ISSN 1000-3304CN 11-1857/O6

共轭聚合物在多组分共混体系中的聚集结构研究进展

郑介明 文新博 周家东 郑楠 解增旗

引用本文: 郑介明, 文新博, 周家东, 郑楠, 解增旗. 共轭聚合物在多组分共混体系中的聚集结构研究进展[J]. 高分子学报, 2019, (8): 775-807. doi: 10.11777/j.issn1000-3304.2019.19062 shu
Citation:  Jie-ming Zheng, Xin-bo Wen, Jia-dong Zhou, Nan Zheng and Zeng-qi Xie. Research Progress on Aggregation Structure of Conjugated Polymers in Multicomponent Blends[J]. Acta Polymerica Sinica, 2019, (8): 775-807. doi: 10.11777/j.issn1000-3304.2019.19062 shu

共轭聚合物在多组分共混体系中的聚集结构研究进展

摘要: 基于本体异质结的聚合物太阳电池性能与相分离结构特别是聚合物的聚集结构密切相关. 本文综述了一些典型共轭聚合物聚集结构方面的研究进展,详细介绍了基于齐聚噻吩、二噻吩、苯并二噻吩及噻吩衍生物的D-A共聚物、二维共轭聚合物以及嵌段共聚物等体系的聚集结构特点,系统总结了一系列共轭聚合物在不同共混物、处理溶剂、退火温度、共混比例、分子量、侧链原子或基团等条件下相应的聚集结构变化规律. 在众多共轭聚合物中,研究最多的是D-A共聚物,故作重点介绍,而二维共轭聚合物、嵌段共聚物作简要介绍.

English

    1. [1]

      Cheng Y J, Yang S H, Hsu C S. Chem Rev, 2009, 109(11): 5868 − 5923 doi: 10.1021/cr900182s

    2. [2]

      Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem Rev, 2015, 115(23): 12666 − 12731 doi: 10.1021/acs.chemrev.5b00098

    3. [3]

      Bin H, Gao L, Zhang Z, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7: 13651 doi: 10.1038/ncomms13651

    4. [4]

      Li Z, Jiang K, Yang G, Lin Lai J Y, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 7: 13094 doi: 10.1038/ncomms13094

    5. [5]

      Noriega R, Rivnay J, Vandewal K, Koch F, Stingelin N, Smith P, Toney M F, Salleo A. Nat Mater, 2013, 12(11): 1038 doi: 10.1038/nmat3722

    6. [6]

      He M, Han W, Ge J, Yang Y, Qiu F, Lin Z. Energy Environ Sci, 2011, 4(8): 2894 − 2902 doi: 10.1039/c1ee01509e

    7. [7]

      He M, Han W, Ge J, Yu W, Yang Y, Qiu F, Lin Z. Nanoscale, 2011, 3(8): 3159 − 3163 doi: 10.1039/c1nr10293a

    8. [8]

      Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1246 − 1260 doi: 10.11777/j.issn1000-3304.2017.17127

    9. [9]

      Qin R, Li W, Li C, Du C, Veit C, Schleiermacher H-F, Andersson M, Bo Z, Liu Z, Inganas O, Wuerfel U, Zhang F. J Am Chem Soc, 2009, 131(41): 14612 − 14613 doi: 10.1021/ja9057986

    10. [10]

      Du C, Li C, Li W, Chen X, Bo Z, Veit C, Ma Z, Wuerfel U, Zhu H, Hu W, Zhang F. Macromolecules, 2011, 44(19): 7617 − 7624 doi: 10.1021/ma201477b

    11. [11]

      Kouijzer S, Michels J J, van den Berg M, Gevaerts V S, Turbiez M, Wienk M M, Janssen R A J. J Am Chem Soc, 2013, 135(32): 12057 − 12067 doi: 10.1021/ja405493j

    12. [12]

      Gee R H, Lacevic N, Fried L E. Nat Mater, 2006, 5(1): 39 − 43

    13. [13]

      Ermi B D, Karim A, Douglas J F. J Polym Sci, Part B: Polym Phys, 1998, 36(1): 191 − 200 doi: 10.1002/(ISSN)1099-0488

    14. [14]

      Willemse R C, de Boer A P, van Dam J, Gotsis A D. Polymer, 1999, 40(4): 827 − 834 doi: 10.1016/S0032-3861(98)00307-3

    15. [15]

      Bin Haijun(宾海军), Li Yongfang(李永舫). Acta Polymerica Sinica(高分子学报), 2017, (9): 1444 − 1461 doi: 10.11777/j.issn1000-3304.2017.17119

    16. [16]

      Wang H, Chen L, Xing R, Liu J, Han Y. Langmuir, 2015, 31(1): 469 − 479 doi: 10.1021/la5037772

    17. [17]

      Zhou K, Zhang R, Liu J, Li M, Yu X, Xing R, Han Y. ACS Appl Mater Interfaces, 2015, 7(45): 25352 − 25361 doi: 10.1021/acsami.5b07605

    18. [18]

      Zhang R, Yang H, Zhou K, Zhang J, Yu X, Liu J, Han Y. Macromolecules, 2016, 49(18): 6987 − 6996 doi: 10.1021/acs.macromol.6b01526

    19. [19]

      Zhou K, Liu J, Li M, Yu X, Xing R, Han Y. J Phys Chem C, 2015, 119(4): 1729 − 1736 doi: 10.1021/jp511370x

    20. [20]

      Hu H, Chow P C Y, Zhang G, Ma T, Liu J, Yang G, Yan H. Acc Chem Res, 2017, 50(10): 2519 − 2528 doi: 10.1021/acs.accounts.7b00293

    21. [21]

      Chen S, Liu Y, Zhang L, Chow P C Y, Wang Z, Zhang G, Ma W, Yan H. J Am Chem Soc, 2017, 139(18): 6298 − 6301 doi: 10.1021/jacs.7b01606

    22. [22]

      Cao F Y, Tseng C C, Lin F Y, Chen Y, Yan H, Cheng Y J. Chem Mater, 2017, 29(23): 10045 − 10052 doi: 10.1021/acs.chemmater.7b03688

    23. [23]

      Kang H, Uddin M A, Lee C, Kim K-H, Nguyen T L, Lee W, Li Y, Wang C, Woo H Y, Kim B J. J Am Chem Soc, 2015, 137(6): 2359 − 2365 doi: 10.1021/ja5123182

    24. [24]

      Lee C, Li Y, Lee W, Lee Y, Choi J, Kim T, Wang C, Gomez E D, Woo H Y, Kim B J. Macromolecules, 2016, 49(14): 5051 − 5058 doi: 10.1021/acs.macromol.6b01069

    25. [25]

      Wang M, Hu X, Liu L, Duan C, Liu P, Ying L, Huang F, Cao Y. Macromolecules, 2013, 46(10): 3950 − 3958 doi: 10.1021/ma400355w

    26. [26]

      Zhong W, Sun S, Ying L, Liu F, Lan L, Huang F, Cao Y. ACS Appl Mater Interfaces, 2017, 9(8): 7315 − 7321 doi: 10.1021/acsami.6b13673

    27. [27]

      Zhang M, Guo X, Li Y. Macromolecules, 2011, 44(22): 8798 − 8804 doi: 10.1021/ma201976t

    28. [28]

      Cho H H, Kang T E, Kim K H, Kang H, Kim H J, Kim B J. Macromolecules, 2012, 45(16): 6415 − 6423 doi: 10.1021/ma301362t

    29. [29]

      Kim J H, Song C E, Shin N, Kang H, Wood S, Kang I N, Kim B J, Kim B, Kim J S, Shin W S, Hwang D H. ACS Appl Mater Interfaces, 2013, 5(24): 12820 − 12831 doi: 10.1021/am401926h

    30. [30]

      Zhang M, Fan H, Guo X, He Y, Zhang Z G, Min J, Zhang J, Zhao G, Zhan X, Li Y. Macromolecules, 2010, 43(21): 8714 − 8717 doi: 10.1021/ma1018654

    31. [31]

      Luo C, Kyaw A K K, Perez L A, Patel S, Wang M, Grimm B, Bazan G C, Kramer E J, Heeger A J. Nano Lett, 2014, 14(5): 2764 − 2771 doi: 10.1021/nl500758w

    32. [32]

      Perez L A, Zalar P, Ying L, Schmidt K, Toney M F, Nguyen T Q, Bazan G C, Kramer E J. Macromolecules, 2014, 47(4): 1403 − 1410 doi: 10.1021/ma4019679

    33. [33]

      Bridges C R, Ford M J, Thomas E M, Gomez C, Bazan G C, Segalman R A. Macromolecules, 2018, 51(21): 8597 − 8604 doi: 10.1021/acs.macromol.8b01906

    34. [34]

      Nguyen T L, Lee C, Kim H, Kim Y, Lee W, Oh J H, Kim B J, Woo H Y. Macromolecules, 2017, 50(11): 4415 − 4424 doi: 10.1021/acs.macromol.7b00452

    35. [35]

      Yuan J, Ford M J, Zhang Y, Dong H, Li Z, Li Y, Nguyen T Q, Bazan G C, Ma W. Chem Mater, 2017, 29(4): 1758 − 1768 doi: 10.1021/acs.chemmater.6b05365

    36. [36]

      Ying L, Hsu B B Y, Zhan H, Welch G C, Zalar P, Perez L A, Kramer E J, Nguyen T Q, Heeger A J, Wong W Y, Bazan G C. J Am Chem Soc, 2011, 133(46): 18538 − 18541 doi: 10.1021/ja207543g

    37. [37]

      Piliego C, Holcombe T W, Douglas J D, Woo C H, Beaujuge P M, Fréchet J M. J Am Chem Soc, 2010, 132(22): 7595 − 7597 doi: 10.1021/ja103275u

    38. [38]

      He R, Yu L, Cai P, Peng F, Xu J, Ying L, Chen J, Yang W, Cao Y. Macromolecules, 2014, 47(9): 2921 − 2928 doi: 10.1021/ma500333r

    39. [39]

      Zhao R, Bi Z, Dou C, Ma W, Han Y, Liu J, Wang L. Macromolecules, 2017, 50(8): 3171 − 3178 doi: 10.1021/acs.macromol.7b00386

    40. [40]

      Ye L, Zhang S, Zhao W, Yao H, Hou J. Chem Mater, 2014, 26(12): 3603 − 3605 doi: 10.1021/cm501513n

    41. [41]

      Liu C, Dong S, Cai P, Liu P, Liu S, Chen J, Liu F, Ying L, Russell T P, Huang F, Cao Y. ACS Appl Mater Interfaces, 2015, 7(17): 9038 − 9051 doi: 10.1021/am5089956

    42. [42]

      Huang H, Bin H, Peng Z, Qiu B, Sun C, Liebman-Pelaez A, Zhang Z G, Zhu C, Ade H, Zhang Z, Li Y. Macromolecules, 2018, 51(15): 6028 − 6036 doi: 10.1021/acs.macromol.8b01036

    43. [43]

      Bin H, Zhang Z-G, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138(13): 4657 − 4664 doi: 10.1021/jacs.6b01744

    44. [44]

      Zhong W, Li K, Cui J, Gu T, Ying L, Huang F, Cao Y. Macromolecules, 2017, 50(20): 8149 − 8157 doi: 10.1021/acs.macromol.7b01432

    45. [45]

      Kranthiraja K, Park S H, Kim H, Gunasekar K, Han G, Kim B J, Kim C S, Kim S, Lee H, Nishikubo R, Saeki A, Jin S H, Song M. ACS Appl Mater Interfaces, 2017, 9(41): 36053 − 36060 doi: 10.1021/acsami.7b09146

    46. [46]

      Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z, Hou J. Macromolecules, 2012, 45(24): 9611 − 9617 doi: 10.1021/ma301900h

    47. [47]

      Zhang M, Gu Y, Guo X, Liu F, Zhang S, Huo L, Russell T P, Hou J. Adv Mater, 2013, 25(35): 4944 − 4949 doi: 10.1002/adma.201301494

    48. [48]

      Zhang M, Guo X, Ma W, Zhang S, Huo L, Ade H, Hou J. Adv Mater, 2014, 26(13): 2089 − 2095 doi: 10.1002/adma.201304631

    49. [49]

      Zhang M, Guo X, Ma W, Ade H, Hou J. Adv mater, 2015, 27(31): 4655 − 4660 doi: 10.1002/adma.v27.31

    50. [50]

      Huo L, Liu T, Sun X, Cai Y, Heeger A J, Sun Y. Adv Mater, 2015, 27(18): 2938 − 2944 doi: 10.1002/adma.v27.18

    51. [51]

      Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21): 7148 − 7151 doi: 10.1021/jacs.7b02677

    52. [52]

      Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30(20): 1800868 doi: 10.1002/adma.v30.20

    53. [53]

      Fei Z, Eisner F D, Jiao X, Azzouzi M, Röhr J A, Han Y, Shahid M, Chesman A S R, Easton C D, McNeill C R, Anthopoulos T D, Nelson J, Heeney M. Adv Mater, 2018, 30(8): 1705209 doi: 10.1002/adma.v30.8

    54. [54]

      Kim J S, Han J, Kim Y, Park H, Coote J P, Stein G E, Kim B J. Macromolecules, 2018, 51(11): 4077 − 4084 doi: 10.1021/acs.macromol.8b00795

    55. [55]

      Feng S, Liu C, Xu X, Liu X, Zhang L, Nian Y, Cao Y, Chen J. ACS Macro Letters, 2017, 6(11): 1310 − 1314 doi: 10.1021/acsmacrolett.7b00738

    56. [56]

      Yu X, Yang H, Wu S, Geng Y, Han Y. Macromolecules, 2012, 45(1): 266 − 274 doi: 10.1021/ma201024z

    57. [57]

      Yang H, Zhang R, Wang L, Zhang J, Yu X, Liu J, Xing R, Geng Y, Han Y. Macromolecules, 2015, 48(20): 7557 − 7566 doi: 10.1021/acs.macromol.5b01804

    58. [58]

      Liu X, Zhang C, Duan C, Li M, Hu Z, Wang J, Liu F, Li N, Brabec C J, Janssen R A J, Bazan G C, Huang F, Cao Y. J Am Chem Soc, 2018, 140(28): 8934 − 8943 doi: 10.1021/jacs.8b05038

    59. [59]

      Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell T P, Yip H L, Huang F, Cao Y. Chem Mater, 2014, 26(9): 3009 − 3017 doi: 10.1021/cm500953e

    60. [60]

      Lee W, Kim J S, Kim H J, Shin J M, Ku K H, Yang H, Lee J, Bae J G, Lee W B, Kim B J. Macromolecules, 2015, 48(16): 5563 − 5569 doi: 10.1021/acs.macromol.5b01068

    61. [61]

      Kim Y, Kim H J, Kim J S, Yun H, Park H, Han J, Kim B J. Chem Mater, 2018, 30(21): 7912 − 7921 doi: 10.1021/acs.chemmater.8b03510

    62. [62]

      Coote J P, Kim J S, Lee B, Han J, Kim B J, Stein G E. Macromolecules, 2018, 51(22): 9276 − 9283 doi: 10.1021/acs.macromol.8b01985

    63. [63]

      Facchetti A. Chem Mater, 2011, 23(3): 733 − 758 doi: 10.1021/cm102419z

    64. [64]

      Kang T E, Choi J, Cho H H, Yoon S C, Kim B J. Macromolecules, 2016, 49(6): 2096 − 2105 doi: 10.1021/acs.macromol.5b02772

    65. [65]

      Ku S Y, Brady M A, Treat N D, Cochran J E, Robb M J, Kramer E J, Chabinyc M L, Hawker C J. J Am Chem Soc, 2012, 134(38): 16040 − 16046 doi: 10.1021/ja307431k

    1. [1]

      严永新尹婷婷刘登峰刘娜殷俊朱元元吴宗铨 . 聚噻吩-b-聚喹喔啉共轭嵌段聚合物对Co2+离子的高选择性可视化检测. 高分子学报, 2015, (3): 319-325. doi: 10.11777/j.issn1000-3304.2015.140279

    2. [2]

      邓阳华肖海斌乔贺谭松庭 . 含Ullazine结构基元的共轭聚合物的合成及其光电性能研究. 高分子学报, 2017, (6): 922-929. doi: 10.11777/j.issn1000-3304.2017.16314

    3. [3]

      赵瑞阳张文思马於光 . 共轭聚合物的结构缺陷及对光电性能的影响. 高分子学报, 2011, (9): 985-1000. doi: 10.3724/SP.J.1105.2011.11115

    4. [4]

      秦江雷陈永明 . 由嵌段共聚物制备有形状的核壳结构聚合物纳米颗粒. 高分子学报, 2011, (6): 572-585. doi: 10.3724/SP.J.1105.2011.11132

    5. [5]

      于春阳李善龙李珂周永丰 . 两嵌段共聚物反相溶剂中组装结构转变动力学的模拟研究. 高分子学报, 2019, 50(0): 0-0. doi: 10.11777/j.issn1000-3304.2019.19173

    6. [6]

      王雅卓马德旺赵迎春明明吴佳丁建东 . 古紫质等光驱质子泵以及该类活性蛋白质与聚合物的功能复合材料. 高分子学报, 2012, (7): 698-713. doi: 10.3724/SP.J.1105.2012.12051

    7. [7]

      林瑞崇郭绍伟 . 调控氢键作用力在多组分嵌段共聚物共混体系中的自组装结构. 高分子学报, 2018, 0(8): 1016-1032. doi: 10.11777/j.issn1000-3304.2018.18020

    8. [8]

      刘暘谢飞石建兵佟斌支俊格董宇平 . 侧链含氨基的聚(对亚苯基亚乙炔基-对亚苯基-咔唑)三元共聚物的合成及其聚集态下荧光特性. 高分子学报, 2013, (1): 50-55. doi: 10.3724/SP.J.1105.2013.12124

    9. [9]

      李占伟贾晓溪张静孙昭艳吕中元 . 嵌段共聚物纳米结构设计的计算机模拟研究. 高分子学报, 2011, (9): 973-984. doi: 10.3724/SP.J.1105.2011.11102

    10. [10]

      耿延候睢颖 . 高迁移率共轭聚合物的直接芳基化缩聚合成. 高分子学报, 2019, 50(2): 109-117. doi: 10.11777/j.issn1000-3304.2018.18231

    11. [11]

      杨晓燕郭惠蓉张广维李盛彪赖文勇黄维 . 催化转移缩聚在可控合成共轭聚合物中的应用. 高分子学报, 2014, (5): 565-583. doi: 10.3724/SP.J.1105.2014.13410

    12. [12]

      龚颖袁倩聂静杨曙光 . 聚苯乙烯-聚(4-乙烯基吡啶)嵌段共聚物LB膜结构形态的研究. 高分子学报, 2017, (6): 967-973. doi: 10.11777/j.issn1000-3304.2017.16307

    13. [13]

      殷亮樊本虎王一丹彭文博赵志国邬俊波 . 含有呋喃衍生物的窄带隙共轭聚合物的合成及光伏性能研究. 高分子学报, 2014, (12): 1687-1692. doi: 10.11777/j.issn1000-3304.2014.14145

    14. [14]

      李超袁忠义张有地蔡春生胡昱陈义旺 . 半全氟烷基修饰的可溶萘酰亚胺类共轭聚合物的合成及表征. 高分子学报, 2018, 0(6): 712-720. doi: 10.11777/j.issn1000-3304.2017.17245

    15. [15]

      石伟马福东郑泽源杨浩鹏杨雪周健杨阳李秋霞 . 一种基于2,7-咔唑-芴交替共轭聚合物的荧光开启型汞离子光学探针. 高分子学报, 2014, (5): 672-677. doi: 10.3724/SP.J.1105.2014.13357

    16. [16]

      顾鹏程姚奕帆董焕丽胡文平 . 共轭聚合物微纳晶的制备与表征及其在场效应晶体管器件中的应用. 高分子学报, 2014, (8): 1029-1040. doi: 10.11777/j.issn1000-3304.2014.14103

    17. [17]

      江宇高垚田洪坤丁军桥耿延候王佛松 . 基于氟代异靛蓝并[7, 6-g]异靛蓝的共轭聚合物的合成及其半导体性质. 高分子学报, 2017, (7): 1141-1149. doi: 10.11777/j.issn1000-3304.2017.17022

    18. [18]

      张冬莲何矩新周学宏郑楠刘琳琳解增旗马於光 . 聚亚苯基乙烯衍生物中溶剂诱导的共轭聚合物高分子线团与可逆超分子凝胶. 高分子学报, 2019, 50(0): 1-10. doi: 10.11777/j.issn1000-3304.2019.19103

    19. [19]

      钟文楷谢锐浩应磊黄飞曹镛 . 基于萘[1, 2-c:5, 6-c]二[1, 2, 5]噻二唑共轭聚合物的高效光探测器. 高分子学报, 2018, (2): 217-222. doi: 10.11777/j.issn1000-3304.2018.17242

    20. [20]

      邓云峰鲍程田洪坤谢志元耿延候 . 含二噻吩并[3,2-b:2,3-d]氧膦杂环戊二烯共轭聚合物的 合成及其在薄膜晶体管和体异质结太阳能电池中的应用. 高分子学报, 2013, (5): 609-618. doi: 10.3724/SP.J.1105.2013.12405

  • Figure 1.  Chemical structure of PBTTT and scheme of molecular orientations (Reprinted with permission from Ref.[5]; Copyright (2013) Springer Nature)

    Figure 2.  Chemical structure of HXS-1

    Figure 3.  Chemical structure of PAFDTBT

    Figure 4.  Chemical structure of PDPP5T

    Figure 5.  Schematic overview of the phase separation processes that may occurs during drying of a solution that contains two components. L-L, L-S, and S-S are liquid-liquid, liquid-solid, and solid-solid phase separations, respectively, and D-O is disorder-order transition. (Reprinted with permission from Ref.[11]; Copyright (2013) American Chemical Society)

    Figure 6.  AD stacking and AA (DD) stacking aggregates of one-dimensional D-A polymer packing. Blue block means donor unit and red block means acceptor unit

    Figure 8.  Formation process of PDBT-TT aligned fibrillar bundles (Reprinted with permission from Ref.[16]; Copyright (2014) American Chemical Society)

    Figure 7.  Chemical structures of D-A copolymer based on oligothiophene

    Figure 9.  Scheme of P3HT:P3 (N2200) blend films for different temperature thermal annealing (Reprinted with permission from Ref.[18]; Copyright (2016) American Chemical Society)

    Figure 10.  (a) AFM height images of P3HT/PF12TBT blend films with different blend ratios and drying time. The horizontal direction represents the blend ratio of P3HT/PF12TBT ranging from 10/90 to 90/10. The vertical direction represents the varying drying time, including 20, 30 and 45 s; (b) TEM images of P3HT/PF12TBT blend films with different blend ratios (40/60, 50/50 and 60/40) and drying time (20, 30 and 45 s) (Reprinted with permission from Ref.[19]; Copyright (2015) American Chemical Society)

    Figure 11.  Illustration of the process of domain expanding and morphological evolution for P3HT/PF12TBT blend films (Reprinted with permission from Ref.[19]; Copyright (2015) American Chemical Society)

    Figure 12.  Chemical structures of polymers with strong temperature-dependent aggregation

    Figure 13.  Scheme of molecular distribution on different temperatures (Reprinted with permission from Ref.[20]; Copyright (2017) American Chemical Society)

    Figure 14.  Chemical structures of PvBDTTAZ and O-IDTBR

    Figure 15.  2D GIWAXS patterns for (a) PvBDTTAZ, (b) O-IDTBR, and (c) PvBDTTAZ:O-IDTBR films; (d) In-plane and out-of-plane GIWAXS profiles for (top to bottom) PvBDTTAZ, O-IDTBR, and PvBDTTAZ:O-IDTBR films; (e) R-SoXS profile for PvBDTTAZ:O-IDTBR film (Reprinted with permission from Ref.[21]; Copyright (2017) American Chemical Society)

    Figure 16.  Chemical structures of PffBT4T-2OD, PFBT2Th2Se, PFBT2Se2Th and PFBT4Se

    Figure 17.  Two-dimensional GIWAXD images of the (a) PFBT2Th2Se:PC71BM, (b)PFBT2Se2Th:PC71BM, and (c) PFBT4Se:PC71BM thin films (Reprinted with permission from Ref.[22]; Copyright (2017) American Chemical Society)

    Figure 18.  (a) Chemical structures of P(NDI2OD-T2) and PPDT2FBT; (b) Molecular orientations of low and high Mn donor respectively (Reprinted with permission from Ref.[23]; Copyright (2015) American Chemical Society)

    Figure 19.  Chemical structures of D-A copolymer based on dithiophene

    Figure 20.  AFM height images of polymer:PC71BM (1:2) blend films: (a) PIDT-EHNT, (b) PIDT-DTNT, and (c) PIDT-C12NT (Reprinted with permission from Ref.[25]; Copyright (2013) American Chemical Society)

    Figure 21.  Patterns of GIXD measurements (a – c), and surface morphologies measured by AFM (2 μm × 2 μm) (d – f) of the pristine and thermally annealed IFBT-TT films (Reprinted with permission from Ref.[26]; Copyright (2017) American Chemical Society)

    Figure 22.  (a) Optical spectra of copolymers in CHCl3 and in films and (b) X-ray diffraction patterns of copolymer films (Reprinted with permission from Ref.[27]; Copyright (2011) American Chemical Society)

    Figure 23.  Chemical structures of D-A copolymer based on benzothiophene and thiophene derivatives

    Figure 24.  Scheme of effect of incorporated “Nitrogen atoms” (Reprinted with permission from Ref.[28]; Copyright (2012) American Chemical Society)

    Figure 25.  2D-GIXS images of (a) PBDT-DTBTz and (b) PTIPSBDT-DTBTz films (Reprinted with permission from Ref.[29]; Copyright (2013) American Chemical Society)

    Figure 26.  Chemical structures of other D-A copolymers

    Figure 27.  Morphology analysis of the bottom surfaces of polymer films obtained from strong and weak capillary actions. Topographic images of the bottom surfaces of two deposited films approaching FDTS-treated spacer (a) and PTS-treated spacer (b) (Reprinted with permission from Ref.[31]; Copyright (2014) American Chemical Society)

    Figure 28.  GIWAXS measurements of polymer films prepared by weak and strong capillary actions: GIWAXS line profiles of the two films fabricated with FDTS- and PTS-treated spacer using constant, grazing incident angle with out-of-plane (a) and in-plane (b) scattering geometry (Reprinted with permission from Ref.[31]; Copyright (2014) American Chemical Society) (The online version is colorful.)

    Figure 29.  (a) 2D-GIWAXS patterns of PF-0 to PF-2 thin films; (b) Schematic polymer face-on and edge-on orientation of regioregular polymer PF-1b; (c) Crystal correlation length of PF-0 to PF-2 pristine films (Reprinted with permission from Ref.[35]; Copyright (2017) American Chemical Society)

    Figure 30.  Regiochemically precise PT-containing alternating copolymer structures (Reprinted with permission from Ref.[36]; Copyright (2011) American Chemical Society)

    Figure 31.  Schematic polymer stacking of two-dimensional conjugated polymers (Reprinted with permission from Ref.[37]; Copyright (2010) American Chemical Society)

    Figure 32.  Chemical structures of copolymers with electron-withdrawing groups at the end of conjugated branched chains

    Figure 33.  AFM topography (up) and phase (down) images of blend film of (a, b) PIDT-OHBPz:PC61BM (1/2, W/W), (c, d) PIDT-OFBPz:PC61BM (1/2, W/W) and (e, f) PIDT-OBPQ/PC61BM (1/2, W/W) (Reprinted with permission from Ref.[38]; Copyright (2014) American Chemical Society)

    Figure 34.  Grazing-incidence X-ray diffraction patterns of P-BNBPP-T, P-BNBPP-Se, and the reference polymers of P-BNBP-T and P-BNBPSe (Reprinted with permission from Ref.[39]; Copyright (2017) American Chemical Society)

    Figure 35.  XRD pattern of the polymer PBDT-TS1 (Reprinted with permission from Ref.[40]; Copyright (2014) American Chemical Society)

    Figure 36.  Chemical structures of copolymers based on the structural unit of benzo-dithiophene with thiophene side chain

    Figure 37.  GIXD patterns of pristine polymers and blend films (copolymer:PC71BM) before or after thermal cleavage of t-Boc groups: (a) BocPBDT-I pristine film; (b) Boc-PBDT-II pristine film; (c) Boc-PBDT-DPP pristine film; (d) Boc-PBDT-I annealed film; (e) Boc-PBDT-II annealed film and (f) Boc-PBDT-DPP annealed film (Reprinted with permission from Ref.[41]; Copyright (2015) American Chemical Society)

    Figure 38.  Tapping mode AFM images (5 μm × 5 μm) of polymer thin films as coated (a – c) and with thermal cleavage treatment by annealing at 200 °C for 10 min (d – f). (a, d) for Boc-PBDT-I; (b, e) for Boc-PBDT-II; (c), (f) for Boc-PBDT-DPP (Reprinted with permission from Ref.[41]; Copyright (2015) American Chemical Society)

    Figure 39.  X-ray diffraction (XRD) patterns of polymer films (Reprinted with permission from Ref.[42]; Copyright (2018) American Chemical Society)

    Figure 40.  Line cuts of the GIWAXS images of (a) pristine polymer films and ITIC film; (d – f) GIWAXS images of the pristine polymer film (Reprinted with permission from Ref.[43]; Copyright (2016) American Chemical Society)

    Figure 41.  Chemical structures of copolymers of benzothiophene and electron absorbing groups substituted by thiophene

    Figure 42.  GIWAXS patterns (a – f) and corresponding line-cut profiles (g) of the pristine PTzBI-O and PTzBI-O:N2200 (1:0.5, W:W) blend films spin-cast from different solutions (Reprinted with permission from Ref.[44]; Copyright (2017) American Chemical Society)

    Figure 43.  (a) AFM images of the optimized P1−P3:PC71BM blends; (b) 2D-GIWAXS patterns of the P1−P3:PC71BM BHJ blends; (c) In-plane linecut (qxy) and out-of-plane linecut (qz) of 2D-GIWAXS images (Reprinted with permission from Ref.[45]; Copyright (2017) American Chemical Society)

    Figure 44.  Chemical structures of copolymer PBDB-T and its derivatives based on substitution of thiophene with benzo-dithiophene and electron-absorbing groups

    Figure 45.  UV-Vis spectra of PBDTBDD as film and in o-DCB solution under different temperatures (inset: the color of the solution under different temperatures) (Reprinted with permission from Ref.[46]; Copyright (2012) American Chemical Society)

    Figure 46.  Chemical structures of block copolymers

    Figure 47.  GIWAXS patterns and the corresponding line cuts of the neat PNDI-Si25 and PNDI-Si50 polymers (Reprinted with permission from Ref.[55]; Copyright (2017) American Chemical Society)

    Figure 48.  AFM topography (5 μm × 5 μm) and TEM bright field images of the PBDB-T: PNDI-Si25/PNDI-Si50 blend films (Reprinted with permission from Ref.[55]; Copyright (2017) American Chemical Society)

    Figure 49.  GIWAXS patterns and the corresponding line cuts of the PBDB-T:PNDI-Si25/PNDI-Si50 blend films (Reprinted with permission from Ref.[55]; Copyright (2017) American Chemical Society)

    Figure 50.  Scheme of aggregated structure changes in heating and cooling processes (Reprinted with permission from Ref.[57]; Copyright (2015) American Chemical Society)

    Figure 51.  GIWAXS of PBDT-TAZ and NOEx pure polymers films: (a) diffraction patterns, (b) out-of-plane line-cut profiles and (c) in-plane line-cut profiles (Reprinted with permission from Ref.[58]; Copyright (2018) American Chemical Society)

    Figure 52.  GIWAXS of PBDT-TAZ:NOEx BHJ films. Diffraction patterns (a) and line-cut profiles (b) (solid line: out-of-plane line-cut profiles; dotted line: in-plane line-cut profiles) (Reprinted with permission from Ref.[58]; Copyright (2018) American Chemical Society)

    Figure 53.  TEM images of the PBDT-TAZ:NOEx blend films based on NOE0 (a1, a2), NOE10 (b1, b2), NOE20 (c1, c2), and NOE30 (d1, d2), respectively (Reprinted with permission from Ref.[58]; Copyright (2018) American Chemical Society)

    Figure 54.  GIXS images of the representative RR-controlled P3HT-b-P2VP BCPs after solution assembly of (a) RR95-VP, (b) RR80-VP, (c) RR75-VP, (d) RR65-VP and (e) RR55-VP; (f) The intensity ratio of the in-plane to out-of-plane π-π stacking peaks (Iin/Iout) of the solution-assembled BCP films plotted as a function of RR (Reprinted with permission from Ref.[61]; Copyright (2018) American Chemical Society)

    Figure 55.  GIXS images of pristine films of RR-controlled P3HT-b-P2VP copolymers: (a) RR95-VP, (b) RR80-VP, (c) RR75-VP, (d) RR65-VP and (e) RR55-VP (Reprinted with permission from Ref.[61]; Copyright (2018) American Chemical Society)

    Figure 56.  Chemical structure of P(BDTT-r-DPP)

    Figure 57.  (a) GIXS patterns of PR1 – PR5 blends with PC71BM under optimized device conditions; (b) In-plane line cuts (qxy) of the GIXS images (Reprinted with permission from Ref.[64]; Copyright (2016) American Chemical Society)

  • 加载中
图(58)
计量
  • PDF下载量:  90
  • 文章访问数:  1048
  • HTML全文浏览量:  523
  • 引证文献数: 0
文章相关
  • 通讯作者:  郑楠, zhengn@scut.edu.cn
    解增旗, msxiez@scut.edu.cn
  • 收稿日期:  2019-03-27
  • 修稿日期:  2019-04-30
  • 网络出版日期:  2019-06-21
  • 刊出日期:  2019-08-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计