Hydrogel abbreviations | Tensile strength (MPa) | Young’s modulus (MPa) | Strain at break (%) | Toughness (MJ/m3) |
LPEI1/10%-SPVA1 | 5.1 ± 0.3 | 1.06 ± 0.18 | 605.4 ± 82.1 | 12.52 ± 0.32 |
LPEI1/14%-SPVA1 | 6.4 ± 0. 4 | 3.89 ± 0.26 | 450.3 ± 40.8 | 14.07 ± 0.52 |
LPEI1/18%-SPVA1 | 10.0 ± 0. 5 | 5.12 ± 0.33 | 385.1 ± 35.2 | 14.21 ± 0.58 |
LPEI1/20%-SPVA1 | 6.9 ± 0.4 | 16.41 ± 1.26 | 203.0 ± 30.3 | 6.81 ± 0.47 |
LPEI1/18%-SPVA0.67 | 2.7 ± 0.3 | 1.01 ± 0.12 | 438.9 ± 42.1 | 4.76 ± 0.32 |
LPEI1/18%-SPVA1.5 | 8.0 ± 0.5 | 6.08 ± 0.34 | 308.3 ± 25.2 | 10.47 ± 0.38 |
*Measured at a stretching speed of 100 mm/min |

Citation: Tao Yuan and Jun-qi Sun. Polyelectrolyte Complexes-based Hydrogels with High Mechanical Strength and Excellent Self-recovery[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19093

具有优异自恢复性能的高强度聚电解质复合物水凝胶
English
Polyelectrolyte Complexes-based Hydrogels with High Mechanical Strength and Excellent Self-recovery
-
Key words:
- Hydrogels /
- Polyelectrolytes /
- Polyelectrolyte complexes /
- Self-recovery
-
-
[1]
Calvert P. Adv Mater, 2009, 21(7): 743 − 756 doi: 10.1002/adma.v21:7
-
[2]
Shin M K, Spinks G M, Shin S R, Kim S I, Kim S J. Adv Mater, 2009, 21(17): 1712 − 1715 doi: 10.1002/adma.v21:17
-
[3]
Liu Yuxia(刘玉霞), Chen Lie(陈列), Zhao Ziguang(赵紫光), Fang Ruochen(房若辰), Liu Mingjie(刘明杰). Acta Polymerica Sinica(高分子学报), 2018, (9): 1155 − 1174 doi: 10.11777/j.issn1000-3304.2018.18108
-
[4]
Jian Yukun(简钰坤), Wei Lu(路伟), Zhang Jiawei(张佳玮), Chen Tao(陈涛). Acta Polymerica Sinica(高分子学报), 2018, (11): 1385 − 1399 doi: 10.11777/j.issn1000-3304.2018.18150
-
[5]
Lin P, Ma S, Wang X, Zhou F. Adv Mater, 2015, 27(12): 2054 − 2059 doi: 10.1002/adma.v27.12
-
[6]
Luo F, Sun T L, Nakajima T, Kurokawa T, Zhao Y, Sato K, Ihsan A B, Li X, Guo H, Gong J. Adv Mater, 2015, 27(17): 2722 − 2727 doi: 10.1002/adma.v27.17
-
[7]
Long T, Li Y, Fang X, Sun J. Adv Funct Mater, 2018, 28(44): 1804416 doi: 10.1002/adfm.v28.44
-
[8]
Hu Y, Du Z, Deng X, Wang T, Yang Z, Zhou W, Wang C. Macromolecules, 2016, 49(15): 5660 − 5668 doi: 10.1021/acs.macromol.6b00584
-
[9]
Zhang H J, Sun T L, Zhang A K, Ikura Y, Nakajima T, Nonoyama T, Kurokawa T, Ito O, Ishitobi H, Gong J. Adv Mater, 2016, 28(24): 4884 − 4890 doi: 10.1002/adma.v28.24
-
[10]
Yang Y, Wang X, Yang F, Wang L, Wu D. Adv Mater, 2018, 30(18): 1707071 doi: 10.1002/adma.201707071
-
[11]
Zheng S Y, Ding H, Qian J, Yin J, Wu Z L, Song Y, Zheng Q. Macromolecules, 2016, 49(24): 9637 − 9646 doi: 10.1021/acs.macromol.6b02150
-
[12]
Yang Y, Wang X, Yang F, Shen H, Wu D. Adv Mater, 2016, 28(33): 7178 − 7184 doi: 10.1002/adma.201601742
-
[13]
Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J. Nat Mater, 2013, 12(10): 932 − 937 doi: 10.1038/nmat3713
-
[14]
Sun W, Xue B, Li Y, Qin M, Wu J, Lu K, Wu J, Cao Y, Jiang Q, Wang W. Adv Funct Mater, 2016, 26(48): 9044 − 9052 doi: 10.1002/adfm.v26.48
-
[15]
Jia H, Huang Z, Fei Z, Dyson P J, Zheng Z, Wang X. ACS Appl Mater Interfaces, 2016, 8(45): 31339 − 31347 doi: 10.1021/acsami.6b11241
-
[16]
Wang X, Liu F, Zheng X, Sun J. Angew Chem Int Ed, 2011, 50(48): 11378 − 11381 doi: 10.1002/anie.v50.48
-
[17]
Reisch A, Roger E, Phoeung T, Antheaume C, Orthlieb C, Boulmedais F, Lavalle P, Schlenoff J B, Frisch B, Schaaf P. Adv Mater, 2014, 26(16): 2547 − 2551 doi: 10.1002/adma.v26.16
-
[18]
Hunt J N, Feldman K E, Lynd N A, Deek J, Campos L M, Spruell J M, Hernandez B M, Kramer E J, Hawker C J. Adv Mater, 2011, 23(20): 2327 − 2331 doi: 10.1002/adma.201004230
-
[19]
Ihsan A B, Sun T L, Kurokawa T, Karobi S N, Nakajima T, Nonoyama T, Roy C K, Luo F, Gong J. Macromolecules, 2016, 49(11): 4245 − 4252 doi: 10.1021/acs.macromol.6b00437
-
[20]
Ma Y, Zhang Y, Wu B, Sun W, Li Z, Sun J. Angew Chem Int Ed, 2011, 50(28): 6254 − 6257 doi: 10.1002/anie.201101054
-
[21]
Richardson J J, Bjornmalm M, Caruso F. Science, 2015, 348(6233): aaa2491 doi: 10.1126/science.aaa2491
-
[22]
Tang Z, Wang Y, Podsiadlo P, Kotov N A. Adv Mater, 2006, 18(24): 3203 − 3224 doi: 10.1002/(ISSN)1521-4095
-
[23]
Decher G. Science, 1997, 227(5330): 1232 − 1237
-
[24]
Picart C, Mutterer J, Richert L, Luo Y, Prestwich G D, Schaaf P, Voegel J C, Lavalle P. Proc Natl Acad Sci USA, 2002, 99(20): 12531 − 12535 doi: 10.1073/pnas.202486099
-
[25]
Yuan T, Cui X, Liu X, Qu X. Macromolecules, 2019, 52(8): 3141 − 3149 doi: 10.1021/acs.macromol.9b00053
-
[26]
He G, Xu M, Zhao J, Jiang S, Wang S, Li Z, He X, Huang T, Cao M, Wu H, Guiver M D, Jiang Z. Adv Mater, 2017, 29(28): 1605898 doi: 10.1002/adma.v29.28
-
[27]
Lambermont-Thijs H M L, van der Woerdt F S, Baumgaertel A, Bonami L, Du Prez F E, Schubert U S, Hoogenboom R. Macromolecules, 2010, 43(2): 927 − 933 doi: 10.1021/ma9020455
-
[28]
Li Y, Fang X, Wang Y, Ma B, Sun J. Chem Mater, 2016, 28(19): 6975 − 6984 doi: 10.1021/acs.chemmater.6b02684
-
[1]
-
Figure 4. (a) Stress-strain curves of the LPEI1/x%-SPVA1 hydrogels with a fixed LPEI to x%-SPVA mass ratio of 1:1 but varied molar fractions of BADS in SPVA; (b) Stress-strain curves of the LPEIa/18%-SPVAb hydrogels with different LPEI to 18%-SPVA mass ratio; (c) Digital photographs of the LPEI1/18%-SPVA1 hydrogel (i) and the photographs to demonstrate the high strength and toughness of the LPEI1/18%-SPVA1 hydrogels: being bent, knotted, twisted, and holding up a weight of 1 kg (ii − v). The hydrogels in (c) has a width of 2 mm and a thickness of 1.5 mm.
Figure 5. (a, b) FTIR spectra of BADS, PVA and 18%-SPVA in the ranges of 3750 − 800 and 1600 − 800 cm−1. (c, d) Frequency dependence of the storage modulus G′ and loss modulus G″ (c) and Arrhenius plots for the shift factors (d) of the LPEI1/18%-SPVA1 hydrogels. The curves in (c) were processed based on the time-temperature superposition principle by horizontally shifting the individual curves corresponding to different temperatures toward the curve corresponding to the reference temperature of 25 °C. The apparent activation energy value (Ea) shown in (d) is calculated from the slopes of the curve
Figure 6. Self-recovery and fatigue resistance of the LPEI1/18%-SPVA1 hydrogel: (a) digital photographs of LPEI1/18%-SPVA1 hydrogel before (i) and after (ii) being stretched, and recover to its initial state by relaxing at room temperature for 1 min (iii); (b) the fast recovery capability and (c) the recovery of elastic modulus and hysteresis loop at different resting time; (d) ten successive loading-unloading cycles of as-prepared and (e) recovered samples after resting for 12 h at room temperature (The online version is colorful.)
Table 1. Summary of the mechanical properties of the LPEIa/x%-SPVAb hydrogels*
-