: 275 − 279 doi: 10.1016/j.jcis.2011.09.020

    18. [18]

      Ku K H, Shin J M, Klinger D, Jang S G, Hayward R C, Hawker C J, Kim B J. ACS Nano, 2016, 10: 5243 − 5251 doi: 10.1021/acsnano.6b00985

    19. [19]

      Ku K H, Shin J M, Yun H, Yi G R, Jang S G, Kim B J. Adv Funct Mater, 2018, 28(1-28): 1802961

    20. [20]

      Fan J B, Song Y, Wang S, Jiang L, Zhu M Q, Guo X. RSC Adv, 2014, 4: 629 − 633 doi: 10.1039/C3RA44197K

    21. [21]

      Zheng L, Wang Z, Yin Y, Jiang R, Li B. Langmuir, 2019, Doi:10.1021/acs.langmuir.9b00613

    22. [22]

      Carmesin I, Kremer K. Macromolecules, 1988, 21: 2819 − 2823 doi: 10.1021/ma00187a030

    23. [23]

      Larson R G. J Chem Phys, 1992, 96: 7904 − 7918

    24. [24]

      Sun P, Yin Y, Li B, Chen T, Jin Q, Ding D. J Chem Phys, 2008, 122(1-8): 204905

    25. [25]

      Wang Z, Li B, Jin Q, Ding D, Shi A C. Macromol Theory Simul, 2008, 17: 86 − 102 doi: 10.1002/(ISSN)1521-3919

    26. [26]

      Xu Jihua(徐纪华), Jiang Run(蒋润), Yin Yuhua(尹玉华), Wang Zheng(王铮), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2013, (10): 1277 − 1284

    27. [27]

      Wang Yingying(王英英), Ma Jiani(麻家妮), Cui Jie(崔杰), Han Yuanyuan(韩媛媛), Jiang Wei(姜伟). Acta Polymerica Sinica(高分子学报), 2018, (8): 1116 − 1126

    28. [28]

      Rabani E, Reichman D R, Geissler P L, Brus L E. Nature, 2003, 426: 271 − 274 doi: 10.1038/nature02087

    29. [29]

      Yosef G, Rabani E. J Phys Chem B, 2006, 110: 20965 − 20972 doi: 10.1021/jp063668u

    30. [30]

      Deng R, Li H, Liang F, Zhu J, Li B, Xie X, Yang Z. Macromolecules, 2015, 48: 5855 − 5860 doi: 10.1021/acs.macromol.5b01261

    31. [31]

      Deng R, Li H, Zhu J, Li B, Liang F, Jia F, Qu X, Yang Z. Macromolecules, 2016, 49: 1362 − 1368 doi: 10.1021/acs.macromol.5b02507

    32. [32]

      Hao Jinlong(郝金龙), Wang Zhan(汪湛), Wang Zheng(王铮), Yin Yuhua(尹玉华), Jiang Run(蒋润), Li Baohui(李宝会). Acta Polymerica Sinica(高分子学报), 2017, (11): 1841 − 1850

    33. [33]

      Li C, Wang W, Wang X, Jiang H, Zhu J, Lin S. Eur Polym J, 2015, 68: 409 − 418 doi: 10.1016/j.eurpolymj.2015.05.011

    34. [34]

      Wang Z, Li B, Jin Q, Ding D, Shi A C. Macromol Theory Simul, 2008, 17: 301 − 312 doi: 10.1002/mats.v17:6

    35. [35]

      Huh J, Jo W H. Macromolecules, 2002, 35: 2413 − 2416 doi: 10.1021/ma011431k

    1. [1]

      张翠歌朱叶罗静魏玮顾瑶刘晓亚 . Papain/HA-Phe自组装复合纳米粒子及乳化性能. 高分子学报, 2016, (7): 963-970. doi: 10.11777/j.issn1000-3304.2016.15350

    2. [2]

      马世营汪蓉 . 嵌段共聚物调控纳米粒子自组装的研究进展. 高分子学报, 2016, (8): 1030-1041. doi: 10.11777/j.issn1000-3304.2016.16082

    3. [3]

      李青霄王铮尹玉华蒋润李宝会 . 聚合物接枝纳米粒子两亲性分子在溶液中自组装行为的模拟研究. 高分子学报, 2018, 0(10): 1351-1358. doi: 10.11777/j.issn1000-3304.2018.18072

    4. [4]

      唐雯岳衎程正迪 . 巨型表面活性剂的本体自组装研究和分子拓扑结构效应. 高分子学报, 2018, 0(8): 959-972. doi: 10.11777/j.issn1000-3304.2018.18102

    5. [5]

      徐纪华蒋润尹玉华王铮李宝会 . 锚定非对称ABA三嵌段共聚物在选择性溶剂中自组装行为的模拟退火研究. 高分子学报, 2013, (10): 1277-1284. doi: 10.3724/SP.J.1105.2013.13028

    6. [6]

      张连斌王珂朱锦涛 . 中国嵌段共聚物受限自组装的研究进展. 高分子学报, 2017, (8): 1261-1276. doi: 10.11777/j.issn1000-3304.2017.17126

    7. [7]

      叶涛杜淼宋义虎郑强 . 烷基三甲基溴化铵对羧甲基纤维素钠亚浓缠结溶液流变行为的影响. 高分子学报, 2015, (7): 827-834. doi: 10.11777/j.issn1000-3304.2015.14441

    8. [8]

      陈增磊何林李 . Coil-Rod-Coil刚柔嵌段共聚物在选择性溶剂中的自组装. 高分子学报, 2014, (4): 514-522. doi: 10.3724/SP.J.1105.2014.13327

    9. [9]

      周加境吴迪卢德荣段宏伟 . 高分子修饰金纳米粒子的自组装研究进展. 高分子学报, 2018, 0(8): 1033-1047. doi: 10.11777/j.issn1000-3304.2018.18050

    10. [10]

      吕秋丰张佳音何志伟 . 苯胺与吡咯共聚物空心球的自组装制备及性能. 高分子学报, 2012, (3): 299-306. doi: 10.3724/SP.J.1105.2012.11190

    11. [11]

      隆美林张科陈永明朱雯 . 两亲性聚合物刷的合成和溶液自组装. 高分子学报, 2016, (9): 1238-1246. doi: 10.11777/j.issn1000-3304.2016.16010

    12. [12]

      戚美微黄卫肖谷雨朱新远高超周永丰 . 超支化聚合物的合成和自组装研究. 高分子学报, 2017, (2): 214-228. doi: 10.11777/j.issn1000-3304.2017.16324

    13. [13]

      陈平符文鑫 . 巯-炔加成可控修饰的两亲性嵌段共聚肽及其溶液自组装. 高分子学报, 2015, (10): 1223-1230. doi: 10.11777/j.issn1000-3304.2015.15071

    14. [14]

      杨荣巧丁大同李宝会 . 对称两嵌段共聚物/均聚物共混体系受限在球形纳米孔内的自组装行为. 高分子学报, 2011, (11): 1355-1360. doi: 10.3724/SP.J.1105.2011.11178

    15. [15]

      王昭罗志基李明睿盛瑞隆罗挺曹阿民 . 具有刚性液晶元侧基的嵌段共聚物PHEMAChol-b-PBLG的合成及自组装研究. 高分子学报, 2016, (5): 667-678. doi: 10.11777/j.issn1000-3304.2016.15377

    16. [16]

      曹旭光蒋涛王立权张良顺林嘉平蔡春华 . 两亲性/双疏性嵌段共聚物共混体系的自组装行为研究. 高分子学报, 2015, (4): 475-483. doi: 10.11777/j.issn1000-3304.2015.14339

    17. [17]

      李志海潘俊星张进军孙敏娜郭宇琦岑建勇武海顺 . 掩膜诱导的光敏性三组分聚合物混合体系的自组装. 高分子学报, 2017, (5): 768-775. doi: 10.11777/j.issn1000-3304.2017.16270

    18. [18]

      郄晶晶韦宾张立群岳冬梅 . 含MPEG侧链的膦手性螺旋聚合物自组装材料的合成与表征. 高分子学报, 2012, (10): 1170-1176. doi: 10.3724/SP.J.1105.2012.12036

    19. [19]

      王国建朱琦邓洪平王大力朱新远颜德岳 . 利用聚合物自组装实现绿色荧光蛋白生色团的荧光增强. 高分子学报, 2013, (5): 660-667. doi: 10.3724/SP.J.1105.2013.12418

    20. [20]

      张朔蔡春华黄琦婧林嘉平许占文 . 分子间相互作用对聚肽共聚物/聚苯乙烯衍生物共混体系自组装形貌影响的研究. 高分子学报, 2018, (1): 109-118. doi: 10.11777/j.issn1000-3304.2018.17223

  • Figure 1.  (a) Phase diagram in the φ and fB space for ABA triblock copolymers with fB = 1/12 – 5/6; Typical morphologies of (b) closed-porosity particle and (c) other morphologies. For each morphology, the isosurface contour plot and cross-section view are drawn. In the isosurface contour plots, the density of A- and B- segments is presented in (b) while the density of all the polymer segments is revealed in (c). Color scheme in the cross-section maps: A segments, yellow; B segments, red; surfactant molecules (C/D segments), black; water molecules (W), blue. NP, CP, OP, C, and M are the abbreviations for non-porosity particles, closed-porosity particles, open-porosity particles, capsules, and micelles, respectively. (The online version is colorful.)

    Figure 2.  Bridging fraction, vB, as a function of φ for ABA systems with fB = 1/6 and 1/2

    Figure 3.  Radial density distribution of W molecules, ρ(r), as a function of the distance to particle center, r, for AB di-block copolymers and ABA tri-block copolymers at the same surfactant concentrations but different B segment fractions: (a) fB = 1/6, (b) fB = 1/3, and (c) fB = 1/2

    Figure 4.  Specific surface area of particle, p, as a function of φ for tri-block copolymers with fB = 1/6, fB = 1/3, and fB = 1/2, where the data standing for closed-porosity particles are drawn with hollow symbols for clarity. NP, CP, and OP are abbreviations for non-porosity particles, closed-porosity particles, and open-porosity particles, respectively.

    Figure 5.  The reduced mean-square radius of gyration, <Rg2> /<R2 g-ideal>, as a function of surfactants concentration, φ, with different volume fractions of B block, fB, for ABA tri-block copolymers and AB di-block copolymers: (a) fB = 1/6, (b) fB = 1/3, (c) fB = 1/2

    Figure 6.  Formation energy of particle, (a) E for ABA tri-block copolymer and (b) Eʹ for AB di-block copolymer, as a function of φ for systems with different fB

    Figure 7.  Snapshots of droplets during organic solvent evaporation to the labeled block copolymer concentration c, for systems with different fB and φ: (a) fB = 1/6, φ = 0, (b) fB = 1/6, φ = 5.0%, (c) fB = 1/3, φ = 4.3%, (d) fB = 1/2, φ = 2.8%, and (e) fB = 1/2, φ = 5.7%. The isosurface contour plot and cross-section view are drawn for each morphology. In the isosurface contour plot, density of the polymer segments is shown for c ≈ 15.2%, and density of the water molecules is shown for other c values. The color schemes of cross-section plots are the same as that in Fig. 1.

    Figure 8.  Bridging fraction, vB, as a function of the block copolymer concentration, c, during solvent evaporation, for non-porosity particle (fB = 1/6, φ = 0), closed-porosity particle (fB = 1/6, φ = 5.0%), and open-porosity particle (fB = 1/3, φ = 4.3%)

  • 加载中
图(8)
计量
  • PDF下载量:  40
  • 文章访问数:  1121
  • HTML全文浏览量:  403
  • 引证文献数: 0
文章相关
  • 通讯作者:  李宝会, baohui@nankai.edu.cn
  • 收稿日期:  2019-03-15
  • 修稿日期:  2019-03-31
  • 网络出版日期:  2019-05-10
  • 刊出日期:  2019-09-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计