ISSN 1000-3304CN 11-1857/O6

RAFT聚合诱导自组装制备不同嵌段序列氧化响应性聚合物囊泡

郑晋文 王晓 安泽胜

引用本文: 高晶, 王伟奇, 于海军. RAFT聚合诱导自组装制备不同嵌段序列氧化响应性聚合物囊泡[J]. 高分子学报, 2019, (11): 1167-1176. doi: 10.11777/j.issn1000-3304.2019.19070 shu
Citation:  Jing Gao, Wei-qi Wang and Hai-jun Yu. Synthesis of Oxidation Responsive Vesicles with Different Block Sequences via RAFT Polymerization-induced Self-assembly[J]. Acta Polymerica Sinica, 2019, (11): 1167-1176. doi: 10.11777/j.issn1000-3304.2019.19070 shu

RAFT聚合诱导自组装制备不同嵌段序列氧化响应性聚合物囊泡

    通讯作者: 安泽胜, E-mail: anzesheng@jlu.edu.cn
摘要: 以聚N,N-二甲基丙烯酰胺(PDMA)为大分子链转移剂(macro-CTA),双丙酮丙烯酰胺(DAAM)和N-丙烯酰硫吗啉(NAT)为单体,在水和二氧六环的混合溶剂中,通过聚合诱导自组装(PISA)制备了3种不同嵌段序列的聚合物纳米颗粒,分别为PDMA-PNAT-PDAAM,PDMA-PDAAM-PNAT以及PDMA-P(NAT-co-DAAM). 核磁共振氢谱(1H-NMR)表明单体转化率在5 h内接近100%. 通过凝胶渗透色谱(GPC)对聚合物相对分子量及分子量分布进行了表征. 通过透射电子显微镜(TEM)研究了嵌段共聚物纳米颗粒的形貌转化过程以及3种聚合物囊泡在双氧水溶液中的氧化响应行为. 这种具有氧化响应性的聚合物囊泡有望为药物输送和控制释放提供合适的载体.

English

    1. [1]

      Zhang W J, Hong C Y, Pan C Y. Macromol Rapid Commun, 2019, 40(2): 1800279 doi: 10.1002/marc.201800279

    2. [2]

      Tritschler U, Pearce S, Gwyther J, Whittell G R, Manners I. Macromolecules, 2017, 50(9): 3439 − 3463 doi: 10.1021/acs.macromol.6b02767

    3. [3]

      Warren N J, Armes S P. J Am Chem Soc, 2014, 136(29): 10174 − 10185 doi: 10.1021/ja502843f

    4. [4]

      Canning S L, Smith G N, Armes S P. Macromolecules, 2016, 49(6): 1985 doi: 10.1021/acs.macromol.5b02602

    5. [5]

      Wang X, An Z. Macromol Rapid Commun, 2019, 40(2): 1800325 doi: 10.1002/marc.201800325

    6. [6]

      Yeow J, Boyer C. Adv Sci, 2017, 4(7): 1700137 doi: 10.1002/advs.v4.7

    7. [7]

      Wang X, Shen L, An Z. Prog Polym Sci, 2018, 83: 1 − 27 doi: 10.1016/j.progpolymsci.2018.05.003

    8. [8]

      Lv F, An Z, Wu P. Nat Commun, 2019, 10(1): 1397 doi: 10.1038/s41467-019-09324-5

    9. [9]

      Huo M, Zhang Y, Zeng M, Liu L, Wei Y, Yuan J. Macromolecules, 2017, 50(20): 8192 − 8201 doi: 10.1021/acs.macromol.7b01437

    10. [10]

      Guan S, Zhang C, Wen W, Qu T, Zheng X, Zhao Y, Chen A. ACS Macro Lett, 2018, 7(3): 358 − 363 doi: 10.1021/acsmacrolett.8b00082

    11. [11]

      Ding Y, Cai M, Cui Z, Huang L, Wang L, Lu X, Cai Y. Angew Chem Int Ed, 2018, 57(4): 1053 − 1056 doi: 10.1002/anie.201710811

    12. [12]

      Zhang W J, Hong C Y, Pan C Y. Macromol Rapid Commun, 2015, 36(15): 1428 − 1436 doi: 10.1002/marc.v36.15

    13. [13]

      An Z, Shi Q, Tang W, Tsung C K, Hawker C J, Stucky G D. J Am Chem Soc, 2007, 129(46): 14493 − 14499 doi: 10.1021/ja0756974

    14. [14]

      Blanazs A, Verber R, Mykhaylyk O O, Ryan A J, Heath J Z, Douglas C W I, Armes S P. J Am Chem Soc, 2012, 134(23): 9741 − 9748 doi: 10.1021/ja3024059

    15. [15]

      Wang X, Zhou J, Lv X, Zhang B, An Z. Macromolecules, 2017, 50(18): 7222 − 7232 doi: 10.1021/acs.macromol.7b01644

    16. [16]

      Wang W, Gao C, Qu Y, Song Z, Zhang W. Macromolecules, 2016, 49(7): 2772 − 2781 doi: 10.1021/acs.macromol.6b00233

    17. [17]

      Gao P, Cao H, Ding Y, Cai M, Cui Z, Lu X, Cai Y. ACS Macro Lett, 2016, 5(12): 1327 − 1331 doi: 10.1021/acsmacrolett.6b00796

    18. [18]

      Penfold N J W, Lovett J R, Warren N J, Verstraete P, Smets J, Armes S P. Polym Chem, 2016, 7(1): 79 − 88 doi: 10.1039/C5PY01510C

    19. [19]

      Canning S L, Neal T J, Armes S P. Macromolecules, 2017, 50(16): 6108 − 6116 doi: 10.1021/acs.macromol.7b01005

    20. [20]

      Deng R, Derry M J, Mable C J, Ning Y, Armes S P. J Am Chem Soc, 2017, 139(22): 7616 − 7623 doi: 10.1021/jacs.7b02642

    21. [21]

      Zhang Xuechao(张雪超), Tan Jianbo(谭剑波), Zhang Li(张力). Imaging Science and Photochemistry(影像科学与光化学), 2017, 35(6): 833 − 842 doi: 10.7517/j.issn.1674-0475.2017.05.007

    22. [22]

      Tan J, Zhang X, Liu D, Bai Y, Huang C, Li X, Zhang L. Macromol Rapid Commun, 2017, 38(13): 1600508 doi: 10.1002/marc.v38.13

    23. [23]

      Zeng M, Huo M, Feng Y, Yuan J. Macromol Rapid Commun, 2018, 39(15): 1800291 doi: 10.1002/marc.v39.15

    24. [24]

      Hou X, Guan S, Qu T, Wu X, Wang D, Chen A, Yang Z. ACS Macro Lett, 2018, 7(12): 1475 − 1479 doi: 10.1021/acsmacrolett.8b00750

    25. [25]

      Yao H, Ning Y, Jesson C P, He J, Deng R, Tian W, Armes S P. ACS Macro Lett, 2017, 6(12): 1379 − 1385 doi: 10.1021/acsmacrolett.7b00836

    26. [26]

      Penfold N J W, Lovett J R, Verstraete P, Smets J, Armes S P. Polym Chem, 2017, 8(1): 272 − 282 doi: 10.1039/C6PY01076H

    27. [27]

      Lovett J R, Warren N J, Armes S P, Smallridge M J, Cracknell R B. Macromolecules, 2016, 49(3): 1016 − 1025 doi: 10.1021/acs.macromol.5b02470

    28. [28]

      Zhang W, Shi L, Ma R, An Y, Xu Y, Wu K. Macromolecules, 2005, 38(21): 8850 − 8852 doi: 10.1021/ma050998o

    29. [29]

      Feng A, Yuan J. Macromol Rapid Commun, 2014, 35(8): 767 − 779 doi: 10.1002/marc.v35.8

    30. [30]

      Zhang W J, Hong C Y, Pan C Y. Biomacromolecules, 2016, 17(9): 2992 − 2999 doi: 10.1021/acs.biomac.6b00819

    31. [31]

      Sobotta F H, Hausig F, Harz D O, Hoeppener S, Schubert U S, Brendel J C. Polym Chem, 2018, 9(13): 1593 − 1602 doi: 10.1039/C7PY01859B

    32. [32]

      Löbling T I, Borisov O, Haataja J S, Ikkala O, Gröschel A H, Müller A H E. Nat Commun, 2016, 7: 12097 doi: 10.1038/ncomms12097

    33. [33]

      Chen Z, Cui H, Hales K, Li Z, Qi K, Pochan D J, Wooley K L. J Am Chem Soc, 2005, 127(24): 8592 − 8593 doi: 10.1021/ja050290p

    34. [34]

      Chambon P, Blanazs A, Battaglia G, Armes S P. Macromolecules, 2012, 45(12): 5081 − 5090 doi: 10.1021/ma300816m

    35. [35]

      Hennaux P, Laschewsky A. Colloid Polym Sci, 2003, 281(9): 807 − 814 doi: 10.1007/s00396-002-0830-9

    36. [36]

      Thang S H, Chong Y K, Mayadunne R T A, Moad G, Rizzardo E. Tetrahedron Lett, 1999, 40(12): 2435 − 2438 doi: 10.1016/S0040-4039(99)00177-X

    37. [37]

      Zhou W, Qu Q, Xu Y, An Z. ACS Macro Letters, 2015, 4(5): 495 − 499 doi: 10.1021/acsmacrolett.5b00225

    38. [38]

      Gonzato C, Semsarilar M, Jones E R, Li F, Krooshof G J P, Wyman P, Mykhaylyk O O, Tuinier R, Armes S P. J Am Chem Soc, 2014, 136(31): 11100 − 11106 doi: 10.1021/ja505406s

    1. [1]

      李亚民刘世勇 . 酶触发聚合物囊泡-核交联胶束转变用于响应性抗菌剂释放. 高分子学报, 2017, (7): 1178-1190. doi: 10.11777/j.issn1000-3304.2017.17035

    2. [2]

      苏志鹏谈梦婷曹艳玲石艳付志峰 . “一锅法”聚合诱导自组装制备嵌段共聚物纳米粒子. 高分子学报, 2019, 50(8): 808-815. doi: 10.11777/j.issn1000-3304.2019.19026

    3. [3]

      叶齐全郑明心陈曦李丹田卫国张军袁金颖 . 聚合原位合成含螺吡喃组装体及其光响应研究. 高分子学报, 2019, 50(4): 344-351. doi: 10.11777/j.issn1000-3304.2018.18256

    4. [4]

      王腾宋然刘念庹新林 . 一种含氟聚氨酯的聚合诱导自组装行为研究. 高分子学报, 2015, (11): 1328-1335. doi: 10.11777/j.issn1000-3304.2015.15080

    5. [5]

      刘晓霞江明 . 高分子囊泡和空心球的制备和几个研究亮点. 高分子学报, 2011, (9): 1007-1019. doi: 10.3724/SP.J.1105.2011.11169

    6. [6]

      朱煜王晓工 . 偶氮液晶嵌段共聚物自组装和光响应性研究进展. 高分子学报, 2013, (8): 962-970. doi: 10.3724/SP.J.1105.2013.13109

    7. [7]

      李志海潘俊星张进军孙敏娜郭宇琦岑建勇武海顺 . 掩膜诱导的光敏性三组分聚合物混合体系的自组装. 高分子学报, 2017, (5): 768-775. doi: 10.11777/j.issn1000-3304.2017.16270

    8. [8]

      刘婷婷王景霞宋彦丽原红星田威 . 氧化还原响应性长链超分子超支化聚合物的构筑及药物控释研究. 高分子学报, 2018, (4): 482-489. doi: 10.11777/j.issn1000-3304.2017.17132

    9. [9]

      李自法张子勇周其凤李喆 . 含液晶基元的缩聚单体及其序列嵌段共聚物的合成. 高分子学报, 1989, (2): 193-199.

    10. [10]

      罗筱烈马德柱 . 聚酯-聚酯多嵌段共聚物序列结构研究. 高分子学报, 1989, (6): 676-683.

    11. [11]

      马世营汪蓉 . 嵌段共聚物调控纳米粒子自组装的研究进展. 高分子学报, 2016, (8): 1030-1041. doi: 10.11777/j.issn1000-3304.2016.16082

    12. [12]

      张连斌王珂朱锦涛 . 中国嵌段共聚物受限自组装的研究进展. 高分子学报, 2017, (8): 1261-1276. doi: 10.11777/j.issn1000-3304.2017.17126

    13. [13]

      唐学智潘才元 . ABA三嵌段离子型共聚物的合成及溶液自组装. 高分子学报, 2008, (12): 1192-1197. doi: 10.3724/SP.J.1105.2008.01192

    14. [14]

      陈李峰何军坡 . 通过负离子与RAFT机理转换法合成嵌段序列可控的三嵌段共聚物. 高分子学报, 2015, (8): 973-981. doi: 10.11777/j.issn1000-3304.2015.15059

    15. [15]

      武星江晨张娜陈放白玮白如科 . 二维自组装聚合制备寡层有机-氧化硅纳米杂化材料. 高分子学报, 2018, 0(12): 1507-1513. doi: 10.11777/j.issn1000-3304.2018.18104

    16. [16]

      郭美琼洪海燕孙晓毅周永丰颜德岳 . 三维宏观网络状囊泡薄膜的分级自组装研究. 高分子学报, 2008, (4): 303-308. doi: 10.3724/SP.J.1105.2008.00303

    17. [17]

      马骧田禾 . 光响应超分子聚合物. 高分子学报, 2017, (1): 27-36. doi: 10.11777/j.issn1000-3304.2017.16253

    18. [18]

      王英英麻家妮崔杰韩媛媛姜伟 . 球壳受限下非对称两嵌段共聚物自组装行为的Monte Carlo模拟研究. 高分子学报, 2018, 0(8): 1116-1126. doi: 10.11777/j.issn1000-3304.2018.18058

    19. [19]

      陈鹏梁好均 . 本体柱状的线形嵌段共聚物在受限状态下的自组装结构. 高分子学报, 2009, (4): 298-308. doi: 10.3724/SP.J.1105.2009.00298

    20. [20]

      朱国全陈涛林嘉平董秀斌 . 聚肽嵌段共聚物中肽链构象对其自组装行为的影响. 高分子学报, 2006, (5): 732-735.

  • Figure 1.  Synthetic routes to M35-Nx-Dy (P2), M35-Dy-Nx (P4) and M35-[Nx-co-Dy] (P5)

    Figure 1.  TEM images of (a) M35-N40, (b) M35-N60, (c) M35-N80, (d) M35-N100 synthesized at 4.7 wt% via RAFT dispersion polymerization

    Figure 2.  TEM images of synthesized M35-N60-Dy: (a) M35-N60-D200, (b) M35-N60-D250 and (c) M35-N60-D300

    Figure 3.  TEM images of synthesized M35-Dy at various solids: (a) M35-D200, 13.0 wt%, (b) M35-D300, 13.0 wt%, (c) M35-D250, 15.2 wt%, (d) M35-D100, 16.7 wt%, (e) M35-D200, 16.7 wt% and (f) M35-D300, 16.7 wt%

    Figure 4.  TEM images of synthesized M35-Dy-N60: (a) M35-D200-N60, (b) M35-D250-N60 and (c) M35-D300-N60

    Figure 5.  GPC traces of synthesized M35-[N60-co-Dy]

    Figure 6.  TEM images of synthesized M35-[N60-co-Dy]: (a) M35-[N60-co-D200], (b) M35-[N60-co-D250] and (c) M35-[N60-co-D300]

    Figure 7.  TEM images for M35-D300-N60, M35-N60-D300 and M35-[N60-co-D300] copolymers synthesized at 18.4 wt% (a, b, c); oxidation-induced morphological degradation of M35-D300-N60, M35-N60-D300 and M35-[N60-co-D300] copolymers after 4 h (d, e, f) and 22 h (g, h, i) in H2O2 aqueous solution (10 mol/L)

    Table 1.  Synthesis of M35-N60-Dy triblock copolymers via RAFT seeded dispersion polymerization of DAAM using M35-N60 spheres a

    EntryM35-N60-DySolids b (wt%)Mn,th (kg/mol)Mn,GPC (kg/mol) (Ð)cDh (nm) (PDI)dMorphologies e
    1M35-N60-D20014.046.927.6 (1.40)204 (0.14)S
    2M35-N60-D25016.155.435.0 (1.60)861 (0.28)S + V
    3M35-N60-D30018.463.944.0 (1.65)834 (0.48)V
    a The RAFT seed polymerization of DAAM conducted at 70 °C for 4 h, [V-50]/[M35-N60] = 0.1, water/dioxane = 9/1, V/V. Near quantitive monomer conversions (> 99%) determined by 1H-NMR were achieved; b The solids (wt%) = [the sum of the mass of monomer DAAM and di-copolymer M35-N60]/[the sum of all the mass of the system]; c The Mn,GPC and MW distribution (Đ) obtained via GPC analysis; d The hydrodynamic diameter (Dh) and polydispersity (PDI) determined by DLS test; e The morphologies judged by DLS results and TEM image
    下载: 导出CSV

    Table 2.  Synthesis of M35-Dy-N60 triblock copolymers via RAFT seeded dispersion polymerization of NAT using M35-Ny nano-objects a

    EntryM35-Dy-N60Solids b (wt%)Mn,th (kg/mol)Mn,GPC (kg/mol) (Ð) cDh (nm) (PDI) dMorphologies e
    1M35-D200-N6014.046.951.2 (1.33)853 (0.24)V
    2M35-D250-N6016.155.460.2 (1.35)840 (0.29)V
    3M35-D300-N6018.463.984.1 (1.41)953 (0.51)V
    a The RAFT seeded dispersion polymerization of NAT conducted at 70 °C for 5 h, [V-50]/[M35-Dy] = 0.3, water/dioxane = 9/1, V/V. Near quantitive monomer conversions (> 99%) determined by 1H-NMR were achieved; b The solids (w/v) = [The sum of the mass of monomer NAT and di-copolymer M35-Dy]/[total volume of mixed solvents]; c The Mn,GPC and MW distribution (Đ) obtained via GPC analysis; d The hydrodynamic diameter (Dh) and polydispersity (PDI) determined by DLS test; e The morphologies judged by DLS results and TEM images
    下载: 导出CSV

    Table 3.  Synthesis of M35-[N60-co-Dy] copolymers via RAFT dispersion copolymerization of NAT and DAAM using PDMA35 macro-CTA a

    EntrySolids (wt%)[NAT]/
    [PDMA35]
    [DAAM]/
    [PDMA35]
    Conv.
    (%)
    Mn,th (kg/mol)Mn,GPC
    (kg/mol)(Ð)b
    Dh (nm)(PDI)cMorphologies d
    114.060200 > 9946.952.0 (1.18)260 (0.11)V
    216.160250 > 9955.456.8 (1.23)297 (0.17)V
    318.460300 > 9963.975.3 (1.23)556 (0.23)V
    a The RAFT dispersion polymerization of NAT and DAAM conducted at 70 °C for 5 h, [V-50]/[PDMA35] = 0.2, water/dioxane = 9/1, V/V. Near quantitive monomer conversions (> 99%) determined by 1H-NMR were achieved; b The Mn,GPC and MW distribution (Đ) obtained via GPC analysis; c The hydrodynamic diameter (Dh) and polydispersity (PDI) determined by DLS test; d The morphologies were judged by DLS results and TEM images.
    下载: 导出CSV
  • 加载中
图(9)表(3)
计量
  • PDF下载量:  50
  • 文章访问数:  876
  • HTML全文浏览量:  567
  • 引证文献数: 0
文章相关
  • 通讯作者:  安泽胜, anzesheng@jlu.edu.cn
  • 收稿日期:  2019-04-09
  • 修稿日期:  2019-06-03
  • 刊出日期:  2019-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计