ISSN 1000-3304CN 11-1857/O6

基于氯硅烷功能化非共轭α,ω-双烯烃和Ziegler-Natta催化剂合成长链支化聚丙烯

周杭生 李康 秦亚伟 董金勇

引用本文: 高晶, 王伟奇, 于海军. 基于氯硅烷功能化非共轭α,ω-双烯烃和Ziegler-Natta催化剂合成长链支化聚丙烯[J]. 高分子学报, 2019, (11): 1177-1186. doi: 10.11777/j.issn1000-3304.2019.19078 shu
Citation:  Jing Gao, Wei-qi Wang and Hai-jun Yu. Synthesis of Long Chain-branched Polypropylene Based on Dichlorosilane-functionalized Nonconjugated α,ω-Diolefin and Ziegler-Natta Catalyst[J]. Acta Polymerica Sinica, 2019, (11): 1177-1186. doi: 10.11777/j.issn1000-3304.2019.19078 shu

基于氯硅烷功能化非共轭α,ω-双烯烃和Ziegler-Natta催化剂合成长链支化聚丙烯

    通讯作者: 秦亚伟, E-mail: ywqin@iccas.ac.cn 董金勇, E-mail: jydong@iccas.ac.cn
摘要: 通过设计合成新型含二氯硅烷基团功能化α,ω-双烯烃,以二氯硅烷在水或醇引发下缩合形成不同聚合物链之间的连接,替代通过直接α,ω-双烯烃/丙烯共聚合形成长链支化结构,为基于Ziegler-Natta催化剂合成长链支化聚丙烯提供新方法. 结果表明,新型功能化α,ω-双烯烃不会造成催化剂活性降低,二氯硅烷基团在水蒸汽处理和甲醇处理条件下都可有效促进聚合物链间连接形成支化. 所得到的长链支化聚丙烯样品在凝胶渗透色谱(GPC)测试中表现出Mark-Houwink曲线偏离线性,在熔体流变测试中出现零切黏度升高、剪切变稀指数降低以及应变硬化等典型特征.

English

    1. [1]

      Wang Hongying(王红英), Hu Xuteng(胡徐腾), Li Zhenyu(李振宇), Yi Jianjun(义建军), Dong Jinyong(董金勇). Prog Chem(化学进展), 2007, 19(6): 932 − 958

    2. [2]

      Borsig E, van Duin M, Gotsis A D, Picchioni F. Eur Polym J, 2008, 44(1): 200 − 212 doi: 10.1016/j.eurpolymj.2007.10.008

    3. [3]

      Shamiri A, Chakrabarti M H, Jahan S, Hussain M A, Kaminsky W, Aravind P V, Yehye W A. Materials (Basel), 2014, 7(7): 5069 − 5108 doi: 10.3390/ma7075069

    4. [4]

      Yoshii F, Makuuchi K, Kikukawa S, Tanaka T, Saitoh J, Koyama K. J Appl Polym Sci, 1996, 60(4): 617 − 623 doi: 10.1002/(ISSN)1097-4628

    5. [5]

      Ratzsch M, Arnold M, Borsig E, Bucka H, Reichelt N. Prog Polym Sci, 2002, 27(7): 1195 − 1282 doi: 10.1016/S0079-6700(02)00006-0

    6. [6]

      Hamielec A E, Soares J B P. Prog Polym Sci, 1996, 21(4): 651 − 706 doi: 10.1016/0079-6700(96)00001-9

    7. [7]

      Braunschweig H, Breitling F M. Coord Chem Rev, 2006, 250(21-22): 2691 − 2720 doi: 10.1016/j.ccr.2005.10.022

    8. [8]

      Bernasconi E, Greco F, Longi P, Valvassori A. US patent, C08g, 3658770. 1972

    9. [9]

      Shi Jianjun(师建军), Qin Yawei(秦亚伟), Niu Hui(牛慧), Dong Jinyong(董金勇). Petrochem Technol(石油化工), 2014, 43(6): 618 − 624

    10. [10]

      Naga N, Shiono T, Ikeda T. Macromolecules, 1999, 32(5): 1348 − 1355 doi: 10.1021/ma9814144

    11. [11]

      Yang T T, Qin Y W, Dong J Y. Macromolecules, 2018, 51(22): 9234 − 9249 doi: 10.1021/acs.macromol.8b01958

    12. [12]

      Lai Guoqiao(来国桥), Xing Songmin(幸松民). Orgaonsilane Productions and Applications(有机硅产品合成工艺及应用). Beijing(北京): Chemical Industry Press(化学工业出版社), 2009. 334 – 342

    13. [13]

      Smith A L. Spectrochimica Acta, 1960, 16(1-2): 87 − 105 doi: 10.1016/0371-1951(60)80074-4

    14. [14]

      Harris G I. J Chem Soc B, 1970, (3): 492 − 496

    15. [15]

      Tian J H, Yu W, Zhou C X. Polymer, 2006, 47(23): 7962 − 7969 doi: 10.1016/j.polymer.2006.09.042

    16. [16]

      Larson R G. Macromolecules, 2001, 34(13): 4556 − 4571 doi: 10.1021/ma000700o

    17. [17]

      van Ruymbeke E, Keunings R, Stephenne V, Hagenaars A, Bailly C. Macromolecules, 2002, 35(7): 2689 − 2699 doi: 10.1021/ma011271c

    18. [18]

      Gabriel C, Munstedt H. Rheol Acta, 2002, 41(3): 232 − 244 doi: 10.1007/s00397-001-0219-6

    19. [19]

      Kolodka E, Wang W J, Zhu S P, Hamielec A E. Macromolecules, 2002, 35(27): 10062 − 10070 doi: 10.1021/ma021171m

    20. [20]

      El Mabrouk K, Parent J S, Chaudhary B I, Cong R J. Polymer, 2009, 50(23): 5390 − 5397 doi: 10.1016/j.polymer.2009.09.066

    1. [1]

      张孟佳王莉洪柳婷秦亚伟董金勇 . 同步交联对高乙丙橡胶含量聚丙烯多相共聚物的粒子形态控制作用. 高分子学报, 2019, 50(0): 1-8. doi: 10.11777/j.issn1000-3304.2019.19115

    2. [2]

      马琳秦亚伟董金勇 . 极少量1,4-戊二烯对典型Ziegler-Natta催化剂催化的丙烯聚合反应及聚丙烯性质的影响. 高分子学报, 2015, (4): 410-417. doi: 10.11777/j.issn1000-3304.2015.14309

    3. [3]

      尹学敏秦亚伟张丽洋马帅董金勇 . 氢气对氯硅烷功能化非共轭α,ω-双烯烃和丙烯共聚物链结构的影响. 高分子学报, 2019, 50(0): 0-0. doi: 10.11777/j.issn1000-3304.2019.19187

    4. [4]

      王方蒋斌波王靖岱阳永荣 . 结构化纳米Ziegler-Natta催化剂制备超高分子量聚乙烯. 高分子学报, 2013, (8): 985-992. doi: 10.3724/SP.J.1105.2013.12321

    5. [5]

      常贺飞任士通郑涛党小飞杨渊张辽云李化毅 . 硅烷类外给电子体的取代基变化对丙烯聚合影响的研究. 高分子学报, 2013, (2): 199-207. doi: 10.3724/SP.J.1105.2013.12198

    6. [6]

      马琳秦亚伟董金勇 . 极少量1,5-己二烯改善聚丙烯树脂热稳定性研究. 高分子学报, 2014, (12): 1593-1599. doi: 10.11777/j.issn1000-3304.2014.14111

    7. [7]

      张振江唐涛祝丽荔魏凯乔磊 . 长链支化聚丙烯结晶行为及发泡性能研究. 高分子学报, 2016, (4): 457-463. doi: 10.11777/j.issn1000-3304.2016.15227

    8. [8]

      任合刚杨敏李化毅刘盘阁刘宾元胡友良王延吉 . 氨基硅烷外给电子体用于1-丁烯聚合的研究. 高分子学报, 2011, (12): 1412-1418. doi: 10.3724/SP.J.1105.2011.10367

    9. [9]

      董小芳任合刚刘智博段中余杨敏石艳红侯凯湖刘宾元 . 稀土-成核剂对1-丁烯本体聚合和产物 聚(1-丁烯)结晶性能的影响. 高分子学报, 2014, (10): 1356-1363. doi: 10.11777/j.issn1000-3304.2014.14024

    10. [10]

      黄启谷刘智刘伟娇义建军张新莉高克京黄海兵刘伟甄洪鹏杨万泰 . 球形氯化镁-乙醇络合物纳米颗粒的制备及其自组装. 高分子学报, 2012, (8): 883-886. doi: 10.3724/SP.J.1105.2012.11387

    11. [11]

      范志强封麟先杨士林 . 用乙酰氯淬灭法测定Ziegler-Natta催化剂的活性中心数. 高分子学报, 1991, (4): 503-507.

    12. [12]

      徐德民张明革韩世敏胡友良 . 用无外给电子体Ziegler-Natta催化剂催化丙烯聚合的研究. 高分子学报, 2001, (2): 191-194.

    13. [13]

      徐志康封麟先杨士林 . Ziegler-Natta催化乙烯/长链1-烯烃共聚合——长链1-烯烃的共聚活性. 高分子学报, 1993, (5): 633-635.

    14. [14]

      董诚牛慧董金勇 . 三乙基铝调控的Ziegler-Natta/茂金属复合催化剂制备聚丙烯催化合金. 高分子学报, 2014, (8): 1143-1152. doi: 10.11777/j.issn1000-3304.2014.14090

    15. [15]

      楼均勤刘小燕傅智盛王齐徐君庭范志强 . 2,6-二异丙基苯酚改性负载型Ziegler-Natta催化剂及其乙烯-1-己烯共聚反应. 高分子学报, 2009, (8): 748-755. doi: 10.3724/SP.J.1105.2009.00748

    16. [16]

      嵇显忠逄束芬孙涛单成基杨继华 . 稀土-其它过渡金属混合催化剂用于共轭双烯烃的聚合——Ⅳ.(NdCl3+FeCl3)·nphen-HAI(i-Bu)2体系对异戊二烯的聚合. 高分子学报, 1991, (2): 129-133.

    17. [17]

      杨渊姚军燕党小飞李化毅胡友良 . 内给电子体对Ziegler-Natta催化剂性能的影响. 高分子学报, 2013, (4): 511-517. doi: 10.3724/SP.J.1105.2013.12268

    18. [18]

      胡友良韩世敏刘焕勤张书清 . 高活性载体Ziegler-Natta催化剂的研究. 高分子学报, 1992, (4): 495-499.

    19. [19]

      范丽娜杜丽君黄海波张乐天蒋斌波王靖岱阳永荣 . 核壳结构Ziegler-Natta复合催化剂的制备及其乙烯聚合. 高分子学报, 2010, (8): 981-986. doi: 10.3724/SP.J.1105.2010.09293

    20. [20]

      柳忠阳贾明郭存悦贺大为胡友良 . 双功能催化剂体系催化乙烯原位聚合制备长链支化聚乙烯研究. 高分子学报, 2001, (6): 751-754.

  • Figure 1.  Schematic of condensation mechanisms for LCBPP synthesis incorporating both α,ω-diolefin copolymerization and dichlorosilane

    Figure 2.  (a) 1H-NMR and (b) 29Si-NMR spectra of di-5- hexenyldichlorosilane

    Figure 3.  1H-NMR spectra of (a) homo-PP (control run in Table 1) and DHDCS/propylene copolymer samples with increasing DHDCS concentrations of (b) 0.5 mmol/L (run 1 in Table 1), (c) 1.0 mmol L–1 (run 2 in Table 1), (d) 2.5 mmol L–1 (run 3 in Table 1), (e) 5.0 mmol L–1 (run 4 in Table 1), and (f) 10.0 mmol L–1 (run 5 in Table 1). All copolymer samples were post-treated with methanol.

    Figure 4.  FTIR spectra of (a) homo-PP (control run in Table 1) and three di-5-hexenyldichlorosilane/propylene copolymer samples (run 5 in Table 1) post-treated by (b) methanol and (c) water vapor as referenced to (d) DHDCS

    Figure 6.  Mark-Houwink curve comparison between (a) homo-PP (control run in Table 1) and three DHDCS/propylene copolymer samples post-treated by (A) methanol and (B) water vapor with increasing di-5-hexenyldichlorosilane concentrations of (b, b′) 0.5 mmol L–1 (run 1 in Table 1), (c, c′) 1.0 mmol L–1 (run 2 in Table 1), and (d, d′) 2.5 mmol L–1 (run 3 in Table 1).

    Figure 5.  GPC curves comparison between (a) homo-PP (control-run in Table 1) and three DHDCS/propylene copolymer samples post-treated by (A) methanol and (B) water vapor with increasing di-5-hexenyldichlorosilane concentrations of (b, b′) 0.5 mmol L–1 (run 1 in Table 1), (c, c′) 1.0 mmol L–1 (run 2 in Table 1), and (d, d′) 2.5 mmol L–1 (run 3 in Table 1) (The online version is colorful.)

    Figure 7.  Plots of Storage modulus (G′) versus angular frequency (ω) at 200 °C of (a) homo-PP (control run in Table 1) and three DHDCS/propylene copolymer samples post-treated by (A) methanol and (B) water vapor with increasing di-5-hexenyldichlorosilane concentrations of (b, b′) 0.5 mmol L–1 (run 1 in Table 1), (c, c′) 1.0 mmol L–1 (run 2 in Table 1), and (d, d′) 2.5 mmol L–1 (run 3 in Table 1)

    Figure 9.  Plots of Complex viscosity ([η*]) versus angular frequency (ω) at 200 °C of (a) homo-PP (control run in Table 1) and three DHDCS/propylene copolymer samples post-treated by (A) methanol and (B) water vapor with increasing DHDCS concentrations of (b, b′) 0.5 mmol L–1 (run 1 in Table 1), (c, c′) 1.0 mmol L–1 (run 2 in Table 1), and (d, d′) 2.5 mmol L–1 (run 3 in Table 1)

    Figure 8.  Plots of (A) terminal slopes of the G′ ~ ω curves and (B) G′ values as against DHDCS concentrations for DHDCS/propylene copolymer samples post-treated by (a, a′) methanol and (b, b′) water vapor (ω = 0.01 rad s–1)

    Figure 10.  Extensional rheometry test (200 °C) results for (A) homo-PP (control run in Table 1) and (B) DHDCS/propylene copolymer samples (run 1 in Table 1) of (a) methanol treatment and (b) water treatment (The online version is colorful.)

    Table 1.  Synthesis of LCBPP with MgCl2/TiCl4/BMMF-AlEt3 and di(5-hexenyl)dichlorosilane (DHDCS) via combination of propylene polymerization and subsequent hydrolytic or alcoholic condensation a

    Run DHDCS
    (mmol L–1)
    Yield (g) Cat. activity × 10–5
    (g molTi–1 h–1)
    Treatment mode Mw × 10–4
    (g mol–1)
    PDI Gelation Tm
    (°C)
    Tc
    (°C)
    Control 0 25.1 31.6 36.8 6.4 N 160.1 112.3
    1 0.5 23.5 29.6 CH3OH 41.7 5.8 N 161.2 111.7
    H2O 53.4 5.4 N 161.4 114.4
    2 1.0 26.3 33.1 CH3OH 37.5 6.1 N 160.1 113.9
    H2O 42.3 5.6 N 161.7 114.2
    3 2.5 24.9 31.4 CH3OH 39.9 6.3 N 161.6 113.1
    H2O 47.1 5.5 N 160.6 115.1
    4 5.0 26.1 32.9 CH3OH Y 160.4 113.5
    H2O Y 161.3 115.5
    5 10.0 23.9 30.1 CH3OH Y 159.8 115.1
    H2O Y 160.9 119.7
    a Polymerization conditions: catalyst, 20 mg; co-catalyst, AlEt3, 1.5 mmol; hexane, 100 mL; 60 °C; 30 min
    下载: 导出CSV

    Table 2.  1H-NMR analytical results

    Run Cont. of vinylidene a
    (mol%)
    Cont. of pendant vinyl a
    (mol%)
    Cont. of methoxyl a
    (mol%)
    Methoxyl/Vinyl
    (molar ratio)
    Control 0.053
    1 0.058 0.021 0.016 0.76
    2 0.037 0.057 0.034 0.60
    3 0.053 0.085 0.048 0.56
    4 0.051 0.085 0.052 0.61
    5 0.047 0.095 0.064 0.68
    a Content was established by 1H-NMR spectra
    下载: 导出CSV

    Table 3.  Cross equation parameters of different samples

    Run Treatment mode η0 × 10–4
    (Pa s)
    λ
    (s)
    n
    0 1.26 1.63 0.56
    1 MeOH 2.41 7.9 0.47
    H2O 3.61 13.1 0.46
    2 MeOH 2.42 8.0 0.47
    H2O 3.99 20.4 0.45
    3 MeOH 28.2 1560 0.45
    H2O 2.8 × 104 4.7 × 107 0.43
    下载: 导出CSV
  • 加载中
图(11)表(3)
计量
  • PDF下载量:  46
  • 文章访问数:  668
  • HTML全文浏览量:  488
  • 引证文献数: 0
文章相关
  • 通讯作者:  秦亚伟, ywqin@iccas.ac.cn
    董金勇, jydong@iccas.ac.cn
  • 收稿日期:  2019-04-17
  • 修稿日期:  2019-04-28
  • 网络出版日期:  2019-06-11
  • 刊出日期:  2019-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计