Precursor | Initiator and initiation conditions | Electrolyte state | Ionic conductivity at 25 °C (S cm−1) | Lithium-ion transference number (tLi+) | Electrochemical window (V) | Ref. |
LiDFOB/VC/AIBN | AIBN, 60 °C 24 h or 80 °C 10 h | Solid | 2.23 × 10−5 | 0.57 | 4.5 | [40] |
LSnPS/LiDFOB/ VC/AIBN | AIBN, 60 °C 120 h | Solid | 2 × 10−4 | 0.60 | 4.5 | [41] |
LiDFOB/EC/DEC/ VC/AIBN | AIBN, 60 °C 24 h or 80 °C 2 h | Gel | 5.59 × 10−4 | 0.34 | 4.8 | [42] |

Citation: Jian-jun Zhang, Jin-feng Yang, Han Wu, Min Zhang, Ting-ting Liu, Jin-ning Zhang, Shan-mu Dong and Guang-lei Cui. Research Progress of in situ Generated Polymer Electrolyte for Rechargeable Batteries[J]. Acta Polymerica Sinica, 2019, 50(9): 890-914. doi: 10.11777/j.issn1000-3304.2019.19097

二次电池用原位生成聚合物电解质的研究进展
English
Research Progress of in situ Generated Polymer Electrolyte for Rechargeable Batteries
-
-
[1]
Wu Z, Liu K, Lv C, Zhong S, Wang Q, Liu T, Liu X, Yin Y, Hu Y, Wei D. Small, 2018, 14(22): 1800414 doi: 10.1002/smll.v14.22
-
[2]
Abe H, Zaghib K, Tatsumi K, Higuchi S. J Power Sources, 1995, 54(2): 236 − 239 doi: 10.1016/0378-7753(94)02075-E
-
[3]
Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, Cho J. Angew Chem Int Ed, 2015, 54(15): 4440 − 4457 doi: 10.1002/anie.201409262
-
[4]
Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F. Appl Energy, 2017, 195: 586 − 599 doi: 10.1016/j.apenergy.2017.03.074
-
[5]
Li J, Du Z, Ruther R E, An S J, David L A, Hays K, Wood M, Phillip N D, Sheng Y, Mao C. JOM, 2017, 69(9): 1484 − 1496 doi: 10.1007/s11837-017-2404-9
-
[6]
Nowak S, Winter M. J Electrochem Soc, 2015, 162(14): A2500 − A2508 doi: 10.1149/2.0121514jes
-
[7]
Schroeder D, Hubaud A, Vaughey J. Mater Res Bull, 2014, 49: 614 − 617 doi: 10.1016/j.materresbull.2013.10.006
-
[8]
Hayamizu K, Akiba E. Electrochemistry, 2003, 71(12): 1052 − 1054
-
[9]
Ghimire P, Nakamura H, Yoshio M, Yoshitake H, Abe K. Electrochemistry, 2003, 71(12): 1084 − 1086
-
[10]
Gao J, Zhao Y S, Shi S Q, Li H. Chin Phys B, 2015, 25(1): 018211
-
[11]
Zheng Z S, Zhang Z T, Tang Z, Shen W. Prog Chem, 2003, 15(2): 101 − 106
-
[12]
Xu R, Zhang S, Wang X, Xia Y, Xia X, Wu J, Gu C, Tu J. Chem Eur J, 2018, 24(23): 6007 − 6018 doi: 10.1002/chem.v24.23
-
[13]
Ou Q, Zhang Y, Wang Z, Yuwono J A, Wang R, Dai Z, Li W, Zheng C, Xu Z Q, Qi X. Adv Mater, 2018, 30(15): 1705792 doi: 10.1002/adma.v30.15
-
[14]
Ramakumar S, Deviannapoorani C, Dhivya L, Shankar L S, Murugan R. Prog Mater Sci, 2017, 88: 325 − 411 doi: 10.1016/j.pmatsci.2017.04.007
-
[15]
Qiu Z, Zhang Y, Xia S, Dong P. Acta Chim Sin, 2015, 73: 992 − 1001
-
[16]
Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C W. Adv Mater, 2019, 31(11): 1806082 doi: 10.1002/adma.1806082
-
[17]
Zhang W, Nie J, Li F, Wang Z L, Sun C. Nano Energy, 2018, 45: 413 − 419 doi: 10.1016/j.nanoen.2018.01.028
-
[18]
Zhang J, Yang J, Dong T, Zhang M, Chai J, Dong S, Wu T, Zhou X, Cui G. Small, 2018, 14(36): 1800821 doi: 10.1002/smll.v14.36
-
[19]
Dai J, Yang C, Wang C, Pastel G, Hu L. Adv Mater, 2018, 30(48): 1802068 doi: 10.1002/adma.v30.48
-
[20]
Yu R, Bao J J, Chen T T, Zou B K, Wen Z Y, Guo X X, Chen C H. Solid State Ionics, 2017, 309: 15 − 21 doi: 10.1016/j.ssi.2017.06.013
-
[21]
Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J. Nano Energy, 2017, 33: 363 − 386 doi: 10.1016/j.nanoen.2017.01.028
-
[22]
Choi H, Kim H W, Ki J K, Lim Y J, Kim Y, Ahn J H. Nano Research, 2017, 10(9): 3092 − 3102 doi: 10.1007/s12274-017-1526-2
-
[23]
Chen R J, Zhang Y B, Liu T, Xu B, Shen Y, Li L, Lin Y H, Nan C W. Solid State Ionics, 2017, 310: 44 − 49 doi: 10.1016/j.ssi.2017.07.026
-
[24]
Rolland J, Brassinne J, Bourgeois J P, Poggi E, Vlad A, Gohy J F. J Mater Chem A, 2014, 2(30): 11839 − 11846 doi: 10.1039/C4TA02327G
-
[25]
Gerbaldi C, Nair J R, Kulandainathan M A, Kumar R S, Ferrara C, Mustarelli P, Stephan A M. J Mater Chem A, 2014, 2(26): 9948 − 9954 doi: 10.1039/C4TA01856G
-
[26]
Xu X, Hou G, Nie X, Ai Q, Liu Y, Feng J, Zhang L, Si P, Guo S, Ci L. J Power Sources, 2018, 400: 212 − 217 doi: 10.1016/j.jpowsour.2018.08.016
-
[27]
Liu X, Li X, Li H, Wu H B. Chem Eur J, 2018, 24(69): 18293 − 18306 doi: 10.1002/chem.v24.69
-
[28]
Villaluenga I, Wujcik K H, Tong W, Devaux D, Wong D H, DeSimone J M, Balsara N P. Proc Natl Acad Sci USA, 2016, 113(1): 52 − 57 doi: 10.1073/pnas.1520394112
-
[29]
Croce F, Sacchetti S, Scrosati B. J Power Sources, 2006, 162(1): 685 − 689 doi: 10.1016/j.jpowsour.2006.07.038
-
[30]
Xi J, Huang X, Tang X. Chin Sci Bull, 2004, 49(20): 2129 − 2133 doi: 10.1007/BF03185777
-
[31]
Zhang R, Chen Y, Montazami R. Materials, 2015, 8(5): 2735 − 2748 doi: 10.3390/ma8052735
-
[32]
Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem Commun, 2012, 17: 18 − 21 doi: 10.1016/j.elecom.2012.01.008
-
[33]
Kim H S, Periasamy P, Moon S I. J Power Sources, 2005, 141(2): 293 − 297 doi: 10.1016/j.jpowsour.2004.08.007
-
[34]
Appetecchi G, Romagnoli P, Scrosati B. Electrochem Commun, 2001, 3(6): 281 − 284 doi: 10.1016/S1388-2481(01)00137-0
-
[35]
Kim D W, Oh B, Park J H, Sun Y K. Solid State Ionics, 2000, 138(1-2): 41 − 49 doi: 10.1016/S0167-2738(00)00763-3
-
[36]
Song J, Wang Y, Wan C C. J Power Sources, 1999, 77(2): 183 − 197 doi: 10.1016/S0378-7753(98)00193-1
-
[37]
Kim D W, Oh B K, Choi Y M. Solid State Ionics, 1999, 123(1-4): 243 − 249 doi: 10.1016/S0167-2738(99)00099-5
-
[38]
Cho Y G, Hwang C, Cheong D S, Kim Y S, Song H K. Adv Mater, 2019, 31(20): 1804909 doi: 10.1002/adma.v31.20
-
[39]
Fan Huanhuan(范欢欢), Zhou Dong(周栋), Fan Lizhen(范丽珍), Shi Qiao(石桥). J Chin Ceram Soc(硅酸盐学报), 2013, 41(2): 134 − 139 doi: 10.7521/j.issn.0454-5648.2013.02.02
-
[40]
Chai J, Liu Z, Ma J, Wang J, Liu X, Liu H, Zhang J, Cui G, Chen L. Adv Sci, 2017, 4(2): 1600377 doi: 10.1002/advs.201600377
-
[41]
Ju J, Wang Y, Chen B, Ma J, Dong S, Chai J, Qu H, Cui L, Wu X, Cui G. ACS Appl Mater Interfaces, 2018, 10(16): 13588 − 13597 doi: 10.1021/acsami.8b02240
-
[42]
Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G. ACS Appl Mater Interfaces, 2017, 9(21): 17897 − 17905 doi: 10.1021/acsami.7b02844
-
[43]
He W, Cui Z, Liu X, Cui Y, Chai J, Zhou X, Liu Z, Cui G. Electrochim Acta, 2017, 225: 151 − 159 doi: 10.1016/j.electacta.2016.12.113
-
[44]
Qin B, Liu Z, Zheng J, Hu P, Ding G, Zhang C, Zhao J, Kong D, Cui G. J Mater Chem A, 2015, 3(15): 7773 − 7779 doi: 10.1039/C5TA00216H
-
[45]
Susan M A B H, Kaneko T, Noda A, Watanabe M. J Mater Chem A, 2005, 127(13): 4976 − 4983
-
[46]
Zhou Y, Xie S, Chen C. J Mater Sci, 2006, 41(22): 7492 − 7497 doi: 10.1007/s10853-006-0803-3
-
[47]
Ma Y, Ma J, Chai J, Liu Z, Ding G, Xu G, Liu H, Chen B, Zhou X, Cui G. ACS Appl Mater Interfaces, 2017, 9(47): 41462 − 41472 doi: 10.1021/acsami.7b11342
-
[48]
Zheng J, Zhao Y, Feng X, Chen W, Zhao Y. J Mater Chem A, 2018, 6(15): 6559 − 6564 doi: 10.1039/C8TA00530C
-
[49]
Zheng J, Li X, Yu Y, Zhen X, Song Y, Feng X, Zhao Y. J Solid State Electrochem, 2014, 18(7): 2013 − 2018 doi: 10.1007/s10008-014-2438-7
-
[50]
Niu C, Zhang M, Chen G, Cao B, Shi J, Du J, Chen Y. Electrochim Acta, 2018, 283: 349 − 356 doi: 10.1016/j.electacta.2018.06.169
-
[51]
Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater, 2018, 10: 85 − 91 doi: 10.1016/j.ensm.2017.06.017
-
[52]
Fan W, Li N W, Zhang X, Zhao S, Cao R, Yin Y, Xing Y, Wang J, Guo Y G, Li C. Adv Sci, 2018, 5(9): 1800559 doi: 10.1002/advs.201800559
-
[53]
Liu M, Jiang H, Ren Y, Zhou D, Kang F, Zhao T. Electrochim Acta, 2016, 213: 871 − 878 doi: 10.1016/j.electacta.2016.08.015
-
[54]
Liu M, Zhou D, He Y B, Fu Y, Qin X, Miao C, Du H, Li B, Yang Q H, Lin Z. Nano Energy, 2016, 22: 278 − 289 doi: 10.1016/j.nanoen.2016.02.008
-
[55]
Bok T, Cho S J, Choi S, Choi K H, Park H, Lee S Y, Park S. RSC Adv, 2016, 6(9): 6960 − 6966 doi: 10.1039/C5RA24256H
-
[56]
Zhou D, Liu R, Zhang J, Qi X, He Y B, Li B, Yang Q H, Hu Y S, Kang F. Nano Energy, 2017, 33: 45 − 54 doi: 10.1016/j.nanoen.2017.01.027
-
[57]
Zhou D, He Y B, Cai Q, Qin X, Li B, Du H, Yang Q H, Kang F. J Mater Chem A, 2014, 2(47): 20059 − 20066 doi: 10.1039/C4TA04504A
-
[58]
Hwang S S, Cho C G, Kim H. Electrochem Commun, 2010, 12(7): 916 − 919 doi: 10.1016/j.elecom.2010.04.020
-
[59]
Zhang J, Wen H, Yue L, Chai J, Ma J, Hu P, Ding G, Wang Q, Liu Z, Cui G. Small, 2017, 13(2): 1601530 doi: 10.1002/smll.v13.2
-
[60]
Cui Y, Liang X, Chai J, Cui Z, Wang Q, He W, Liu X, Liu Z, Cui G, Feng J. Adv Sci, 2017, 4(11): 1700174 doi: 10.1002/advs.201700174
-
[61]
Liu F Q, Wang W P, Yin Y X, Zhang S F, Shi J L, Wang L, Zhang X D, Zheng Y, Zhou J J, Li L. Sci Adv, 2018, 4(10): eaat5383 doi: 10.1126/sciadv.aat5383
-
[62]
Huang S, Cui Z, Qiao L, Xu G, Zhang J, Tang K, Liu X, Wang Q, Zhou X, Zhang B. Electrochim Acta, 2019, 299: 820 − 827 doi: 10.1016/j.electacta.2019.01.039
-
[63]
Du A, Zhang H, Zhang Z, Zhao J, Cui Z, Zhao Y, Dong S, Wang L, Zhou X, Cui G. Adv Mater, 2019, 31(11): 1805930 doi: 10.1002/adma.1805930
-
[64]
Guan H Y, Lian F, Xi K, Ren Y, Sun J L, Kumar R V. J Power Sources, 2014, 245: 95 − 100 doi: 10.1016/j.jpowsour.2013.06.120
-
[65]
Cui Y, Chai J, Du H, Duan Y, Xie G, Liu Z, Cui G. ACS Appl Mater Interfaces, 2017, 9(10): 8737 − 8741 doi: 10.1021/acsami.6b16218
-
[66]
Lei X, Liu X, Ma W, Cao Z, Wang Y, Ding Y. Angew Chem Inter Ed, 2018, 57(49): 16131 − 16135 doi: 10.1002/anie.201810882
-
[67]
Kim J K, Scheers J, Park T J, Kim Y. ChemSusChem, 2015, 8(4): 636 − 641 doi: 10.1002/cssc.v8.4
-
[68]
Meng Yabin(孟亚斌), Yang Yajiang(杨亚江). Acta Chimica Sinica(化学学报), 2004, 62: 1509 − 1513
-
[69]
Ito S, Unemoto A, Ogawa H, Tomai T, Honma I. J Power Sources, 2012, 208: 271 − 275 doi: 10.1016/j.jpowsour.2012.02.049
-
[70]
Lee Y W, Shin W K, Kim D W. Solid State Ionics, 2014, 255: 6 − 12 doi: 10.1016/j.ssi.2013.11.010
-
[71]
Zhou Y, Xie S, Ge X, Chen C, Amine K. J Appl Electrochem, 2004, 34(11): 1119 − 1125 doi: 10.1007/s10800-004-2726-5
-
[72]
Wang Y, Qiu J, Peng J, Li J, Zhai M. J Mater Chem A, 2017, 5(24): 12393 − 12399 doi: 10.1039/C7TA02291C
-
[73]
Kong L, Zhan H, Li Y, Zhou Y. Electrochem Commun, 2007, 9(10): 2557 − 2563 doi: 10.1016/j.elecom.2007.08.001
-
[74]
Kong L, Zhan H, Li Y, Zhou Y. Electrochim Acta, 2008, 53(16): 5373 − 5378 doi: 10.1016/j.electacta.2008.02.098
-
[75]
Hu Z, Zhang S, Dong S, Li Q, Cui G, Chen L. Chem Mater, 2018, 30(12): 4039 − 4047 doi: 10.1021/acs.chemmater.8b00722
-
[76]
Chai J, Chen B, Xian F, Wang P, Du H, Zhang J, Liu Z, Zhang H, Dong S, Zhou X. Small, 2018, 14(37): 1802244 doi: 10.1002/smll.v14.37
-
[77]
Liu X, Ding G, Zhou X, Li S, He W, Chai J, Pang C, Liu Z, Cui G. J Mater Chem A, 2017, 5(22): 11124 − 11130 doi: 10.1039/C7TA02423A
-
[78]
Qiao L, Cui Z, Chen B, Xu G, Zhang Z, Ma J, Du H, Liu X, Huang S, Tang K. Chem Sci, 2018, 9(14): 3451 − 3458 doi: 10.1039/C8SC00041G
-
[79]
Jiang J, Gao D, Li Z, Su G. React Funct Polym, 2006, 66(10): 1141 − 1148 doi: 10.1016/j.reactfunctpolym.2006.02.004
-
[80]
Yi Q, Zhang W, Li S, Li X, Sun C. ACS Appl Mater Interfaces, 2018, 10(41): 35039 − 35046 doi: 10.1021/acsami.8b09991
-
[81]
Zhou D, He Y B, Liu R, Liu M, Du H, Li B, Cai Q, Yang Q H, Kang F. Adv Energy Mater, 2015, 5(15): 1500353 doi: 10.1002/aenm.201500353
-
[82]
Xu G, Kushima A, Yuan J, Dou H, Xue W, Zhang X, Yan X, Li J. Energy Environ Sci, 2017, 10(12): 2544 − 2551 doi: 10.1039/C7EE01898C
-
[83]
Zhao Q, Liu X, Stalin S, Khan K, Archer L A. Nat Energy, 2019, 4: 365 − 373
-
[84]
Hu P, Duan Y, Hu D, Qin B, Zhang J, Wang Q, Liu Z, Cui G, Chen L. ACS Appl Mater Interfaces, 2015, 7(8): 4720 − 4727 doi: 10.1021/am5083683
-
[85]
Chai J, Zhang J, Hu P, Ma J, Du H, Yue L, Zhao J, Wen H, Liu Z, Cui G. J Mater Chem A, 2016, 4(14): 5191 − 5197 doi: 10.1039/C6TA00828C
-
[86]
Hou Zhongke(候仲轲), Chen Ligong(陈立功), Xue Fuhua(薛福华), Song Jian(宋健). Chemistry(化学通报), 2005, (9): 645 − 649
-
[87]
Kong Lingbo(孔令波), Zhan Hui(詹晖), Li Yajuan(李亚娟), Zhou Yunhong(周运鸿). Acta Chimica Sinica(化学学报), 2008, 66: 621 − 626
-
[1]
-
Figure 2. (a) Rate performance of LFMP/PVCA-LSnPS/Li cell at the rates of 0.1, 0.3, 0.5, and 1 C, and cycle performance at the rate of 0.5 C at room temperature; (b) Element mapping analysis of PVCA-LSnPS composite after cycling; (c) Possible complex structures in PVCA-LSnPS composite after cycling based on element mapping analysis and the DFT calculation results (Reprinted with permission from Ref.[41]; Copyright (2018) American Chemical Society)
Figure 3. Scheme of “Shuangjian hebi” reaction (Reprinted with permission from Ref.[47]; Copyright (2017) American Chemical Society)
Figure 4. In situ polymerization of GPE (Reprinted with permission from Ref.[52]; Copyright (2018) Wiley-VCH Verlag GmbH & Co. KGaA)
Figure 5. Schematic illustration for the in situ synthesis route to nesting doll-like HPILSE (Reprinted with permission from Ref.[56]; Copyright (2017) Elsevier)
Figure 6. Polymerization mechanism of PVA-CN in electrolyte solvents (Reprinted with permission from Ref.[57]; Copyright (2014) The Royal Society of Chemistry)
Figure 7. Schematic illustration for the in situ synthesis route to SEN (Reprinted with permission from Ref.[81]; Copyright (2015) Wiley-VCH Verlag GmbH & Co. KGaA)
Figure 8. Schematic diagram of cationic polymerization of divinyl ethers (Reprinted with permission from Ref.[58]; Copyright (2010) Elsevier)
Figure 9. (a) The optical images of PEGDE solution with LiDFOB and (b) crosslinked solid electrolyte pure C-PEGDE; (c) The cationic polymerization mechanism initiated by BF3 (Reprinted with permission from Ref.[60]; Copyright (2017) Wiley-VCH Verlag GmbH & Co. KGaA)
Figure 10. (a) Schematic model of the polymerization mechanism of DOL induced by LiPF6; (b) Optical photographs of LE and GPE (Reprinted with permission from Ref.[62]; Copyright (2019) Elsevier)
Figure 11. (a) Schematic illustrating the ex situ and in situ syntheses of SPEs; (b) Reaction mechanism illustrating how Al(OTf)3 initiates polymerization of DOL (Reprinted with permission from Ref.[83]; Copyright (2019) Springer Nature) (The online version is colorful.)
Figure 12. The schematic diagram of in situ formed polymerization process of PTHF electrolyte (Reprinted with permission from Ref.[62]; Copyright (2019) Elsevier)
Figure 13. (a) Schematic illustration of in situ preparation of PTB@GF-GPE and the cell assembly procedure; (b) The synthetic route to PTB-GPE based on the reaction of Mg(BH4)2, MgCl2, and PTHF (Reprinted with permission from Ref.[63]; Copyright (2019) Wiley-VCH Verlag GmbH & Co. KGaA)
Figure 14. (a) Schematic diagram depicting transformation from liquid into a gel electrolyte; (b) Schematic representation of the polymerization mechanism of PVFM-based GPE (Reprinted with permission from Ref.[64]; Copyright (2014) Elsevier)
Figure 15. (a) Charge/Discharge curves of LiNi0.5Mn1.5O4/Li in the 5th, 30th, 60th, and 100th cycles; (b) Cycling behavior of the LiNi0.5Mn1.5O4/PECAGPE/Li batteries at the rate of 1 C; (c) Anionic polymerization mechanism initiated by metal Li (Reprinted with permission from Ref.[65]; Copyright (2017) American Chemical Society)
Figure 16. The G4 gel formation process: (a – d) photographs of EDA/G4 solution with Li sheet after different days and (e) the separated Li sheet with a gel on the surface; Chemical mechanism of the gel formation by cross-linking reaction: (f) the reaction between Li metal and EDA and (g) cross-linking reactions between G4 and LiEDA. (Reprinted with permission from Ref.[66]; Copyright (2018) Wiley-VCH Verlag GmbH & Co. KGaA)
Figure 17. (a) A photograph of the vacuum-degassed solid-state electrolyte pellet; (b) The first to fifth charge-discharge profiles of all-solid-state LiCoO2/Li battery (Reprinted with permission from Ref.[69]; Copyright (2012) Elsevier)
Figure 18. Bond lengths (Å) of (a) free TFSI anions (C1 and C2) and (b) interacted TFSI anions with TiO2 nanoparticle (Reprinted with permission from Ref.[67]; Copyright (2015) Wiley-VCH Verlag GmbH & Co. KGaA)
Figure 19. Reaction scheme for synthesis of a cross-linked polymer network: (a) fluorinated carbamate synthesised from the reaction between PEI and FEC; (b) cross-linked polymer network obtained by ring-opening reaction between fluorinated carbamate and PEGDE (Reprinted with permission from Ref.[70]; Copyright (2014) Elsevier) (The online version is colorful.)
Figure 20. (a) Schematic illustration of the preparation of the PDMP-Li GPE; (b) Detailed charge/discharge curves of the pouch-type cell with the PDMP-Li GPE (Reprinted with permission from Ref.[72]; Copyright (2017) The Royal Society of Chemistry) (The online version is colorful.)
Table 1. Parameters and properties of PVC-based polymer electrolytes generated in situ by free radical polymerization
-