ISSN 1000-3304CN 11-1857/O6

聚合物分离膜表面仿生共沉积改性及其性能研究

安坦 于辉 徐丽君 徐志康 万灵书

引用本文: 安坦, 于辉, 徐丽君, 徐志康, 万灵书. 聚合物分离膜表面仿生共沉积改性及其性能研究[J]. 高分子学报. doi: 10.11777/j.issn1000-3304.2019.19086 shu
Citation:  Tan An, Hui Yu, Li-jun Xu, Zhi-kang Xu and Ling-shu Wan. Modification of Microporous Polymer Membranes via Surface Co-deposition and the Separation Performances[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19086 shu

聚合物分离膜表面仿生共沉积改性及其性能研究

    通讯作者: 万灵书, E-mail: lswan@zju.edu.cn
摘要: 发展了一种基于单酚化合物阿魏酸和铜离子的新型表面沉积体系,通过液相共沉积方法在不同基底表面构建了共沉积涂层. 考察了组分比例和沉积时间等因素对沉积行为的影响. 在最佳沉积条件下制备了涂层改性聚丙烯微孔膜,通过扫描电子显微镜、衰减全反射傅里叶变换红外光谱仪、X射线光电子能谱仪、固体表面zeta电位分析仪和水接触角测试仪等对膜表面进行了表征,并将其应用于油水分离和染料吸附. 结果表明,改性膜表面具有良好的亲水性以及强烈的荷负电性,对水包油乳液具有优异的分离性能以及良好的渗透通量;同时,改性膜对荷正电染料具备优良的吸附能力. 研究结果有望丰富单酚类化合物的沉积行为研究,发展新型表面沉积体系.

English

    1. [1]

      Lee H, Scherer N F, Messersmith P B. Proc Natl Acad Sci, 2006, 103(35): 12999 − 13003 doi: 10.1073/pnas.0605552103

    2. [2]

      Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426 − 430 doi: 10.1126/science.1147241

    3. [3]

      Yu J, Kan Y J, Rapp M, Danner E, Wei W, Das S, Miller D R, Chen Y F, Waite J H, Israelachvili J N. Proc Natl Acad Sci, 2013, 110(39): 15680 − 15685 doi: 10.1073/pnas.1315015110

    4. [4]

      Ryu J, Ku S H, Lee H, Park C B. Adv Funct Mater, 2010, 20(13): 2132 − 2139 doi: 10.1002/adfm.v20:13

    5. [5]

      Guo L Q, Liu Q, Li G L, Shi J B, Liu J Y, Wang T, Jiang G B. Nanoscale, 2012, 4(19): 5864 − 5867 doi: 10.1039/c2nr31547e

    6. [6]

      Xia N N, Xiong X M, Wang J H, Rong M Z, Zhang M Q. Chem Sci, 2016, 7(4): 2736 − 2742 doi: 10.1039/C5SC03483C

    7. [7]

      Tang Anqi(唐安琪), Lu Jingyu(路景驭), Feng Weilin(冯炜林), Zhang Peibin(张培斌), Zhu Liping(朱利平). Acta Polymerica Sinica(高分子学报), 2018, (12): 1524 − 1531 doi: 10.11777/j.issn1000-3304.2018.18109

    8. [8]

      Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y. ACS Appl Mater Interfaces, 2013, 5(24): 12895 − 12904 doi: 10.1021/am403405c

    9. [9]

      Shen H, Guo J, Wang H, Zhao N, Xu J. ACS Appl Mater Interfaces, 2015, 7(10): 5701 − 5708 doi: 10.1021/am507416y

    10. [10]

      Ma L, Cheng C, He C, Nie C, Deng J, Sun S, Zhao C. ACS Appl Mater Interfaces, 2015, 7(47): 26050 − 26062 doi: 10.1021/acsami.5b09634

    11. [11]

      Zhu J, Uliana A, Wang J, Yuan S, Li J, Tian M, Simoens K, Volodin A, Lin J, Bernaerts K, Zhang Y, van der Bruggen B. J Mater Chem A, 2016, 4(34): 13211 − 13222 doi: 10.1039/C6TA05661J

    12. [12]

      Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z. J Membr Sci, 2017, 522: 351 − 362 doi: 10.1016/j.memsci.2016.09.040

    13. [13]

      Yang H C, Zhong W, Hou J, Chen V, Xu Z K. J Membr Sci, 2017, 523: 1 − 7 doi: 10.1016/j.memsci.2016.09.044

    14. [14]

      Zhang W, Ying Y, Ma J, Guo X, Huang H, Liu D, Zhong C. J Membr Sci, 2017, 527: 8 − 17 doi: 10.1016/j.memsci.2017.01.001

    15. [15]

      Ren Y, Peng D, Wu H, Yang L, Wu X, Wu Y, Wang S, Jiang Z. Chem Eng Sci, 2019, 195: 230 − 238 doi: 10.1016/j.ces.2018.11.055

    16. [16]

      An Yunpeng(安云鹏), Zhang Xinning(张歆宁), Yang Haocheng(杨皓程), Yang Xi(杨熙), Xu Zhikang(徐志康). Acta Polymerica Sinica(高分子学报), 2017, (7): 1105 − 1112 doi: 10.11777/j.issn1000-3304.2017.16344

    17. [17]

      Drynan J W, Clifford M N, Obuchowicz J, Kuhnert N. Nat Prod Rep, 2010, 27(3): 417 − 462 doi: 10.1039/b912523j

    18. [18]

      Ejima H, Richardson J J, Liang K, Best J P, van Koeverden M P, Such G K, Cui J, Caruso F. Science, 2013, 341(6142): 154 − 157 doi: 10.1126/science.1237265

    19. [19]

      Jiang R J, Yan S J, Tian L M, Xu S A, Xin Z R, Luan S F, Yin J H, Ren L Q, Zhao J. Chinese J Polym Sci, 2018, 36(5): 576 − 583 doi: 10.1007/s10118-018-2032-z

    20. [20]

      Barrett D G, Sileika T S, Messersmith P B. Chem Commun, 2014, 50(55): 7265 − 7268 doi: 10.1039/C4CC02961E

    21. [21]

      Yu H, Zhong Q Z, Liu T G, Qiu W Z, Wu B H, Xu Z K, Wan L S. Langmuir, 2019, 35(10): 3643 − 3650 doi: 10.1021/acs.langmuir.8b03914

    22. [22]

      Zhang Z E, Yao S D, Lin W Z, Wang W F, Jin Y Z, Lin N Y. Free Rad Res, 1998, 29(1): 13 − 16 doi: 10.1080/10715769800300021

    23. [23]

      Bento-Silva A, Patto M C V, Bronze M D. Food Chem, 2018, 246: 360 − 378 doi: 10.1016/j.foodchem.2017.11.012

    24. [24]

      Yang J, Li H N, Chen Z X, He A, Zhong Q Z, Xu Z K. J Mater Chem A, 2019, 7(13): 7907 − 7917 doi: 10.1039/C9TA00575G

    25. [25]

      Wan L S, Li J W, Ke B B, Xu Z K. J Am Chem Soc, 2012, 134(1): 95 − 98 doi: 10.1021/ja2092745

    26. [26]

      Ou Y, Lv C J, Yu W, Mao Z W, Wan L S, Xu Z K. ACS Appl Mater Interfaces, 2014, 6(24): 22400 − 22407 doi: 10.1021/am506419z

    27. [27]

      Chen S H, Wu B H, Fu J C, Wang G J, Wan L S, Xu Z K. Chinese J Polym Sci, 2018, 36(7): 880 − 887 doi: 10.1007/s10118-018-2113-z

    1. [1]

      郑细鸣黄小军徐志康 . 聚丙烯微孔膜表面肝素化及其对低密度脂蛋白的吸附特性. 高分子学报, doi: 10.3724/SP.J.1105.2011.10271

    2. [2]

      廖渴叶翔宇徐志康 . 聚丙烯/碳酸钙复合无纺布的仿生矿化制备及其在油水分离中的应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2014.14006

    3. [3]

      袁雪龙曼成宋飞汪秀丽王玉忠 . 疏水矿化棉纤维的制备及其油水分离性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.17140

    4. [4]

      郑细鸣范荣玉徐志康 . 铅(Ⅱ)离子印迹复合膜的制备及其性能研究. 高分子学报, doi: 10.3724/SP.J.1105.2012.11284

    5. [5]

      闫凯波郭贵宝刘金彦黄强张嘉汉 . 聚偏氟乙烯接枝甲基丙烯酸甲酯油水分离膜的研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2016.15295

    6. [6]

      罗本喆张军王晓琳温建志 . 纳米碳酸钙/庚二酸复合成核剂对热致相分离法制备聚丙烯微孔膜的影响. 高分子学报,

    7. [7]

      郭宝华范劲松刘锦东徐军王晓琳 . 聚丙烯分子量对热致相分离制备微孔膜的影响. 高分子学报, doi: 10.3724/SP.J.1105.2009.00035

    8. [8]

      热诱导相分离微孔膜亲水性乙烯丙烯酸共聚物二苯醚 . 热诱导相分离法制备亲水性乙烯-丙烯酸共聚物微孔膜. 高分子学报,

    9. [9]

      高芒来陈刚张华 . 聚电解质PSS/PDDA分子沉积膜表面性能研究. 高分子学报,

    10. [10]

      王鹏金云皮丕辉文秀芳徐守萍程江 . POSS基杂化含氟丙烯酸酯共聚物涂膜的表面相分离与疏水性研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.16189

    11. [11]

      胡杰李松军刘白玲 . 牛血清蛋白在聚甲基丙烯酸甲酯微球表面的吸附. 高分子学报,

    12. [12]

      吴光国李源培欧恩谊韩梅刘晓暄 . N,N-二乙基丙烯酰胺与丙烯酸在聚丙烯薄膜表面光接枝制备二元接枝膜及其温度、pH值敏感特性研究. 高分子学报,

    13. [13]

      李斌陈文广王晓工周其庠 . 聚丙烯表面接枝PNIPAAm膜Ⅱ.表面特性和温度响应性研究. 高分子学报,

    14. [14]

      李斌陈文广王晓工周其庠 . 聚丙烯表面接枝PNIPAAm膜Ⅰ.光接枝反应和表面形态结构研究. 高分子学报,

    15. [15]

      林雪陈伟朱杨益忠何炳林 . 烯烃和双烯烃共聚合反应机理 Ⅲ.交联甲基丙烯酸甲酯吸附剂的合成及孔道表面结构. 高分子学报,

    16. [16]

      张军骆峰王晓琳陈剑飞许仲梓 . 动力学因素对热诱导相分离法制备亲水性乙烯-丙烯酸共聚物微孔膜结构的影响. 高分子学报,

    17. [17]

      宋婷孙玉凤杨万泰 . 二步法聚丙烯/丙烯酸表面接枝聚合研究. 高分子学报,

    18. [18]

      胡安珍史济斌戎宗明薛平龚飞荣程树军 . 胶原在聚乳酸旋涂膜表面的吸附研究. 高分子学报, doi: 10.3724/SP.J.1105.2010.09404

    19. [19]

      冉少锋祝巍徐懋 . 泡压-滤速法研究聚丙烯微孔膜的孔径及其分布. 高分子学报,

    20. [20]

      金明钟吕坤施鼐吴瑾光徐端夫谢立青 . 聚丙烯接枝丙烯酸(PP-g-AA)对稀土离子吸附反应的研究. 高分子学报,

  • Figure 1.  Chemical structure of ferulic acid

    Figure 2.  Water contact angles on PC surface with the co-deposition of ferulic acid and copper chloride (a) for different time (the mass ratio of ferulic acid to copper chloride is 1:1) and (b) with different mass ratios (deposition time is 24 h) (All substrates were co-deposited at 40 °C, pH = 5.0.)

    Figure 3.  Water contact angles on various substrates before and after the co-deposition of ferulic acid and copper chloride (The deposition was performed with a ratio of 1:1 for 24 h at 40 °C, pH = 5.)

    Figure 4.  Surface scanning election microscopy images: (a, b) pristine PP membranes, (c, d) modified PP membranes with the co-deposition of ferulic acid and copper chloride at 40 °C at pH = 5, the mass ratio of the two is 1:1.

    Figure 5.  FTIR/ATR spectra of PP membranes: (a) pristine, (b) deposited by ferulic acid, and (c) co-deposited by ferulic acid and Cu2+

    Figure 6.  XPS spectra of pristine and co-deposited PP membranes: (a) survey and (b) Cu2p spectra

    Figure 7.  Dynamic water contact angles on PP membranes after co-deposition for different time

    Figure 8.  Zeta potential of the pristine and co-deposited PP membranes

    Figure 9.  Separation of oil-in-water emulsions: (a) micrographs and digital image of the emulsions before and after filtration; (b) separation efficiency and flux of the co-deposited PP membrane toward different oil-in-water emulsions, and (c) reuse of the membrane in the separation of n-octane-in-water emulsion

    Figure 10.  Results of dye adsorption: (a) digital images of the solution before (#1) and after filtration through pristine (#2) and modified PP membranes (#3); (b) UV-visible absorption spectra of the mixed dye solution and the filtrate; (c) digital images of the solutions before and after filtration and (d) adsorption capacity of different dyes

    Table 1.  Contents of elements of pristine and modified PP membrane surfaces

    PP membraneC content (%)O content (%)Cu content (%)O/C
    Pristine99.630.3700.004
    Co-deposited29.6769.450.882.341
    下载: 导出CSV
  • 加载中
图(10)表(1)
计量
  • PDF下载量:  63
  • 文章访问数:  734
  • HTML全文浏览量:  502
  • 引证文献数: 0
文章相关
  • 通讯作者:  万灵书, lswan@zju.edu.cn
  • 收稿日期:  2019-04-25
  • 修稿日期:  2019-06-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计