ISSN 1000-3304CN 11-1857/O6

功能微纳米聚合物纤维材料

丁彬

引用本文: 丁彬. 功能微纳米聚合物纤维材料[J]. 高分子学报, 2019, (8): 764-774. doi: 10.11777/j.issn1000-3304.2019.19069 shu
Citation:  Bin DingFunctional Polymeric Micro/Nano-fibrous Materials[J]. Acta Polymerica Sinica, 2019, (8): 764-774. doi: 10.11777/j.issn1000-3304.2019.19069 shu

功能微纳米聚合物纤维材料

    作者简介: 丁彬,男,1975年生,东华大学教授、博士生导师. 1998年本科毕业于东北师范大学化学系,2003年获得韩国全北大学高分子材料系硕士学位,2005年获得日本庆应义塾大学工学部博士学位,随后在日本、美国进行博士后研究. 2008年被东华大学引进回国,先后获评上海市曙光学者(2010年)、教育部新世纪优秀人才(2011年)、国家基金委优青(2014年)、美国纤维学会杰出成就奖(2014年)、教育部长江学者特聘教授(2016年)、国家“万人计划”科技创新领军人才(2018年)等荣誉和人才计划. 主要从事微纳米纤维材料的成型理论和结构设计及其在国防军工、环境保护、柔性能源、生物医用等领域的应用研究;
    通讯作者: 丁彬, E-mail: binding@dhu.edu.cn
  • 基金项目: 国家自然科学基金(基金号51673037,51873029)资助项目

摘要: 纤维直径细化带来的尺寸效应和表面效应赋予微纳米纤维许多独特的性质,使其成为当前纤维材料领域研究的重点和前沿. 在众多的微纳米纤维加工方法中,静电纺丝法因具有可纺原料种类丰富、纤维结构可调性好、多元技术结合性强等优势而成为当前制备微纳米聚合物纤维的重要方法之一. 近年来,本课题组在静电纺微纳米聚合物纤维材料的可控加工及应用方面开展了系列研究,本专论主要介绍了其中关于超细纳米蛛网材料、致密粘连微纳米纤维膜、多级网孔纤维气凝胶的结构成型机制及其特效应用方面的工作,并对功能微纳米聚合物纤维材料的未来发展方向进行了展望.

English

    1. [1]

      Ding Bin(丁彬), Yu Jianyong(俞建勇). Functional Electrospinning Nanofibrous Materials(功能静电纺纤维材料). Beijing(北京): China Textile & Apprel Press(中国纺织出版社), 2019. 1-14

    2. [2]

      Zhang Zhitao(张智涛), Zhang Ye(张晔), Li Yiming(李一明), Peng Huisheng(彭慧胜). Acta Polymerica Sinica(高分子学报), 2016, (10): 1284 − 1299 doi: 10.11777/j.issn1000-3304.2016.16185

    3. [3]

      Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. Compos Sci Technol, 2003, 63(15): 2223 − 2253 doi: 10.1016/S0266-3538(03)00178-7

    4. [4]

      Wang X F, Ding B, Li B Y. Mater Today, 2013, 16(6): 229 − 241 doi: 10.1016/j.mattod.2013.06.005

    5. [5]

      Joshi M, Butola B S, Saha K. J Nanosci Nanotechnol, 2014, 14(1): 853 − 867 doi: 10.1166/jnn.2014.9083

    6. [6]

      Kim B S, Kim I S. Polym Rev, 2011, 51(3): 235 − 238 doi: 10.1080/15583724.2011.599507

    7. [7]

      Greiner A, Wendorff J H. Angew Chem, 2007, 46(30): 5670 − 5703 doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Li D, Xia Y N. Adv Mater, 2004, 16(14): 1151 − 1170 doi: 10.1002/adma.200400719

    9. [9]

      Ding Bin(丁彬), Yu Jianyong(俞建勇). Electrospinning and Nanofibers(静电纺丝与纳米纤维). Beijing(北京): China Textile & Apprel Press(中国纺织出版社), 2016. 3-7

    10. [10]

      Yu X, Wu X H, Si Y, Wang X F, Yu J Y, Ding B. Adv Mater Interfaces, 2019, 1800931: 1 − 19

    11. [11]

      Han Z Y, Cheng Z Q, Chen Y, Li B, Liang Z W, Li H F, Ma Y J, Feng X. Nanoscale, 2019, 11: 592 − 5950

    12. [12]

      Panda P K. T Indian Ceram Soc, 2007, 66(2): 65 − 76 doi: 10.1080/0371750X.2007.11012252

    13. [13]

      Lee J K Y, Chen N, Peng S, Li L, Tian L, Thakor N, Ramakrishna S. Prog Polym Sci, 2018, 86: 40 − 84 doi: 10.1016/j.progpolymsci.2018.07.002

    14. [14]

      Pereao O K, Bode-Aluko C, Ndayambaje G, Fatoba O, Petrik L F. J Polym Environ, 2017, 25(4): 1175 − 1189 doi: 10.1007/s10924-016-0896-y

    15. [15]

      Thavasi V, Singh G, Ramakrishna S. Energy Environ Sci, 2008, 1(2): 205 − 221 doi: 10.1039/b809074m

    16. [16]

      Ding J X, Zhang J, Li J N, Li D, Xiao C S, Xiao H H, Yang H H, Zhuang X L, Chen X S. Prog Polym Sci, 2019, 90: 1 − 34 doi: 10.1016/j.progpolymsci.2019.01.002

    17. [17]

      Ding Y, Li W, Zhang F, Liu Z, Ezazi N Z, Liu D, Santos H A. Adv Funct Mater, 2019, 29(2): 1802852 doi: 10.1002/adfm.v29.2

    18. [18]

      Yu S, Myung N V. Electroanalysis, 2018, 30(10): 2330 − 2338 doi: 10.1002/elan.v30.10

    19. [19]

      Du J, Shintay S, Zhang X. J Polym Sci, Part B: Polym Phys, 2008, 46(15): 1611 − 1618 doi: 10.1002/polb.v46:15

    20. [20]

      Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P, Yoovidhya, T. J Food Eng, 2010, 98(3): 370 − 376 doi: 10.1016/j.jfoodeng.2010.01.014

    21. [21]

      Yu J H, Fridrikh S V, Rutledge G C. Adv Mater, 2004, 16(17): 1562 − 1566 doi: 10.1002/adma.200306644

    22. [22]

      Ding B, Li C R, Miyauchi Y, Kuwaki O, Shiratori S. Nanotechnol, 2006, 17(15): 3685 − 3691 doi: 10.1088/0957-4484/17/15/011

    23. [23]

      Zhang S C, Chen K, Yu J Y, Ding B. Polymer, 2015, 74: 182 − 192 doi: 10.1016/j.polymer.2015.08.002

    24. [24]

      Zhang S C, Liu H, Tang N, Ge J L, Yu J Y, Ding B. Nat Commun, 2019, 10(1): 1458 doi: 10.1038/s41467-019-09444-y

    25. [25]

      Wang X F, Ding B, Sun G, Wang M R, Yu J Y. Prog Mater Sci, 2013, 58(8): 1173 − 1243 doi: 10.1016/j.pmatsci.2013.05.001

    26. [26]

      Hu J P, Wang X F, Ding B, Lin J Y, Yu J Y, Sun G. Macromol Rapid Commun, 2011, 32(21): 1729 − 1734 doi: 10.1002/marc.201100343

    27. [27]

      Sahay R, Teo C J, Chew Y T. J Fluid Mech, 2013, 735: 150 − 175 doi: 10.1017/jfm.2013.497

    28. [28]

      Bhardwaj N, Kundu S C. Biotechnol Adv, 2010, 28(3): 325 − 347 doi: 10.1016/j.biotechadv.2010.01.004

    29. [29]

      Jaworek A, Krupa A. J Aerosol Sci, 1999, 30(7): 873 − 893 doi: 10.1016/S0021-8502(98)00787-3

    30. [30]

      Griffiths, David J. Am J Phys, 2005, 73(6): 574 − 574

    31. [31]

      Laval G, Mercier C, Pellat R. Nucl Fusion, 1965, 5(2): 156 − 168 doi: 10.1088/0029-5515/5/2/007

    32. [32]

      Dayal P, Kyu T. J Appl Phys, 2006, 100(4): 43512 doi: 10.1063/1.2259812

    33. [33]

      Dayal P, Kyu T. Phys Fluids, 2007, 19(10): 107106 doi: 10.1063/1.2800277

    34. [34]

      Zuo F L, Zhang S C, Liu H, Fong H, Yin X, Yu J Y, Ding B. Small, 2017, 13(46): 1702139 doi: 10.1002/smll.v13.46

    35. [35]

      Zhao X L, Wang S, Yin X, Yu J Y, Ding B. Sci Rep, 2016, 6: 35472 doi: 10.1038/srep35472

    36. [36]

      Li P, Wang C Y, Zhang Y Y, Wei F. Small, 2014, 10(22): 4543 − 4561 doi: 10.1002/smll.v10.22

    37. [37]

      Maze B, Tafreshi V T, Wang Q, Pourdeyhimi B. J Aerosol Sci, 2007, 38: 550 − 570 doi: 10.1016/j.jaerosci.2007.03.008

    38. [38]

      Liu Y, Zhang G K, Zhuang X P, Li S S, Shi L, Kang W M, Cheng B W, Xu X L. Polymers, 2019, 11(2): 364 doi: 10.3390/polym11020364

    39. [39]

      Na H N, Li Q Y, Sun H, Zhao C, Yuan X Y. Polymer Eng Sci, 2009, 49(7): 1291 − 1298 doi: 10.1002/pen.v49:7

    40. [40]

      Sheng J L, Xu Y, Yu J Y, Ding B. ACS Appl Mater Interfaces, 2017, 9(17): 15139 − 15147 doi: 10.1021/acsami.7b02594

    41. [41]

      Li X, Lin J Y, Bian F G, Zeng Y C. J Polym Sci, Part B: Polym Phys, 2018, 56(1): 36 − 45 doi: 10.1002/polb.24534

    42. [42]

      Sheng J L, Zhang M, Xu Y, Yu J Y, Ding B. ACS Appl Mater Interfaces, 2016, 8(40): 27218 − 27226 doi: 10.1021/acsami.6b09392

    43. [43]

      Pelipenko J, Kristl J, Jankovic B, Baumgartner S, Kocbek P. Int J Pharmaceut, 2013, 456(1): 125 − 134 doi: 10.1016/j.ijpharm.2013.07.078

    44. [44]

      Thompson C J, Chase G G, Yarin A L, Reneker D H. Polymer, 2007, 48(23): 6913 − 6922 doi: 10.1016/j.polymer.2007.09.017

    45. [45]

      Li Y, Yang F F, Yu J Y, Ding B. Adv Mater Interfaces, 2016, 3(19): 1600516 doi: 10.1002/admi.201600516

    46. [46]

      Jiang G S, Luo L Q, Tan L, Wang J L, Zhang S X, Zhang F, Jin J. ACS Appl Mater Interfaces, 2018, 10(33): 28210 − 28218 doi: 10.1021/acsami.8b08191

    47. [47]

      Miao D Y, Huang Z, Wang X F, Yu J Y, Ding B. Small, 2018, 14(32): 1801527 doi: 10.1002/smll.v14.32

    48. [48]

      Wang J L, Raza A, Si Y, Cui L X, Ge J F, Ding B, Yu J Y. Nanoscale, 2012, 4(23): 7549 − 7556 doi: 10.1039/c2nr32883f

    49. [49]

      Zhao J, Li Y, Sheng J L, Wang X F, Liu L F, Yu J Y, Ding B. ACS Appl Mater Interfaces, 2017, 9(34): 29302 − 29310 doi: 10.1021/acsami.7b08885

    50. [50]

      Li Y, Zhu Z G, Yu J Y, Ding B. ACS Appl Mater Interfaces, 2015, 7(24): 13538 − 13546 doi: 10.1021/acsami.5b02848

    51. [51]

      Gu X Y, Li N, Cao J, Xiong J. Polym Eng Sci, 2018, 58(8): 1381 − 1390 doi: 10.1002/pen.v58.8

    52. [52]

      Guex A G, Weidenbacher L, Maniura-Weber K, Rossi R M, Fortunato G. Macromol Mater Eng, 2017, 302(10): 1700081 doi: 10.1002/mame.v302.10

    53. [53]

      Li Z L, Shen J L, Abdalla I, Yu J Y, Ding B. Nano Energy, 2017, 36: 341 − 348 doi: 10.1016/j.nanoen.2017.04.035

    54. [54]

      Lukas D, Sarkar A, Martinova L, Vodsed A, Lubasova D, Chaloupek J, Pokorny P, Mikes P, Chvojka J, Komarek M. Text Prog, 2009, 40(2): 59 − 140

    55. [55]

      Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O. Acta Biomater, 2010, 6(4): 1227 − 1237 doi: 10.1016/j.actbio.2009.10.051

    56. [56]

      Teo W E, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S. Polymer, 2007, 48(12): 3400 − 3405 doi: 10.1016/j.polymer.2007.04.044

    57. [57]

      Zhang D M, Chang J. Nano Lett, 2008, 8(10): 3283 − 3287 doi: 10.1021/nl801667s

    58. [58]

      Cai Q, Yang J A, Bei J Z, Wang S G. Biomaterials, 2002, 23(23): 4483 − 4492 doi: 10.1016/S0142-9612(02)00168-0

    59. [59]

      Si Y, Yu J Y, Tang X M, Ge J L, Ding B. Nat Commun, 2014, 5: 5802 doi: 10.1038/ncomms6802

    60. [60]

      Ding Bin(丁彬), Si Yang(斯阳), Hong Feifei(洪菲菲), Yan Chengcheng(闫成成), Wang Xueqin(王雪琴), Yu Jianyong(俞建勇). Chinese Science Bulletin(科学通报), 2015, 60(21): 1992 − 2002

    61. [61]

      Si Y, Fu Q X, Wang X Q, Zhu J, Yu J Y, Sun G, Ding B. ACS Nano, 2015, 9(4): 3791 − 3799 doi: 10.1021/nn506633b

    62. [62]

      Si Y, Wang X Q, Yan C C, Yang L, Yu J Y, Ding B. Adv Mater, 2016, 28(43): 9512 − 9518 doi: 10.1002/adma.201603143

    63. [63]

      Si Y, Wang L H, Wang X Q, Tang N, Yu J Y, Ding B. Adv Mater, 2017, 29(24): 1700339 doi: 10.1002/adma.201700339

    64. [64]

      Si Y, Wang X Q, Dou L Y, Yu J Y, Ding B. Sci Adv, 2018, 4(4): eaas8925 doi: 10.1126/sciadv.aas8925

    65. [65]

      Cao L T, Si Y, Wu Y Y, Wang X Q, Yu J Y, Ding B. Nanoscale, 2019, 11(5): 2289 − 2298 doi: 10.1039/C8NR09288E

    66. [66]

      Fu Q X, Si Y, Duan C, Yan Z S, Liu L F, Yu J Y, Di ng, B. Adv Funct Mater, 2019, 29: 1808234 doi: 10.1002/adfm.v29.13

    1. [1]

      李慧华罗丙红秦小鹏李建华周长忍 . 静电纺丝法制备PLLA/g-HNTs复合纳米纤维膜及其性能研究. 高分子学报, 2015, (1): 31-40. doi: 10.11777/j.issn1000-3304.2015.14167

    2. [2]

      赵利洁隋刚杨小平 . 静电纺丝法制备聚醚酰亚胺纤维膜的结构和介电性能研究. 高分子学报, 2012, (12): 1409-1416. doi: 10.3724/SP.J.1105.2012.12075

    3. [3]

      马利婵王娇娜李丽李从举 . 静电纺空气过滤用PET/CTS抗菌复合纳米纤维膜的制备. 高分子学报, 2015, (2): 221-227. doi: 10.11777/j.issn1000-3304.2015.14223

    4. [4]

      尚枝汪东郭靖张青松赵宁徐坚陈莉 . 静电纺丝制备自修复功能纤维及其自愈合性能表征. 高分子学报, 2015, (6): 727-732. doi: 10.11777/j.issn1000-3304.2015.14431

    5. [5]

      李武丹姚军燕张世杰陈晓 . 聚乳酸/聚苯胺/富勒烯静电纺丝纤维的制备与表征. 高分子学报, 2016, (6): 715-721. doi: 10.11777/j.issn1000-3304.2016.15297

    6. [6]

      欧洋吴青芸万灵书杨皓程徐志康 . 采用静电纺丝/非溶剂致相分离制备聚丙烯腈多孔超细纤维的研究. 高分子学报, 2013, (2): 248-254. doi: 10.3724/SP.J.1105.2013.12236

    7. [7]

      潘超栾忠奇王小娇马玲 . 静电纺苯乙烯-甲基丙烯酸共聚物纳米纤维膜固载过氧化物酶及处理多酚性能研究. 高分子学报, 2013, (12): 1508-1513. doi: 10.3724/SP.J.1105.2013.13107

    8. [8]

      刘杰王莹马赛梁节英 . 静电纺聚丙烯腈纳米纤维晶态结构及取向的形成. 高分子学报, 2012, (12): 1389-1398. doi: 10.3724/SP.J.1105.2012.12067

    9. [9]

      王娇娜马利婵李丽李从举 . 静电纺PES微球/纤维低阻力复合空气过滤膜的研究. 高分子学报, 2014, (11): 1479-1485. doi: 10.11777/j.issn1000-3304.2014.14066

    10. [10]

      王娇娜贺欢李秀艳李从举 . PA6@LDH纳米纤维膜的制备及其除Cr(Ⅵ)性能的研究. 高分子学报, 2015, (7): 778-785. doi: 10.11777/j.issn1000-3304.2015.14423

    11. [11]

      李亚南汪滨王娇娜李从举李秀艳 . PAEA纳米纤维膜的制备及除铬性能研究. 高分子学报, 2018, 0(12): 1532-1538. doi: 10.11777/j.issn1000-3304.2018.18117

    12. [12]

      汪滨张凡王娇娜李秀艳李从举 . 偕胺肟化PAN纳米纤维膜除铬性能的研究. 高分子学报, 2016, (8): 1105-1111. doi: 10.11777/j.issn1000-3304.2016.15365

    13. [13]

      袁毅穆若郡杨丹谭小丹黄荣勋李崇高谢丙清王敏庞杰 . 魔芋葡甘聚糖/聚乙烯醇纳米纤维膜及其释药行为研究. 高分子学报, 2017, (3): 498-505. doi: 10.11777/j.issn1000-3304.2017.16141

    14. [14]

      宫建龙苏博罗来盛周美华 . 双酚A分子印迹聚醚砜纳米纤维膜的制备和识别性能的研究. 高分子学报, 2011, (11): 1266-1272. doi: 10.3724/SP.J.1105.2011.10313

    15. [15]

      王振安李楠吕汪洋陈文兴 . 聚丙烯腈纳米纤维的高效制备及结晶取向性能. 高分子学报, 2018, 0(6): 755-764. doi: 10.11777/j.issn1000-3304.2017.17226

    16. [16]

      陈云妮肖琴李青音任世杰 . 静电纺丝交联凝胶聚合物电解质的制备与表征. 高分子学报, 2019, 50(0): 1-8. doi: 10.11777/j.issn1000-3304.2019.19149

    17. [17]

      徐佳瑶方萍章亚妮吕媛媛 . 钴卟啉功能化电纺纤维膜的制备及其苯胺检测应用研究. 高分子学报, 2014, (7): 983-988. doi: 10.11777/j.issn1000-3304.2014.13429

    18. [18]

      刘瑞来刘俊劭刘海清 . 聚乳酸/醋酸纤维素复合多孔超细纤维的制备. 高分子学报, 2013, (10): 1312-1318. doi: 10.3724/SP.J.1105.2013.13051

    19. [19]

      漆东岳刘延波陈威亚肖友华 . 离子浓度对电纺纤维沉积形态及表面形貌的影响. 高分子学报, 2014, (3): 293-301. doi: 10.3724/SP.J.1105.2014.13222

    20. [20]

      戚栋明张睿徐杰申兴丛吴明华杨雷 . 高分散性SiO2/PMMA复合材料的制备与表征 SiO2在纤维内的分散. 高分子学报, 2012, (11): 1257-1263. doi: 10.3724/SP.J.1105.2012.12029

  • Figure 1.  (a) Schematic diagram illustrating the formation process of electrospun micro/nano-fibers; (b) Path of jet formed by electrical instabilities (Reprinted with permissions from Ref.[10]; Copyright (2019) John Wiley & Sons)

    Figure 2.  (a) Schematic diagram of ejection models, including the major forces analysis acting on the apex of Taylor cone, and hypothetical situation simulation of ϕ electrospinning and electrospinning/netting; (b) Hypothetical equilibrium phase diagram for a polymer-solvent system. represents the polymer concentration. The symbol-lines represent the concentration sweep paths of charged droplets from various mixed solvents, whereas the open arrow $⇒ $ indicates the direction of increasing polymer concentration due to the solvent evaporation; FE-SEM images of PAA nanofibrous membranes formed with various solvent ratios of C2H5OH/H2O (c) 0/1; (d) 1/1; (e) 1/0 (Reprinted with permission from Ref.[23]; Copyright (2015) Elsevier)

    Figure 3.  (a) The schematic representation of the scale bars of flow regime (Reprinted with permission from Ref.[31]; Copyright (2016) Springer Nature); (b) Schematic showing the mechanism of slip flow; (c) Model illustrating the airflow state around the cross-sections of single fibers with different diameters (Reprinted with permission from Ref.[35]; Copyright (2016) Springer Nature); (d) Plot of pressure drop to fiber diameter of membranes with various thicknesses

    Figure 4.  (a) Schematic showing the influence of environmental relative humidity on jet stretching and solidification; SEM images of FPU/PU fibrous membranes fabricated under different relative humidity: (b) 30%, (c) 50% and (d) 70% (Reprinted with permissions from Ref.[45]; Copyright (2016) John Wiley & Sons)

    Figure 5.  (a) Schematic showing the mechanism of waterproofness in fibrous membranes (Reprinted with permissions from Ref.[45]; Copyright (2016) John Wiley & Sons); (b) Hydrostatic pressure of PU/FPU fibrous membranes fabricated from polymer solutions with various concentrations, the inset is dependence of hydrostatic pressure on dmax and θadv of fibrous membranes (Reprinted with permissions from Ref.[50]; Copyright (2015) American Chemical Society); (c) Hydrostatic pressure of the fibrous membranes with various thicknesses on a logarithmic scale; (d) Schematic showing the mechanism of water vapor transmitting across the fibrous membranes; (e) WVT rate of the PU/FPU fibrous membranes with various porosity and mean pore size; (f) WVT rate of the fibrous membranes with various thicknesses on a logarithmic scale (Reprinted with permissions from Ref.[45]; Copyright (2016) John Wiley & Sons)

    Figure 6.  Design, processing and cellular architectures of MNFAs (ρ = 9.6 mg/cm3). (a) Schematic showing the synthetic steps: (1) Flexible PAN/BA-a and SiO2 membranes are produced by electrospinning, (2) Homogeneous fiber dispersions are fabricated via high-speed homogenization, (3) Uncrosslinked MNFAs are prepared by freeze drying fiber dispersions, (4) The resultant MNFAs are prepared by the crosslinking treatment; (b) An optical photograph of MNFAs with diverse shapes; (c – e) Microscopic architecture of MNFAs at various magnifications, showing the hierarchical cellular fibrous structure; (f) Schematic representation of the dimensions of relevant structures; (Reprinted with permissions from Ref.[59]; Copyright (2014) Springer Nature)

    Figure 7.  Multifunctionality of combining the thermal insulation, sound absorption, emulsion separation and electric conduction. (a) The thermal conductivities of the MNFAs in air as a function of density; (b) Frequency dependence of the sound absorption coefficient of the MNFAs (ρ = 9.6 mg cm−3) and commercial non-wovens; (c) Separation apparatus with the facile gravity-driven separation of water-in-oil emulsions using the MNFAs (ρ = 9.6 mg cm−3); (d) Photograph of the oil collection apparatus continuously collecting pure oil from water-in-oil emulsions; (e) Rt/R0 hysteresis of the CNFAs (ρ = 5.1 mg/cm3) as a function of strain under a compressing and releasing cycle (ε = 50%). The insets show that the brightness increases on compression of the CNFAs; (f) Rt/R0 of the CNFAs when repeatedly compressed (ε = 50%) over 10 cycles (Reprinted with permissions from Ref.[59]; Copyright (2014) Springer Nature)

  • 加载中
图(8)
计量
  • PDF下载量:  270
  • 文章访问数:  1571
  • HTML全文浏览量:  789
  • 引证文献数: 0
文章相关
  • 通讯作者:  丁彬, binding@dhu.edu.cn
  • 收稿日期:  2019-04-09
  • 修稿日期:  2019-05-21
  • 网络出版日期:  2019-06-12
  • 刊出日期:  2019-08-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计