ISSN 1000-3304CN 11-1857/O6

泊肃叶流中环形高分子的迁移行为及与线性高分子的差异

杨镇岳 陈文多 刘立军 陈继忠

引用本文: 高晶, 王伟奇, 于海军. 泊肃叶流中环形高分子的迁移行为及与线性高分子的差异[J]. 高分子学报, 2019, (11): 1229-1238. doi: 10.11777/j.issn1000-3304.2019.19074 shu
Citation:  Jing Gao, Wei-qi Wang and Hai-jun Yu. Migration of Ring Polymers in Poiseuille Flow and Comparison with Linear Polymers[J]. Acta Polymerica Sinica, 2019, (11): 1229-1238. doi: 10.11777/j.issn1000-3304.2019.19074 shu

泊肃叶流中环形高分子的迁移行为及与线性高分子的差异

    通讯作者: 陈文多, E-mail: wdchen@ciac.ac.cn 陈继忠, E-mail: jzchen@ciac.ac.cn
摘要: 采用多粒子碰撞动力学与分子动力学相耦合的模拟方法,研究了圆管内环形链的迁移行为和构象性质,并与线形链的结果相比较. 模拟结果表明环形链随着流场强度的增加向圆管中心迁移,该现象是流体力学相互作用导致,而非剪切梯度. 剔除流体力学相互作用,发现环形链沿流场方向的拉伸程度比含流体力学相互作用时更大. 给定流场强度,环形链链长越长,与管壁之间的流体力学相互作用越强,导致其在圆管中心附近出现的概率更高. 通过比较相同平衡态尺寸和链长的环形链和线形链在圆管中的迁移行为和构象性质,发现线形链沿流场方向的拉伸比环形链更强,导致其更易向管壁方向发生迁移,因此线形链在圆管中心附近出现的概率低于环形链.

English

    1. [1]

      Witz G, Rechendorff K, Adamcik J, Dietler G. Phys Rev Lett, 2011, 106: 248301 doi: 10.1103/PhysRevLett.106.248301

    2. [2]

      Jung Y, Jeon C, Kim J, Jeong H, Jun S, Ha B Y. Soft Matter, 2012, 8: 2095 − 2102 doi: 10.1039/C1SM05706E

    3. [3]

      Levy M S, O'Kennedy R D, Shamlou P A, Dunnill P. Trends Biotechnol, 2000, 18: 296 − 305 doi: 10.1016/S0167-7799(00)01446-3

    4. [4]

      Vafabakhsh R, Ha T. Science, 2012, 337: 1097 − 1101 doi: 10.1126/science.1224139

    5. [5]

      Gebhardt J C M, Bornschlogl T, Rief M. Proc Natl Acad Sci, 2010, 107: 2013 − 2018 doi: 10.1073/pnas.0909854107

    6. [6]

      Lasda E, Parker R. RNA, 2014, 20: 1829 − 1842 doi: 10.1261/rna.047126.114

    7. [7]

      Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, Li B, Zhang C, Duan C. J Hematol Oncol, 2017, 10: 1 − 8 doi: 10.1186/s13045-016-0379-6

    8. [8]

      Weiss L B, Nikoubashman A, Likos C N. ACS Macro Letters, 2017, 6: 1426 − 1431 doi: 10.1021/acsmacrolett.7b00768

    9. [9]

      Saintillan D, Shaqfeh E S G, Darve E. J Fluid Mech, 2006, 557: 297 − 306 doi: 10.1017/S0022112006000243

    10. [10]

      Hsiao K W, Schroeder C M, Sing C E. Macromolecules, 2016, 49: 1961 − 1971 doi: 10.1021/acs.macromol.5b02357

    11. [11]

      Chelakkot R, Winkler R G, Gompper G. J Phys: Condens Matter, 2011, 23: 184117 doi: 10.1088/0953-8984/23/18/184117

    12. [12]

      Hernández-Ortiz J P, Ma H, de Pablo J J, Graham M D. Phys Fluids, 2006, 18: 123101 doi: 10.1063/1.2397571

    13. [13]

      Xu X, Chen J, An L. Sci China Chem, 2017, 60: 1609 − 1616 doi: 10.1007/s11426-017-9129-3

    14. [14]

      Steinhauser D, Köster S, Pfohl T. ACS Macro Letters, 2012, 1: 541 − 545 doi: 10.1021/mz3000539

    15. [15]

      Fang L, Hu H, Larson R G. J Rheol, 2005, 49: 127 − 138 doi: 10.1122/1.1822930

    16. [16]

      Fang L, Larson R G. Macromolecules, 2007, 40: 8784 − 8787 doi: 10.1021/ma0626315

    17. [17]

      Ma H, Graham M D. Phys Fluids, 2005, 17: 083103 doi: 10.1063/1.2011367

    18. [18]

      Butler J E, Usta O B, Kekre R, Ladd A J C. Phys Fluids, 2007, 19: 113101 doi: 10.1063/1.2801409

    19. [19]

      Fan X, Phan-Thien N, Yong N T, Wu X, Xu D. Phys Fluids, 2003, 15: 11 − 21 doi: 10.1063/1.1522750

    20. [20]

      Usta O B, Ladd A J C, Butler J E. J Chem Phys, 2005, 122: 094902 doi: 10.1063/1.1854151

    21. [21]

      Usta O B, Butler J E, Ladd A J C. Phys Fluids, 2006, 18: 031703 doi: 10.1063/1.2186591

    22. [22]

      Guo Jiayi(郭佳意), Li Xuejin(李学进), Liang Haojun(梁好均). Acta Polymerica Sinica(高分子学报), 2012, (2): 160 − 167 doi: 10.3724/SP.J.1105.2012.11117

    23. [23]

      Xu Shaofeng(许少锋), Wang Jiugen(汪久根). Acta Polymerica Sinica(高分子学报), 2015, (3): 346 − 355 doi: 10.11777/j.issn1000-3304.2015.14290

    24. [24]

      Jendrejack R M, Dimalanta E T, Schwartz D C, Graham M D, de Pablo J J. Phys Rev Lett, 2003, 91: 038102 doi: 10.1103/PhysRevLett.91.038102

    25. [25]

      Jendrejack R M, Schwartz D C, Graham M D, de Pablo J J. J Chem Phys, 2003, 119: 1165 − 1173 doi: 10.1063/1.1575200

    26. [26]

      Jendrejack R M, Schwartz D C, de Pablo J J, Graham M D. J Chem Phys, 2004, 120: 2513 − 2529 doi: 10.1063/1.1637331

    27. [27]

      Khare R, Graham M D, de Pablo J J. Phys Rev Lett, 2006, 96: 224505 doi: 10.1103/PhysRevLett.96.224505

    28. [28]

      Weeks J D, Chandler D, Andersen H C. J Chem Phys, 1971, 54: 5237 − 5247 doi: 10.1063/1.1674820

    29. [29]

      Kremer K, Grest G S. J Chem Phys, 1990, 92: 5057 − 5086 doi: 10.1063/1.458541

    30. [30]

      Malevanets A, Kapral R. J Chem Phys, 1999, 110: 8605 − 8613 doi: 10.1063/1.478857

    31. [31]

      Mussawisade K, Ripoll M, Winkler R G, Gompper G. J Chem Phys, 2005, 123: 144905 doi: 10.1063/1.2041527

    32. [32]

      Ripoll M, Winkler R G, Gompper G. Phys Rev Lett, 2006, 96: 188302 doi: 10.1103/PhysRevLett.96.188302

    33. [33]

      Gompper G, Ihle T, Winkler R. Adv Polym Sci, 2009, 221: 1 − 87

    34. [34]

      Liu L, Chen J, Chen W, Li L, An L. Sci China Chem, 2014, 57: 1048 − 1052

    35. [35]

      Ihle T, Kroll D. Phys Rev E, 2003, 67: 066705 doi: 10.1103/PhysRevE.67.066705

    36. [36]

      Ripoll M, Winkler R G, Gompper G. Eur Phys J E, 2007, 23: 349 − 354 doi: 10.1140/epje/i2006-10220-0

    37. [37]

      Padding J, Louis A. Phys Rev E, 2006, 74: 031402

    38. [38]

      Lamura A, Gompper G, Ihle T, Kroll D M. Europhys Lett, 2001, 56: 319 − 325 doi: 10.1209/epl/i2001-00522-9

    39. [39]

      Huang C C, Chatterji A, Sutmann G, Gompper G, Winkler R G. J Comput Phys, 2010, 229: 68 − 177

    40. [40]

      Chelakkot R, Winkler R G, Gompper G. Europhys Lett, 2010, 91: 14001 doi: 10.1209/0295-5075/91/14001

    41. [41]

      Wen X, Zhang D, Zhang L. Polymer, 2012, 53: 873 − 880 doi: 10.1016/j.polymer.2011.12.048

    42. [42]

      Bolintineanu D S, Lechman J B, Plimpton S J, Grest G S. Phys Rev E, 2012, 86: 066703 doi: 10.1103/PhysRevE.86.066703

    43. [43]

      Busse W F. Phys Today, 1964, 17: 32 − 41

    44. [44]

      Metzner A B, Cohen Y, Rangel-Nafaile C. J Non-Newtonian Fluid Mech, 1979, 5: 449 − 462 doi: 10.1016/0377-0257(79)85029-6

    45. [45]

      Millan J A, Jiang W, Laradji M, Wang Y. J Chem Phys, 2007, 126: 124905 doi: 10.1063/1.2711435

    1. [1]

      阮永金王振华卢宇源安立佳 . 高分子动力学的单链模型. 高分子学报, 2017, (5): 727-743. doi: 10.11777/j.issn1000-3304.2017.16320

    2. [2]

      郭佳意李学进梁好均 . 流场驱动高分子链迁移穿过微通道的耗散粒子动力学模拟. 高分子学报, 2012, (2): 160-167. doi: 10.3724/SP.J.1105.2012.11117

    3. [3]

      许少锋汪久根 . 高分子链在微通道剪切流中的迁移机制及浓度的影响. 高分子学报, 2015, (3): 346-355. doi: 10.11777/j.issn1000-3304.2015.14290

    4. [4]

      朱子霆高欢欢胡文兵 . 环形高分子单链塌缩的熔球中间态及其热力学解释. 高分子学报, 2017, (9): 1471-1478. doi: 10.11777/j.issn1000-3304.2017.17055

    5. [5]

      L.deBrouckère . 链柔性与相互作用对高分子溶液的介电性质和热力学性质的影响. 高分子学报, 1965, 7(2): 127-148.

    6. [6]

      侯甲子张万喜李莉莉 . 流场中单链高分子过孔输运的动力学行为. 高分子学报, 2015, (10): 1196-1200. doi: 10.11777/j.issn1000-3304.2015.15069

    7. [7]

      李连伟金帆何卫东吴奇 . 不同拓扑结构高分子链在拉伸流场下如何穿过柱状纳米小孔?. 高分子学报, 2014, (1): 1-21. doi: 10.3724/SP.J.1105.2014.13390

    8. [8]

      李险峰袁学锋步怀天赵得禄 . 拉格朗日-欧拉方法模拟高分子复杂流体平面绕流. 高分子学报, 2000, (5): 521-525.

    9. [9]

      孙若讷吴永洋柴志宽 . 应用反气相色谱法研究高分子-溶剂相互作用. 高分子学报, 1987, (4): 287-291.

    10. [10]

      王禹章林溪 . 拉伸分子动力学方法研究高分子单链的吸附现象. 高分子学报, 2008, (3): 216-220. doi: 10.3724/SP.J.1105.2008.00216

    11. [11]

      张文科 . 单分子水平高分子相互作用的AFM成像与单分子力谱研究. 高分子学报, 2011, (9): 913-922. doi: 10.3724/SP.J.1105.2011.11124

    12. [12]

      陈生辉孙霜青Steven R Gwaltney李春玲王秀民胡松青 . 碳纳米纤维与环氧树脂单体相互作用的分子动力学模拟. 高分子学报, 2015, (10): 1158-1164. doi: 10.11777/j.issn1000-3304.2015.15053

    13. [13]

      李明章林溪 . 三维吸附紧密高分子单链的力学性质研究. 高分子学报, 2007, (4): 343-348.

    14. [14]

      沈瑜张朝云章林溪 . 受限于平行界面之间高分子链力学行为的研究. 高分子学报, 2007, (2): 108-113.

    15. [15]

      陈英才王 超罗孟波 . 平行板间高分子链构象熵的动力学Monte Carlo模拟. 高分子学报, 2010, (9): 1082-1087. doi: 10.3724/SP.J.1105.2010.09326

    16. [16]

      叶宝彤蔡智吴婧林欣陈荆晓陈敬华 . 含磺酸基半乳糖高分子的合成及与凝集素相互作用研究. 高分子学报, 2018, (4): 490-498. doi: 10.11777/j.issn1000-3304.2017.17138

    17. [17]

      丁小斌孙宗华万国祥江英彦 . 热敏性磁性高分子微球同蛋白质的相互作用. 高分子学报, 2000, (1): 9-13.

    18. [18]

      张继堂李思佳梁继才石彤非张万喜 . 双分散高分子薄膜中短链对长链缠结和动力学的影响. 高分子学报, 2016, (12): 1752-1757. doi: 10.11777/j.issn1000-3304.2016.16214

    19. [19]

      张恒胡立梅蔺存国王利苑世领 . 溶菌酶蛋白与聚合物防污膜相互作用的分子动力学模拟. 高分子学报, 2014, (1): 99-106. doi: 10.3724/SP.J.1105.2014.13164

    20. [20]

      周嘉嘉 . 耗散粒子动力学和纳维边界条件在微米纳米流体力学模拟中的应用. 高分子学报, 2016, (8): 1021-1029. doi: 10.11777/j.issn1000-3304.2016.16070

  • Figure 1.  Velocity profiles of the fluid along the flow direction (x axis) in the tube (The solid lines indicate the theoretical velocity profiles in the tube, obtained from Eq.(12).)

    Figure 2.  Center-of-mass distributions of ring polymers of N = 40 in the tube. The colors of points correspond to the flow strengths g = 0kBT/ (black), 0.001kBT/ (red), 0.005kBT/ (green) and 0.02kBT/ (blue). Inset: Center-of-mass distributions of ring polymers of N = 40 in the tube without hydrodynamic interactions. The colors of points correspond to the flow strengths g = 0kBT/ with (black) and without (purple) hydrodynamic interactions, and g = 0.02kBT/ with (blue) and without (orange) hydrodynamic interactions. (The online version is colorful.)

    Figure 3.  Widths of center-of-mass distributions of ring polymers of N = 40 as a function of flow strength g. The colors of points correspond to the systems with (black) and without (red) hydrodynamic interactions. (The online version is colorful.)

    Figure 4.  Distributions of the normalized components of radius of gyration along (a) flow and (b) radial directions in the case of ring polymers of N = 40 in the tube. The colors of points correspond to the flow strengths g = 0.00001kBT/ (black), 0.005kBT/ (red), 0.01kBT/ (green) and 0.02kBT/ (blue). (The online version is colorful.)

    Figure 5.  The normalized components of radius of gyration along (a) flow and (b) radial directions in the case of ring polymers of N = 40 in the tube as a function of the flow strength g. The colors of points correspond to the systems with (black) and without (red) hydrodynamic interactions. Inset: the distributions of the components of radius of gyration along (a) flow and (b) radial directions of the ring polymer of N = 40 in the tube. The colors of points correspond to the flow strengths g = 0.00001kBT/ (green) and 0.02kBT/ (blue) in the system with hydrodynamic interactions, and g = 0.00001kBT/ (purple) and 0.02kBT/ (gold) in the system without hydrodynamic interactions. (The online version is colorful.)

    Figure 6.  Normalized widths of center-of-mass distributions of ring polymers as a function of flow strength g. The colors of points correspond to the chain length N = 10 (black), 20 (red), 40 (green), 60 (blue), 80 (purple). Inset: The flow strength g in which the ring polymer chain starts to migrate to the center of the tube as a function of the chain length N. (The online version is colorful.)

    Figure 7.  Center-of-mass distributions of ring polymers for the case of g = 0.02kBT/

    Figure 8.  Normalized widths of center-of-mass distributions of ring polymers of N = 40 (black), and linear polymers of N = 25 (red) and 40 (green) as a function of flow strength g (The online version is colorful.)

    Figure 9.  Center-of-mass distributions of ring polymers and linear polymers for the case of g = 0.02kBT/. The colors of points correspond to the ring polymer of N = 40 (black), and linear polymers of N = 25 (red) and 40 (green). (The online version is colorful.)

    Figure 10.  The normalized components of radius of gyration along (a) flow and (b) radial directions as a function of flow strength g in the tube. The colors correspond to the cases of ring polymers of N = 40 (black), and linear polymers of N = 25 (red) and 40 (green). (The online version is colorful.)

    Figure 11.  Distributions of the normalized components of radius of gyration along (a) flow and (b) radial directions in the cases of ring polymers of N = 40 (black), and linear polymers of N = 25 (red) and 40 (green) in the tube. (The online version is colorful.)

    Table 1.  The radius of gyration〈 Rg 〉of the ring and linear polymers

    N = 10N = 20N = 40N = 60
    Rg1.3σ2.0σ3.1σ4.0σ
    N = 80N = 25N = 40
    Rg4.8σ3.0σ4.1σ
    下载: 导出CSV
  • 加载中
图(12)表(1)
计量
  • PDF下载量:  19
  • 文章访问数:  564
  • HTML全文浏览量:  372
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计