ISSN 1000-3304CN 11-1857/O6

医用材料表界面设计及其与细胞相互作用

王蓉 沈新坤 胡燕 蔡开勇

引用本文: 王蓉, 沈新坤, 胡燕, 蔡开勇. 医用材料表界面设计及其与细胞相互作用[J]. 高分子学报, 2019, 50(9): 863-872. doi: 10.11777/j.issn1000-3304.2019.19085 shu
Citation:  Rong Wang, Xin-kun Shen, Yan Hu and Kai-yong Cai. Surface/Interface Design of Medical Materials and Their Interactions with Cells[J]. Acta Polymerica Sinica, 2019, 50(9): 863-872. doi: 10.11777/j.issn1000-3304.2019.19085 shu

医用材料表界面设计及其与细胞相互作用

    作者简介: 蔡开勇,男,1973年生,重庆大学教授、博士生导师. 2002年毕业于天津大学,获生物医学工程学博士学位,随后在德国从事博士后研究,2005年加入重庆大学. 先后获评教育部新世纪优秀人才(2007年)、霍英东青年教师基金(基础研究)(2010年)、第十二届中国青年科技奖(2011年)、重庆市杰出青年科学基金(2011年)、教育部长江学者特聘教授(2012年)、国务院政府特殊津贴专家(2014年)、重庆市自然科学一等奖(排名第一、2015年)、“生物材料与组织修复”重庆高校创新团队带头人(2016年)、国家百千万人才工程入选者(2017年)、国家杰出青年科学基金(2018年)等奖励及人才计划. 主要研究方向为医用钛及钛合金材料及其表界面与细胞的相互作用、刺激响应性纳米药物控释系统;
    通讯作者: 蔡开勇, E-mail: Kaiyong_cai@cqu.edu.cn
摘要: 正常生理状态下,细胞/组织具有特定的微环境维持其相关功能,这种环境中存在着大量功能分子. 在病理条件下,组织/器官的缺损或病变会导致细胞/组织微环境破坏、生理信号异常. 因此,在生物医用材料界面模拟正常状态下细胞/组织微环境、重构其成分和形态、实现损伤组织的修复是生物医用材料表界面设计的宗旨. 为了改善医用材料的生物惰性、提高修复材料基材的生物相容性、丰富材料的生物学功能,最终实现仿生效果,表界面修饰手段已成为人们的研究热点. 材料表界面的修饰不仅可以改善惰性材料与宿主的缺乏交流的问题,还可保留材料的基本物理性质. 在我们的研究中,利用细胞/组织生理和病理微环境指导功能化修复材料表界面的设计,通过高分子修饰途径,仿生制备出了系列促成骨、促基因转染、抗菌、抗肿瘤等具有广泛应用前景的生物材料. 本文对近年来的相关研究工作进行了总结,并对该领域存在的挑战进行了展望.

English

    1. [1]

      Wegst U G, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat Mater, 2015, 14: 23 − 36 doi: 10.1038/nmat4089

    2. [2]

      Stevens M M, George J H. Science, 2005, 310(5751): 1135 − 1138 doi: 10.1126/science.1106587

    3. [3]

      Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri S M, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin M R. Chem Soc Rev, 2016, 45: 1457 − 501 doi: 10.1039/C5CS00798D

    4. [4]

      Hanahan D, Coussens L M. Cancer Cell, 2012, 21: 309 − 322 doi: 10.1016/j.ccr.2012.02.022

    5. [5]

      Lai M, Cai K, Hu Y, Zhang Y, Li L, Luo Z, Hou Y, Li J, Ding X, Chen X. J Biomed Mater Res A, 2013, 101: 653 − 66

    6. [6]

      Shen X, Hu Y, Xu G, Chen W, Xu K, Ran Q, Ma P, Zhang Y, Li J, Cai K. ACS Appl Mater Interfaces, 2014, 6: 16426 − 164 doi: 10.1021/am5049338

    7. [7]

      Li X, Huang Q, Elkhooly TA, Liu Y, Wu H, Feng Q, Liu L, Fang Y, Zhu W, Hu T. Biomed Mater, 2018, 13: 045013 doi: 10.1088/1748-605X/aabe33

    8. [8]

      Cai K, Lai M, Yang W, Hu R, Xin R, Liu Q, Sung KL. Acta Biomater, 2010, 6: 2314 − 21 doi: 10.1016/j.actbio.2009.11.034

    9. [9]

      Elias C N, Oshida Y, Lima J H, Muller C A. J Mech Behav Biomed Mater, 2008, 1: 234 − 242 doi: 10.1016/j.jmbbm.2007.12.002

    10. [10]

      Xu K, Shen X, Chen W, Mu C, Jiang C, Zhao Y, Cai K. J Mater Chem B, 2016, 4: 1797 − 1810 doi: 10.1039/C5TB02391B

    11. [11]

      Shen X, Ma P, Hu Y, Xu G, Zhou J, Cai K. Colloid Surf B, 2015, 127: 221 − 32 doi: 10.1016/j.colsurfb.2015.01.048

    12. [12]

      Chen X, Cai K, Lai M, Zhao L, Tang L. Adv Eng Mater, 2012, 14: B216 − B223 doi: 10.1002/adem.v14.5

    13. [13]

      Lai M, Hermann C D, Cheng A, Olivares-Navarrete R, Gittens RA, Bird MM, Walker M, Cai Y, Cai K, Sandhage K H, Schwartz Z, Boyan B D. J Biomed Mater Res A, 2015, 103: 564 − 73 doi: 10.1002/jbm.v103.2

    14. [14]

      Gittens R A, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage K H, Boyan B D. Biomaterials, 2011, 32: 3395 − 403 doi: 10.1016/j.biomaterials.2011.01.029

    15. [15]

      Tang J, Peng R, Ding J. Biomaterials, 2010, 31: 2470 − 2476 doi: 10.1016/j.biomaterials.2009.12.006

    16. [16]

      Yang W, Xi X, Shen X, Liu P, Hu Y, Cai K. J Biomed Mater Res A, 2014, 102: 3598 − 3608 doi: 10.1002/jbm.a.35021

    17. [17]

      Arima Y, Iwata H. Biomaterials, 2007, 28: 3074 − 3082 doi: 10.1016/j.biomaterials.2007.03.013

    18. [18]

      Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt K D. Colloid Surf B, 2006, 50: 1 − 8 doi: 10.1016/j.colsurfb.2006.03.016

    19. [19]

      Lin M, Mao S, Wang J, Xing J, Wang Y, Cai K, Luo Y. Biomaterials, 2018, 162: 170 − 182 doi: 10.1016/j.biomaterials.2018.01.036

    20. [20]

      Gu Y, Du J, Si M, Mo J, Qiao S, Lai H. J Biomed Mater Res A, 2013, 101: 748 − 754

    21. [21]

      Lotz E, Berger M, Schwartz Z, Boyan B. Acta Biomater, 2018, 68: 296 − 307 doi: 10.1016/j.actbio.2017.12.039

    22. [22]

      Yamanoglu R, Efendi E, Kolayli F, Uzuner H, Daoud I. Biomed Mater, 2018, 13: 025013 doi: 10.1088/1748-605X/aa957d

    23. [23]

      Xu K, Chen W, Mu C, Yu Y, Cai K. J Mater Chem B, 2017, 5(33): 6811 − 6826 doi: 10.1039/C7TB01529A

    24. [24]

      Tschernitschek H, Borchers L, Geurtsen W. Quintessence Int, 2005, 36: 523 − 530

    25. [25]

      Katz J N, Wright E A, Wright J, Malchau H, Mahomed N N, Stedman M, Baron J A, Losina E. J Bone Joint Surg Am, 2012, 94: 1825 − 1832 doi: 10.2106/JBJS.K.00569

    26. [26]

      Xie D, Cai K, Hu Y, Luo Z. J Biomed Mater Res A, 2013, 101: 2005 − 2014

    27. [27]

      Liu R, Tang Y, Zeng L, Zhao Y, Ma Z, Sun Z, Xiang L, Ren L, Yang K. Dent Mater, 2018, 34: 1112 − 1126 doi: 10.1016/j.dental.2018.04.007

    28. [28]

      Chen W, Liu Y, Courtney H, Bettenga M, Agrawal C, Bumgardner J, Ong J. Biomaterials, 2006, 27: 5512 − 5517 doi: 10.1016/j.biomaterials.2006.07.003

    29. [29]

      El-Wassefy N, Reicha F, Aref N. Int J Implant Dent, 2017, 3: 39 doi: 10.1186/s40729-017-0095-1

    30. [30]

      Qu J, Lu X, Li D, Ding Y, Leng Y, Weng J, Qu S, Feng B, Watari F. J Biomed Mater Res B Appl Biomater, 2011, 97: 40 − 48

    31. [31]

      Grandjean-Laquerriere A, Tabary O, Jacquot J, Richard D, Frayssinet P, Guenounou M, Laurent-Maquin D, Laquerriere P, Gangloff S. Biomaterials, 2007, 28: 400 − 404 doi: 10.1016/j.biomaterials.2006.09.015

    32. [32]

      Yang W, Xi X, Si Y, Huang S, Wang J, Cai K. Acta Biomater, 2014, 10: 4525 − 4536 doi: 10.1016/j.actbio.2014.05.033

    33. [33]

      Chen W, Shen X, Hu Y, Xu K, Ran Q, Yu Y, Dai L, Yuan Z, Huang L, Shen T, Cai K. Biomaterials, 2017, 114: 82 − 96 doi: 10.1016/j.biomaterials.2016.10.055

    34. [34]

      Chen W, Xu K, Tao B, Dai L, Yu Y, Mu C, Shen X, Hu Y, He Y, Cai K. Acta Biomater, 2018, 74: 489 − 504 doi: 10.1016/j.actbio.2018.04.043

    35. [35]

      Hu Y, Cai K, Luo Z, Zhang Y, Li L, Lai M, Hou Y, Huang Y, Li J, Ding X, Zhang B, Sung KL. Biomaterials, 2012, 33: 3515 − 3528 doi: 10.1016/j.biomaterials.2012.01.040

    36. [36]

      Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Biomacromolecules, 2011, 12: 1097 − 1105 doi: 10.1021/bm1014365

    37. [37]

      Mu C, Hu Y, Huang L, Shen X, Li M, Li L, Gu H, Yu Y, Xia Z, Cai K. Mater Sci Eng C Mater Biol Appl, 2018, 82: 345 − 353 doi: 10.1016/j.msec.2017.08.056

    38. [38]

      Shen X, Zhang F, Li K, Qin C, Ma P, Dai L, Cai K. Mater Design, 2016, 92: 1007 − 1017 doi: 10.1016/j.matdes.2015.12.126

    39. [39]

      Ran Q, Yu Y, Chen W, Shen X, Mu C, Yuan Z, Tao B, Hu Y, Yang W, Cai K. Mater Sci Eng C Mater Biol Appl, 2018, 91: 44 − 54 doi: 10.1016/j.msec.2018.04.098

    40. [40]

      Zhao L, Hu Y, Xu D, Cai K. Colloid Surf B, 2014, 119: 115 − 25 doi: 10.1016/j.colsurfb.2014.05.002

    41. [41]

      He Y, Mu C, Shen X, Yuan Z, Liu J, Chen W, Lin C, Tao B, Liu B, Cai K. Acta Biomater, 2018, 80: 412 – 424

    42. [42]

      Hu Y, Cai K, Luo Z, Hu R. Adv Eng Mater, 2010, 12: B18 − B25 doi: 10.1002/adem.v12:1/2

    43. [43]

      Cai K, Hu Y, Luo Z, Kong T, Lai M, Sui X, Wang Y, Yang L, Deng L. Angew Chem Int Ed, 2008, 47: 7479 − 7481 doi: 10.1002/anie.v47:39

    44. [44]

      Hu Y, Cai K, Luo Z, Zhang R, Yang L, Deng L, Jandt KD. Biomaterials, 2009, 30: 3626 − 3635 doi: 10.1016/j.biomaterials.2009.03.037

    45. [45]

      Chen W, Li W, Xu K, Li M, Dai L, Shen X, Hu Y, Cai K. J Biomed Mater Res A, 2018, 106: 706 − 717 doi: 10.1002/jbm.a.v106.3

    46. [46]

      Senneville E, Joulie D, Legout L, Valette M, Dezèque H, Beltrand E, Roselé B, d'Escrivan T, Loïez C, Caillaux M, Yazdanpanah Y, Maynou C, Migaud H. Clin Infect Dis, 2011, 53: 334 − 340 doi: 10.1093/cid/cir402

    47. [47]

      Damiati L, Eales M G, Nobbs A H, Su B, Tsimbouri P M, Salmeron-Sanchez M, Dalby M J. J Tissue Eng, 2018, 9: 2041731418790694

    48. [48]

      Sutrisno L, Wang S, Li M, Luo Z, Wang C, Shen T, Chen P, Yang L, Hu Y, Cai K. J Mater Chem B, 2018, 6: 5290 − 5302

    49. [49]

      He Y, Zhang Y, Shen X, Tao B, Liu J, Yuan Z, Cai K. Colloid Surf B, 2018, 170: 54 − 63 doi: 10.1016/j.colsurfb.2018.05.070

    50. [50]

      Tao B, Shen X, Yuan Z, Ran Q, Shen T, Pei Y, Liu J, He Y, Hu Y, Cai K. Colloid Surf B, 2018, 170: 382 − 392 doi: 10.1016/j.colsurfb.2018.06.039

    51. [51]

      Ivanova E, Hasan J, Webb H, Gervinskas G, Juodkazis S, Truong V, Wu A, Lamb R, Baulin V, Watson G, Watson J, Mainwaring D, Crawford R. Nat Commun, 2013, 4: 2838 doi: 10.1038/ncomms3838

    52. [52]

      Wassel E, Es-Souni M, Berger N, Schopf D, Dietze M, Solterbeck C, Es-Souni M. Langmuir, 2017, 33: 6739 − 6750 doi: 10.1021/acs.langmuir.7b00534

    53. [53]

      Chen X, Cai K, Fang J, Lai M, Li J, Hou Y, Luo Z, Hu Y, Tang L. Surf Coat Technol, 2013, 216: 158 − 165 doi: 10.1016/j.surfcoat.2012.11.049

    54. [54]

      Wrona A, Bilewska K, Lis M, Kamińska M, Olszewski T, Pajzderski P, Więcławc G, Jaśkiewiczde M, Kamyszde W. Surf Coat Technol, 2017, 318: 332 − 340 doi: 10.1016/j.surfcoat.2017.01.101

    55. [55]

      Kazemzadeh-Narbat M, Lai B, Ding C, Kizhakkedathu J, Hancock R, Wang R. Biomaterials, 2013, 34: 5969 − 5977 doi: 10.1016/j.biomaterials.2013.04.036

    56. [56]

      Yao S, Feng X, Lu J, Zheng Y, Wang X, Volinsky A, Wang L. Nanotechnology, 2018, 29: 244003 doi: 10.1088/1361-6528/aabac1

    57. [57]

      Liu P, Hao Y, Zhao Y, Yuan Z, Ding Y, Cai K. Colloid Surf B, 2017, 160: 110 − 116 doi: 10.1016/j.colsurfb.2017.08.044

    58. [58]

      Sutrisno L, Hu Y, Shen X, Li M, Luo Z, Dai L, Wang S, Zhong J L, Cai K. Mater Sci Eng C Mater Biol Appl, 2018, 89: 95 − 105 doi: 10.1016/j.msec.2018.03.024

    59. [59]

      Xu D, Yang W, Hu Y, Luo Z, Li J, Hou Y, Liu Y, Cai K. Colloid Surf B, 2013, 110: 225 − 235 doi: 10.1016/j.colsurfb.2013.04.050

    60. [60]

      Yuan Z, Zhao Y, Yang W, Hu Y, Cai K, Liu P, Ding H. Mater Lett, 2016, 183: 85 − 89 doi: 10.1016/j.matlet.2016.07.036

    61. [61]

      Li W, Xu D, Hu Y, Cai K, Lin Y. J Mater Sci Mater Med, 2014, 25: 1435 − 1448

    62. [62]

      Yuan Z, Liu P, Liang Y, Tao B, He Y, Hao Y, Yang Y, Hu Y, Cai K. J Mater Chem B, 2018, 6: 1359 − 1372 doi: 10.1039/C7TB03071A

    63. [63]

      Chen X, Cai K, Fang J, Lai M, Hou Y, Li J, Luo Z, Hu Y, Tang L. Colloid Surf B, 2013, 103: 149 − 157 doi: 10.1016/j.colsurfb.2012.10.022

    64. [64]

      Shen X, Ma P, Hu Y, Xu Q, Xu K, Chen W, Ran Q, Dai L, Yu Y, Mu C, Cai K. J Mater Chem B, 2016, 4: 1423 − 1436

    65. [65]

      Zhang Y, Hu Y, Luo Z, Shen X, Mu C, Cai K. J Biomater Sci Polym Ed, 2015, 26: 290 − 310 doi: 10.1080/09205063.2014.998588

    66. [66]

      Shen X, Zhang Y, Hu Y, Luo Z, Ma P, Li L, Mu C, Huang L, Pei Y, Cai K. J Mater Chem B, 2016, 4: 7101 − 7111 doi: 10.1039/C6TB01779G

    67. [67]

      Huang L, Luo Z, Hu Y, Shen X, Li M, Li L, Zhang Y, Yang W, Liu P, Cai K. J Biomed Mater Res A, 2016, 104: 1437 − 1451 doi: 10.1002/jbm.a.v104.6

    68. [68]

      Tao Z, Zhou W, He X, Liu W, Bai B, Zhou Q, Huang Z, Tu K, Li H, Sun T, Lv Y, Cui W, Yang L. Mater Sci Eng C Mater Biol Appl, 2016, 62: 226 − 232 doi: 10.1016/j.msec.2016.01.034

    69. [69]

      Okuzu Y, Fujibayashi S, Yamaguchi S, Yamamoto K, Shimizu T, Sono T, Goto K, Otsuki B, Matsushita T, Kokubo T, Matsuda S. Acta Biomater, 2017, 63: 383 − 392 doi: 10.1016/j.actbio.2017.09.019

    70. [70]

      Liu J, Li M, Luo Z, Dai L, Guo X, Cai K. Nano Today, 2017, 15: 56 − 90 doi: 10.1016/j.nantod.2017.06.010

    71. [71]

      Dai L, Zhang Q, Shen X, Sun Q, Mu C, Gu H, Cai K. J Mater Chem B, 2016, 4: 4594 − 4604 doi: 10.1039/C6TB01050D

    72. [72]

      Luo Z, Cai K, Hu Y, Zhang B, Xu D. Adv Healthc Mater, 2012, 1: 321 − 325 doi: 10.1002/adhm.201100030

    73. [73]

      Zhou J, Li M, Hou Y, Luo Z, Chen Q, Cao H, Huo R, Xue C, Sutrisno L, Hao L, Cao Y, Ran H, Lu L, Li K, Cai K. ACS Nano, 2018, 12: 2858 − 2872 doi: 10.1021/acsnano.8b00309

    74. [74]

      Luo Z, Cai K, Hu Y, Zhao L, Liu P, Duan L, Yang W. Angew Chem Int Ed, 2011, 50: 640 − 643 doi: 10.1002/anie.v50.3

    75. [75]

      Luo Z, Hu Y, Xin R, Zhang B, Li J, Ding X, Hou Y, Yang L, Cai K. J Biomed Mater Res A, 2014, 102: 3781 − 3794 doi: 10.1002/jbm.a.v102.11

    76. [76]

      Luo Z, Hu Y, Cai K, Ding X, Zhang Q, Li M, Ma X, Zhang B, Zeng Y, Li P, Li J, Liu J, Zhao Y. Biomaterials, 2014, 35: 7951 − 7962 doi: 10.1016/j.biomaterials.2014.05.058

    77. [77]

      Luo Z, Ding X, Hu Y, Wu S, Xiang Y, Zeng Y, Zhang B, Yan H, Zhang H, Zhu L, Liu J, Li J, Cai K, Zhao Y. ACS Nano, 2013, 7: 10271 − 10284 doi: 10.1021/nn404676w

    78. [78]

      Liu J, Luo Z, Zhang J, Luo T, Zhou J, Zhao X, Cai K. Biomaterials, 2016, 83: 51 − 65 doi: 10.1016/j.biomaterials.2016.01.008

    79. [79]

      Dai L, Li K, Li M, Zhao X, Luo Z, Lu L, Luo Y, Cai K. Adv Funct Mater, 2018, 28: 1707249 doi: 10.1002/adfm.v28.18

    80. [80]

      Dai L, Cai R, Li M, Luo Z, Yu Y, Chen W, Shen X, Pei Y, Zhao X, Cai K. Chem Mater, 2017, 29: 6976 − 6992 doi: 10.1021/acs.chemmater.7b02513

    1. [1]

      程若昱崔文国 . 基于氢键力学增强型维生素D3脂质体复合水凝胶的构建及骨修复研究. 高分子学报, 2018, 0(10): 1315-1327. doi: 10.11777/j.issn1000-3304.2018.18066

    2. [2]

      张丹武伟蒋锡群 . 单分子聚合物纳米材料的可控合成及生物应用. 高分子学报, 2019, 50(3): 199-208. doi: 10.11777/j.issn1000-3304.2019.18191

    3. [3]

      高晶王伟奇于海军 . 酸敏感高分子纳米药物载体在肿瘤治疗中的应用研究. 高分子学报, 2019, 50(11): 1156-1166. doi: 10.11777/j.issn1000-3304.2019.19133

    4. [4]

      李洪军刘晶杜金志王均 . 基于TACMAA化学的肿瘤微酸性环境响应高分子纳米药物载体. 高分子学报, 2019, 50(6): 567-574. doi: 10.11777/j.issn1000-3304.2019.18268

    5. [5]

      吉垒张雪豪杨子欣乔增莹王浩 . 肿瘤微环境诱导多肽聚合物原位组装行为研究. 高分子学报, 2019, 50(6): 642-652. doi: 10.11777/j.issn1000-3304.2019.19039

    6. [6]

      严刚聂光庭孔祥权邝淼容建华 . 温敏聚合物/纳米CuS复合微球在肿瘤光热化学联合治疗中的应用. 高分子学报, 2016, (2): 256-263. doi: 10.11777/j.issn1000-3304.2016.15182

    7. [7]

      陈学思陈国强陶友华王玉忠吕小兵张立群朱锦张军王献红 . 生态环境高分子的研究进展. 高分子学报, 2019, 50(10): 1068-1082. doi: 10.11777/j.issn1000-3304.2019.19124

    8. [8]

      糜七定宛新化周其凤 . 手性化合物环境下制备甲壳型液晶高分子. 高分子学报, 2000, (2): 253-256.

    9. [9]

      李涛吕少瑜陈姣高春梅张少飞柳明珠 . 高分子基环境响应性肥料的研究进展. 高分子学报, 2018, 2018(3): 336-348. doi: 10.11777/j.issn1000-3304.2017.17152

    10. [10]

      章明秋容敏智 . 结构用自修复型高分子材料的制备. 高分子学报, 2012, (11): 1183-1199. doi: 10.3724/SP.J.1105.2012.12171

    11. [11]

      焦自学陈杰田华雨陈学思 . 聚乙烯亚胺介导siRNA和顺铂协同抗肿瘤治疗. 高分子学报, 2015, (1): 127-132. doi: 10.11777/j.issn1000-3304.2015.14259

    12. [12]

      秦怡博杨鹏翔时圣彬孙洪范张闯年孔德领 . 海藻酸钠前药纳米粒在肿瘤光动力治疗中的应用研究. 高分子学报, 2018, 0(7): 909-916. doi: 10.11777/j.issn1000-3304.2018.18039

    13. [13]

      张剑旭孙婷婷谢志刚 . 染料杂化蛋白纳米粒用于肿瘤细胞光热治疗. 高分子学报, 2019, 50(6): 633-641. doi: 10.11777/j.issn1000-3304.2019.19001

    14. [14]

      孙瑞邱娜莎申有青 . 高分子抗肿瘤纳米药物的挑战与发展. 高分子学报, 2019, 50(6): 588-601. doi: 10.11777/j.issn1000-3304.2019.19005

    15. [15]

      张希 . 可多次塑型、易修复及耐低温的三维动态高分子结构. 高分子学报, 2016, (6): 685-687. doi: 10.11777/j.issn1000-3304.2016.16146

    16. [16]

      刘畅陈宇欣王江帆罗萱黄宇迪徐瑾蕾鄢国平陈思张先正 . 基于枝化多肽的多功能药物递送系统用于肿瘤细胞核的精准靶向治疗. 高分子学报, 2018, 0(6): 682-691. doi: 10.11777/j.issn1000-3304.2017.17335

    17. [17]

      张中岳乔金樑 . 高分子共混体系界面张力的研究. 高分子学报, 1993, (3): 343-347.

    18. [18]

      刘欣宇胡瑾郭建文王贵林高卫平 . 温度响应性高分子偶联干扰素-α有效提高抗肿瘤功效. 高分子学报, 2018, (1): 90-98. doi: 10.11777/j.issn1000-3304.2018.17195

    19. [19]

      钱虎军吕中元 . 高分子/单链高分子纳米粒子复合体系中的界面性质. 高分子学报, 2020, 51(1): 1-11. doi: 10.11777/j.issn1000-3304.2020.19152

    20. [20]

      丁小斌孙宗华万国祥江英彦 . 热敏性高分子包裹的磁性微球的性质及表征. 高分子学报, 1999, (6): 674-679.

  • Figure 1.  The design/research overview of tissue repairing biomedical materials

    Figure 2.  (a) Schematic illustration of the hierarchical film deposited on Ti6Al7Nb substrate (Reproduced with permission from Ref.[32], Copyright (2014) Elsevier); (b) Structures and biological functions (antioxidant, MSCs recruitment and pro-osteogenesis) of the hierarchical film (Reproduced with permission from Ref.[33], Copyright (2017) Elsevier; Reproduced with permission from Ref.[34], Copyright (2018) Elsevier)

    Figure 3.  (a) Schematic illustration of coating assembly process by the layer-by-layer technique; (b) EGFP expression in osteoblasts cultured on genes-loaded substrates at 3 days (GFP: green, cell nuclear: blue); (c) New bone formation around genes-loaded implants after 4 weeks (Reproduced with permission from Ref.[45]; Copyright (2017) John Wiley and Sons)

    Figure 4.  Schematic illustration of preparation approaches of titanium-based antibacterial material

    Figure 5.  Schematic illustration of the fabrication of Ti6Al7Nb/LBL/NP implant for osteoporotic application (Reproduced with permission from Ref.[66]; Copyright (2016) The Royal Society of Chemistry)

    Figure 6.  (a) Schematic illustration of surface modification of antitumor nanomaterials with extracellular matrix components (ECs) (Reproduced with permission from Ref.[71]; Copyright (2016) The Royal Society of Chemistry); (b) Inflammatory and (c) biocompatibility regulations by ECs-modified nanomaterials (Reproduced with permission from Ref.[75]; Copyright (2013) John Wiley & Sons)

    Figure 7.  (a) Schematic illustration of pH-responsive PCPP@MTPP@siPD-L1 micelleplexes, and the mechanism of drug/siRNA release from polymeric micelleplexes under acidic pH (Reproduced with permission from Ref.[79]; Copyright (2018) John Wiley and Sons); (b) Degradation illustration and (c) TEM images of FA-PEG-PDBO-BPT micelle plexes under acidic pH and GSH (Reproduced with permission from Ref.[80]; Copyright (2017) American Chemical Society)

  • 加载中
图(7)
计量
  • PDF下载量:  93
  • 文章访问数:  951
  • HTML全文浏览量:  551
  • 引证文献数: 0
文章相关
  • 通讯作者:  蔡开勇, Kaiyong_cai@cqu.edu.cn
  • 收稿日期:  2019-04-25
  • 修稿日期:  2019-06-05
  • 刊出日期:  2019-09-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计