ISSN 1000-3304CN 11-1857/O6

二次电池用原位生成聚合物电解质的研究进展

张建军 杨金凤 吴瀚 张敏 刘亭亭 张津宁 董杉木 崔光磊

引用本文: 张建军, 杨金凤, 吴瀚, 张敏, 刘亭亭, 张津宁, 董杉木, 崔光磊. 二次电池用原位生成聚合物电解质的研究进展[J]. 高分子学报, 2019, 50(9): 890-914. doi: 10.11777/j.issn1000-3304.2019.19097 shu
Citation:  Jian-jun Zhang, Jin-feng Yang, Han Wu, Min Zhang, Ting-ting Liu, Jin-ning Zhang, Shan-mu Dong and Guang-lei Cui. Research Progress of in situ Generated Polymer Electrolyte for Rechargeable Batteries[J]. Acta Polymerica Sinica, 2019, 50(9): 890-914. doi: 10.11777/j.issn1000-3304.2019.19097 shu

二次电池用原位生成聚合物电解质的研究进展

    通讯作者: 崔光磊, E-mail: cuigl@qibebt.ac.cn
摘要: 聚合物电解质可以在很大程度上缓解甚至解决二次电池所面临的电解液泄漏、挥发、燃烧和爆炸等潜在安全问题. 但传统聚合物电解质成型工艺繁琐冗赘,且制备过程中存在溶剂挥发污染环境等缺点,原位生成聚合物电解质除可以有效解决上述安全问题外,还可以在二次电池内部形成稳定的固体电解质界面,实现界面融合,减少固/固界面阻抗,有利于提高二次电池循环寿命,具有很好的应用前景. 基于此,本综述从有无引发剂添加、引发剂种类等多角度重点阐述了原位生成聚合物电解质的制备工艺、形成机理、聚合物电解质类型及其在锂(钠、镁)等二次电池中应用的主要研究进展和现状. 最后对二次电池用原位生成聚合物电解质存在的挑战和未来可能发展趋势进行了展望.

English

    1. [1]

      Wu Z, Liu K, Lv C, Zhong S, Wang Q, Liu T, Liu X, Yin Y, Hu Y, Wei D. Small, 2018, 14(22): 1800414 doi: 10.1002/smll.v14.22

    2. [2]

      Abe H, Zaghib K, Tatsumi K, Higuchi S. J Power Sources, 1995, 54(2): 236 − 239 doi: 10.1016/0378-7753(94)02075-E

    3. [3]

      Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, Cho J. Angew Chem Int Ed, 2015, 54(15): 4440 − 4457 doi: 10.1002/anie.201409262

    4. [4]

      Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F. Appl Energy, 2017, 195: 586 − 599 doi: 10.1016/j.apenergy.2017.03.074

    5. [5]

      Li J, Du Z, Ruther R E, An S J, David L A, Hays K, Wood M, Phillip N D, Sheng Y, Mao C. JOM, 2017, 69(9): 1484 − 1496 doi: 10.1007/s11837-017-2404-9

    6. [6]

      Nowak S, Winter M. J Electrochem Soc, 2015, 162(14): A2500 − A2508 doi: 10.1149/2.0121514jes

    7. [7]

      Schroeder D, Hubaud A, Vaughey J. Mater Res Bull, 2014, 49: 614 − 617 doi: 10.1016/j.materresbull.2013.10.006

    8. [8]

      Hayamizu K, Akiba E. Electrochemistry, 2003, 71(12): 1052 − 1054

    9. [9]

      Ghimire P, Nakamura H, Yoshio M, Yoshitake H, Abe K. Electrochemistry, 2003, 71(12): 1084 − 1086

    10. [10]

      Gao J, Zhao Y S, Shi S Q, Li H. Chin Phys B, 2015, 25(1): 018211

    11. [11]

      Zheng Z S, Zhang Z T, Tang Z, Shen W. Prog Chem, 2003, 15(2): 101 − 106

    12. [12]

      Xu R, Zhang S, Wang X, Xia Y, Xia X, Wu J, Gu C, Tu J. Chem Eur J, 2018, 24(23): 6007 − 6018 doi: 10.1002/chem.v24.23

    13. [13]

      Ou Q, Zhang Y, Wang Z, Yuwono J A, Wang R, Dai Z, Li W, Zheng C, Xu Z Q, Qi X. Adv Mater, 2018, 30(15): 1705792 doi: 10.1002/adma.v30.15

    14. [14]

      Ramakumar S, Deviannapoorani C, Dhivya L, Shankar L S, Murugan R. Prog Mater Sci, 2017, 88: 325 − 411 doi: 10.1016/j.pmatsci.2017.04.007

    15. [15]

      Qiu Z, Zhang Y, Xia S, Dong P. Acta Chim Sin, 2015, 73: 992 − 1001

    16. [16]

      Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C W. Adv Mater, 2019, 31(11): 1806082 doi: 10.1002/adma.1806082

    17. [17]

      Zhang W, Nie J, Li F, Wang Z L, Sun C. Nano Energy, 2018, 45: 413 − 419 doi: 10.1016/j.nanoen.2018.01.028

    18. [18]

      Zhang J, Yang J, Dong T, Zhang M, Chai J, Dong S, Wu T, Zhou X, Cui G. Small, 2018, 14(36): 1800821 doi: 10.1002/smll.v14.36

    19. [19]

      Dai J, Yang C, Wang C, Pastel G, Hu L. Adv Mater, 2018, 30(48): 1802068 doi: 10.1002/adma.v30.48

    20. [20]

      Yu R, Bao J J, Chen T T, Zou B K, Wen Z Y, Guo X X, Chen C H. Solid State Ionics, 2017, 309: 15 − 21 doi: 10.1016/j.ssi.2017.06.013

    21. [21]

      Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J. Nano Energy, 2017, 33: 363 − 386 doi: 10.1016/j.nanoen.2017.01.028

    22. [22]

      Choi H, Kim H W, Ki J K, Lim Y J, Kim Y, Ahn J H. Nano Research, 2017, 10(9): 3092 − 3102 doi: 10.1007/s12274-017-1526-2

    23. [23]

      Chen R J, Zhang Y B, Liu T, Xu B, Shen Y, Li L, Lin Y H, Nan C W. Solid State Ionics, 2017, 310: 44 − 49 doi: 10.1016/j.ssi.2017.07.026

    24. [24]

      Rolland J, Brassinne J, Bourgeois J P, Poggi E, Vlad A, Gohy J F. J Mater Chem A, 2014, 2(30): 11839 − 11846 doi: 10.1039/C4TA02327G

    25. [25]

      Gerbaldi C, Nair J R, Kulandainathan M A, Kumar R S, Ferrara C, Mustarelli P, Stephan A M. J Mater Chem A, 2014, 2(26): 9948 − 9954 doi: 10.1039/C4TA01856G

    26. [26]

      Xu X, Hou G, Nie X, Ai Q, Liu Y, Feng J, Zhang L, Si P, Guo S, Ci L. J Power Sources, 2018, 400: 212 − 217 doi: 10.1016/j.jpowsour.2018.08.016

    27. [27]

      Liu X, Li X, Li H, Wu H B. Chem Eur J, 2018, 24(69): 18293 − 18306 doi: 10.1002/chem.v24.69

    28. [28]

      Villaluenga I, Wujcik K H, Tong W, Devaux D, Wong D H, DeSimone J M, Balsara N P. Proc Natl Acad Sci USA, 2016, 113(1): 52 − 57 doi: 10.1073/pnas.1520394112

    29. [29]

      Croce F, Sacchetti S, Scrosati B. J Power Sources, 2006, 162(1): 685 − 689 doi: 10.1016/j.jpowsour.2006.07.038

    30. [30]

      Xi J, Huang X, Tang X. Chin Sci Bull, 2004, 49(20): 2129 − 2133 doi: 10.1007/BF03185777

    31. [31]

      Zhang R, Chen Y, Montazami R. Materials, 2015, 8(5): 2735 − 2748 doi: 10.3390/ma8052735

    32. [32]

      Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem Commun, 2012, 17: 18 − 21 doi: 10.1016/j.elecom.2012.01.008

    33. [33]

      Kim H S, Periasamy P, Moon S I. J Power Sources, 2005, 141(2): 293 − 297 doi: 10.1016/j.jpowsour.2004.08.007

    34. [34]

      Appetecchi G, Romagnoli P, Scrosati B. Electrochem Commun, 2001, 3(6): 281 − 284 doi: 10.1016/S1388-2481(01)00137-0

    35. [35]

      Kim D W, Oh B, Park J H, Sun Y K. Solid State Ionics, 2000, 138(1-2): 41 − 49 doi: 10.1016/S0167-2738(00)00763-3

    36. [36]

      Song J, Wang Y, Wan C C. J Power Sources, 1999, 77(2): 183 − 197 doi: 10.1016/S0378-7753(98)00193-1

    37. [37]

      Kim D W, Oh B K, Choi Y M. Solid State Ionics, 1999, 123(1-4): 243 − 249 doi: 10.1016/S0167-2738(99)00099-5

    38. [38]

      Cho Y G, Hwang C, Cheong D S, Kim Y S, Song H K. Adv Mater, 2019, 31(20): 1804909 doi: 10.1002/adma.v31.20

    39. [39]

      Fan Huanhuan(范欢欢), Zhou Dong(周栋), Fan Lizhen(范丽珍), Shi Qiao(石桥). J Chin Ceram Soc(硅酸盐学报), 2013, 41(2): 134 − 139 doi: 10.7521/j.issn.0454-5648.2013.02.02

    40. [40]

      Chai J, Liu Z, Ma J, Wang J, Liu X, Liu H, Zhang J, Cui G, Chen L. Adv Sci, 2017, 4(2): 1600377 doi: 10.1002/advs.201600377

    41. [41]

      Ju J, Wang Y, Chen B, Ma J, Dong S, Chai J, Qu H, Cui L, Wu X, Cui G. ACS Appl Mater Interfaces, 2018, 10(16): 13588 − 13597 doi: 10.1021/acsami.8b02240

    42. [42]

      Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G. ACS Appl Mater Interfaces, 2017, 9(21): 17897 − 17905 doi: 10.1021/acsami.7b02844

    43. [43]

      He W, Cui Z, Liu X, Cui Y, Chai J, Zhou X, Liu Z, Cui G. Electrochim Acta, 2017, 225: 151 − 159 doi: 10.1016/j.electacta.2016.12.113

    44. [44]

      Qin B, Liu Z, Zheng J, Hu P, Ding G, Zhang C, Zhao J, Kong D, Cui G. J Mater Chem A, 2015, 3(15): 7773 − 7779 doi: 10.1039/C5TA00216H

    45. [45]

      Susan M A B H, Kaneko T, Noda A, Watanabe M. J Mater Chem A, 2005, 127(13): 4976 − 4983

    46. [46]

      Zhou Y, Xie S, Chen C. J Mater Sci, 2006, 41(22): 7492 − 7497 doi: 10.1007/s10853-006-0803-3

    47. [47]

      Ma Y, Ma J, Chai J, Liu Z, Ding G, Xu G, Liu H, Chen B, Zhou X, Cui G. ACS Appl Mater Interfaces, 2017, 9(47): 41462 − 41472 doi: 10.1021/acsami.7b11342

    48. [48]

      Zheng J, Zhao Y, Feng X, Chen W, Zhao Y. J Mater Chem A, 2018, 6(15): 6559 − 6564 doi: 10.1039/C8TA00530C

    49. [49]

      Zheng J, Li X, Yu Y, Zhen X, Song Y, Feng X, Zhao Y. J Solid State Electrochem, 2014, 18(7): 2013 − 2018 doi: 10.1007/s10008-014-2438-7

    50. [50]

      Niu C, Zhang M, Chen G, Cao B, Shi J, Du J, Chen Y. Electrochim Acta, 2018, 283: 349 − 356 doi: 10.1016/j.electacta.2018.06.169

    51. [51]

      Duan H, Yin Y X, Zeng X X, Li J Y, Shi J L, Shi Y, Wen R, Guo Y G, Wan L J. Energy Storage Mater, 2018, 10: 85 − 91 doi: 10.1016/j.ensm.2017.06.017

    52. [52]

      Fan W, Li N W, Zhang X, Zhao S, Cao R, Yin Y, Xing Y, Wang J, Guo Y G, Li C. Adv Sci, 2018, 5(9): 1800559 doi: 10.1002/advs.201800559

    53. [53]

      Liu M, Jiang H, Ren Y, Zhou D, Kang F, Zhao T. Electrochim Acta, 2016, 213: 871 − 878 doi: 10.1016/j.electacta.2016.08.015

    54. [54]

      Liu M, Zhou D, He Y B, Fu Y, Qin X, Miao C, Du H, Li B, Yang Q H, Lin Z. Nano Energy, 2016, 22: 278 − 289 doi: 10.1016/j.nanoen.2016.02.008

    55. [55]

      Bok T, Cho S J, Choi S, Choi K H, Park H, Lee S Y, Park S. RSC Adv, 2016, 6(9): 6960 − 6966 doi: 10.1039/C5RA24256H

    56. [56]

      Zhou D, Liu R, Zhang J, Qi X, He Y B, Li B, Yang Q H, Hu Y S, Kang F. Nano Energy, 2017, 33: 45 − 54 doi: 10.1016/j.nanoen.2017.01.027

    57. [57]

      Zhou D, He Y B, Cai Q, Qin X, Li B, Du H, Yang Q H, Kang F. J Mater Chem A, 2014, 2(47): 20059 − 20066 doi: 10.1039/C4TA04504A

    58. [58]

      Hwang S S, Cho C G, Kim H. Electrochem Commun, 2010, 12(7): 916 − 919 doi: 10.1016/j.elecom.2010.04.020

    59. [59]

      Zhang J, Wen H, Yue L, Chai J, Ma J, Hu P, Ding G, Wang Q, Liu Z, Cui G. Small, 2017, 13(2): 1601530 doi: 10.1002/smll.v13.2

    60. [60]

      Cui Y, Liang X, Chai J, Cui Z, Wang Q, He W, Liu X, Liu Z, Cui G, Feng J. Adv Sci, 2017, 4(11): 1700174 doi: 10.1002/advs.201700174

    61. [61]

      Liu F Q, Wang W P, Yin Y X, Zhang S F, Shi J L, Wang L, Zhang X D, Zheng Y, Zhou J J, Li L. Sci Adv, 2018, 4(10): eaat5383 doi: 10.1126/sciadv.aat5383

    62. [62]

      Huang S, Cui Z, Qiao L, Xu G, Zhang J, Tang K, Liu X, Wang Q, Zhou X, Zhang B. Electrochim Acta, 2019, 299: 820 − 827 doi: 10.1016/j.electacta.2019.01.039

    63. [63]

      Du A, Zhang H, Zhang Z, Zhao J, Cui Z, Zhao Y, Dong S, Wang L, Zhou X, Cui G. Adv Mater, 2019, 31(11): 1805930 doi: 10.1002/adma.1805930

    64. [64]

      Guan H Y, Lian F, Xi K, Ren Y, Sun J L, Kumar R V. J Power Sources, 2014, 245: 95 − 100 doi: 10.1016/j.jpowsour.2013.06.120

    65. [65]

      Cui Y, Chai J, Du H, Duan Y, Xie G, Liu Z, Cui G. ACS Appl Mater Interfaces, 2017, 9(10): 8737 − 8741 doi: 10.1021/acsami.6b16218

    66. [66]

      Lei X, Liu X, Ma W, Cao Z, Wang Y, Ding Y. Angew Chem Inter Ed, 2018, 57(49): 16131 − 16135 doi: 10.1002/anie.201810882

    67. [67]

      Kim J K, Scheers J, Park T J, Kim Y. ChemSusChem, 2015, 8(4): 636 − 641 doi: 10.1002/cssc.v8.4

    68. [68]

      Meng Yabin(孟亚斌), Yang Yajiang(杨亚江). Acta Chimica Sinica(化学学报), 2004, 62: 1509 − 1513

    69. [69]

      Ito S, Unemoto A, Ogawa H, Tomai T, Honma I. J Power Sources, 2012, 208: 271 − 275 doi: 10.1016/j.jpowsour.2012.02.049

    70. [70]

      Lee Y W, Shin W K, Kim D W. Solid State Ionics, 2014, 255: 6 − 12 doi: 10.1016/j.ssi.2013.11.010

    71. [71]

      Zhou Y, Xie S, Ge X, Chen C, Amine K. J Appl Electrochem, 2004, 34(11): 1119 − 1125 doi: 10.1007/s10800-004-2726-5

    72. [72]

      Wang Y, Qiu J, Peng J, Li J, Zhai M. J Mater Chem A, 2017, 5(24): 12393 − 12399 doi: 10.1039/C7TA02291C

    73. [73]

      Kong L, Zhan H, Li Y, Zhou Y. Electrochem Commun, 2007, 9(10): 2557 − 2563 doi: 10.1016/j.elecom.2007.08.001

    74. [74]

      Kong L, Zhan H, Li Y, Zhou Y. Electrochim Acta, 2008, 53(16): 5373 − 5378 doi: 10.1016/j.electacta.2008.02.098

    75. [75]

      Hu Z, Zhang S, Dong S, Li Q, Cui G, Chen L. Chem Mater, 2018, 30(12): 4039 − 4047 doi: 10.1021/acs.chemmater.8b00722

    76. [76]

      Chai J, Chen B, Xian F, Wang P, Du H, Zhang J, Liu Z, Zhang H, Dong S, Zhou X. Small, 2018, 14(37): 1802244 doi: 10.1002/smll.v14.37

    77. [77]

      Liu X, Ding G, Zhou X, Li S, He W, Chai J, Pang C, Liu Z, Cui G. J Mater Chem A, 2017, 5(22): 11124 − 11130 doi: 10.1039/C7TA02423A

    78. [78]

      Qiao L, Cui Z, Chen B, Xu G, Zhang Z, Ma J, Du H, Liu X, Huang S, Tang K. Chem Sci, 2018, 9(14): 3451 − 3458 doi: 10.1039/C8SC00041G

    79. [79]

      Jiang J, Gao D, Li Z, Su G. React Funct Polym, 2006, 66(10): 1141 − 1148 doi: 10.1016/j.reactfunctpolym.2006.02.004

    80. [80]

      Yi Q, Zhang W, Li S, Li X, Sun C. ACS Appl Mater Interfaces, 2018, 10(41): 35039 − 35046 doi: 10.1021/acsami.8b09991

    81. [81]

      Zhou D, He Y B, Liu R, Liu M, Du H, Li B, Cai Q, Yang Q H, Kang F. Adv Energy Mater, 2015, 5(15): 1500353 doi: 10.1002/aenm.201500353

    82. [82]

      Xu G, Kushima A, Yuan J, Dou H, Xue W, Zhang X, Yan X, Li J. Energy Environ Sci, 2017, 10(12): 2544 − 2551 doi: 10.1039/C7EE01898C

    83. [83]

      Zhao Q, Liu X, Stalin S, Khan K, Archer L A. Nat Energy, 2019, 4: 365 − 373

    84. [84]

      Hu P, Duan Y, Hu D, Qin B, Zhang J, Wang Q, Liu Z, Cui G, Chen L. ACS Appl Mater Interfaces, 2015, 7(8): 4720 − 4727 doi: 10.1021/am5083683

    85. [85]

      Chai J, Zhang J, Hu P, Ma J, Du H, Yue L, Zhao J, Wen H, Liu Z, Cui G. J Mater Chem A, 2016, 4(14): 5191 − 5197 doi: 10.1039/C6TA00828C

    86. [86]

      Hou Zhongke(候仲轲), Chen Ligong(陈立功), Xue Fuhua(薛福华), Song Jian(宋健). Chemistry(化学通报), 2005, (9): 645 − 649

    87. [87]

      Kong Lingbo(孔令波), Zhan Hui(詹晖), Li Yajuan(李亚娟), Zhou Yunhong(周运鸿). Acta Chimica Sinica(化学学报), 2008, 66: 621 − 626

    1. [1]

      任士通常贺飞郑涛党小飞张辽云李化毅林原 . HBPS-PEO多臂星形聚合物电解质的合成及离子导电性的研究. 高分子学报, 2013, (8): 1064-1071. doi: 10.3724/SP.J.1105.2013.12368

    2. [2]

      孙晋皓冯欣李鹏朱锦汤兆宾 . 环氧呋喃树脂反应性增容改性聚乳酸/淀粉复合材料的研究. 高分子学报, 2016, (7): 946-954. doi: 10.11777/j.issn1000-3304.2016.15347

    3. [3]

      林华玉孔丽芬梁晖卢江 . 一锅法合成含磺酸基超支化聚氨酯. 高分子学报, 2012, (7): 766-770. doi: 10.3724/SP.J.1105.2012.11403

    4. [4]

      庞明娟唐定国其鲁晨晖 . 锂离子二次电池用PVDF-HFP/PAMA共混物基聚合物电解质膜的研制. 高分子学报, 2005, (3): 448-452.

    5. [5]

      肖玉娟何倩楠周环宇徐海涛谈利承陈义旺 . 原位聚合聚(3, 4-乙烯二氧噻吩):π共轭聚电解质应用于聚合物太阳能电池空穴传输层. 高分子学报, 2018, (2): 257-265. doi: 10.11777/j.issn1000-3304.2018.17215

    6. [6]

      邓凌峰李新海肖立新张云河 . 聚合物自由基锂二次电池正极材料的合成与电化学性能. 高分子学报, 2004, (1): 8-12.

    7. [7]

      方世璧林原周晓文张敬波李学萍肖绪瑞 . 染料敏化太阳电池用聚合物电解质. 高分子学报, 2008, (6): 507-516. doi: 10.3724/SP.J.1105.2008.00507

    8. [8]

      赵莹歆刘昌炎 . 一种新型聚合物固体电解质的导电性的研究. 高分子学报, 1999, (3): 373-376.

    9. [9]

      黄英刘香鸾 . 非离子型表面活性剂对聚硅氧烷阴离子型乳液的耐电解质稳定性的影响. 高分子学报, 1987, (1): 46-50.

    10. [10]

      刘永刚郑致刚彭增辉李文萃邓舒鹏胡立发曹召良宣丽 . 单体结构对全息聚合物分散液晶光栅稳定性的影响. 高分子学报, 2010, (4): 408-415. doi: 10.3724/SP.J.1105.2010.09098

    11. [11]

      丁有容沈碧霞肖宝钧 . 用聚铝苯基硅氧烷加速硅树脂固化及固化树脂的热氧化稳定性. 高分子学报, 1963, 5(3): 141-145.

    12. [12]

      王明存魏柳荷赵彤余瑞莲冯志海 . 一种加成固化型热固性树脂PN-PAA固化过程和热稳定性研究. 高分子学报, 2006, (2): 241-247.

    13. [13]

      李其山谢择民 . 主链含环二硅氮烷硅橡胶的热稳定性. 高分子学报, 1986, (3): 208-213.

    14. [14]

      单国荣曹志海黄志明翁志学 . 丙烯酰胺双水相聚合体系稳定性研究. 高分子学报, 2005, (5): 769-773.

    15. [15]

      王和亭张淑英毛祖林黄志镗 . 若干杂环模型化合物的热氧化稳定性. 高分子学报, 1984, (4): 300-304.

    16. [16]

      王清正师彤谢择民孙羡王金亭李光亮 . 硅氮聚合物交联剂交联的室温硫化硅橡胶的热稳定性. 高分子学报, 1994, (5): 573-577.

    17. [17]

      邱琨宋义虎朱肖楠郑强 . 部分水解聚甲基丙烯酸甲酯/氢氧化钙复合物对硬质聚氯乙烯热稳定性与透明性及塑化行为的影响. 高分子学报, 2013, (4): 556-562. doi: 10.3724/SP.J.1105.2013.12317

    18. [18]

      王玲治江英彦 . 二氧化硅-聚-γ-巯丙基硅氧烷-铂络合物对不饱和化合物的硅氢加成的催化活性和稳定性. 高分子学报, 1983, (1): 78-80.

    19. [19]

      路崎赵强张红明李季王献红王佛松 . 空心微球聚苯胺二次锂氧电池正极材料研究. 高分子学报, 2013, (8): 1080-1084. doi: 10.3724/SP.J.1105.2013.12379

    20. [20]

      韦春谭松庭刘敏娜王霞瑜 . 环氧树脂/液晶聚合物体系的形态、力学性能和热稳定性. 高分子学报, 2002, (2): 187-191.

  • Figure 1.  Comparisons of preparation methods, advantages, and disadvantages of polymer electrolytes by (a) solution-casting and (b) in situ method

    Figure 2.  (a) Rate performance of LFMP/PVCA-LSnPS/Li cell at the rates of 0.1, 0.3, 0.5, and 1 C, and cycle performance at the rate of 0.5 C at room temperature; (b) Element mapping analysis of PVCA-LSnPS composite after cycling; (c) Possible complex structures in PVCA-LSnPS composite after cycling based on element mapping analysis and the DFT calculation results (Reprinted with permission from Ref.[41]; Copyright (2018) American Chemical Society)

    Figure 3.  Scheme of “Shuangjian hebi” reaction (Reprinted with permission from Ref.[47]; Copyright (2017) American Chemical Society)

    Figure 4.  In situ polymerization of GPE (Reprinted with permission from Ref.[52]; Copyright (2018) Wiley-VCH Verlag GmbH & Co. KGaA)

    Figure 5.  Schematic illustration for the in situ synthesis route to nesting doll-like HPILSE (Reprinted with permission from Ref.[56]; Copyright (2017) Elsevier)

    Figure 6.  Polymerization mechanism of PVA-CN in electrolyte solvents (Reprinted with permission from Ref.[57]; Copyright (2014) The Royal Society of Chemistry)

    Figure 7.  Schematic illustration for the in situ synthesis route to SEN (Reprinted with permission from Ref.[81]; Copyright (2015) Wiley-VCH Verlag GmbH & Co. KGaA)

    Figure 8.  Schematic diagram of cationic polymerization of divinyl ethers (Reprinted with permission from Ref.[58]; Copyright (2010) Elsevier)

    Figure 9.  (a) The optical images of PEGDE solution with LiDFOB and (b) crosslinked solid electrolyte pure C-PEGDE; (c) The cationic polymerization mechanism initiated by BF3 (Reprinted with permission from Ref.[60]; Copyright (2017) Wiley-VCH Verlag GmbH & Co. KGaA)

    Figure 10.  (a) Schematic model of the polymerization mechanism of DOL induced by LiPF6; (b) Optical photographs of LE and GPE (Reprinted with permission from Ref.[62]; Copyright (2019) Elsevier)

    Figure 11.  (a) Schematic illustrating the ex situ and in situ syntheses of SPEs; (b) Reaction mechanism illustrating how Al(OTf)3 initiates polymerization of DOL (Reprinted with permission from Ref.[83]; Copyright (2019) Springer Nature) (The online version is colorful.)

    Figure 12.  The schematic diagram of in situ formed polymerization process of PTHF electrolyte (Reprinted with permission from Ref.[62]; Copyright (2019) Elsevier)

    Figure 13.  (a) Schematic illustration of in situ preparation of PTB@GF-GPE and the cell assembly procedure; (b) The synthetic route to PTB-GPE based on the reaction of Mg(BH4)2, MgCl2, and PTHF (Reprinted with permission from Ref.[63]; Copyright (2019) Wiley-VCH Verlag GmbH & Co. KGaA)

    Figure 14.  (a) Schematic diagram depicting transformation from liquid into a gel electrolyte; (b) Schematic representation of the polymerization mechanism of PVFM-based GPE (Reprinted with permission from Ref.[64]; Copyright (2014) Elsevier)

    Figure 15.  (a) Charge/Discharge curves of LiNi0.5Mn1.5O4/Li in the 5th, 30th, 60th, and 100th cycles; (b) Cycling behavior of the LiNi0.5Mn1.5O4/PECAGPE/Li batteries at the rate of 1 C; (c) Anionic polymerization mechanism initiated by metal Li (Reprinted with permission from Ref.[65]; Copyright (2017) American Chemical Society)

    Figure 16.  The G4 gel formation process: (a – d) photographs of EDA/G4 solution with Li sheet after different days and (e) the separated Li sheet with a gel on the surface; Chemical mechanism of the gel formation by cross-linking reaction: (f) the reaction between Li metal and EDA and (g) cross-linking reactions between G4 and LiEDA. (Reprinted with permission from Ref.[66]; Copyright (2018) Wiley-VCH Verlag GmbH & Co. KGaA)

    Figure 17.  (a) A photograph of the vacuum-degassed solid-state electrolyte pellet; (b) The first to fifth charge-discharge profiles of all-solid-state LiCoO2/Li battery (Reprinted with permission from Ref.[69]; Copyright (2012) Elsevier)

    Figure 18.  Bond lengths (Å) of (a) free TFSI anions (C1 and C2) and (b) interacted TFSI anions with TiO2 nanoparticle (Reprinted with permission from Ref.[67]; Copyright (2015) Wiley-VCH Verlag GmbH & Co. KGaA)

    Figure 19.  Reaction scheme for synthesis of a cross-linked polymer network: (a) fluorinated carbamate synthesised from the reaction between PEI and FEC; (b) cross-linked polymer network obtained by ring-opening reaction between fluorinated carbamate and PEGDE (Reprinted with permission from Ref.[70]; Copyright (2014) Elsevier) (The online version is colorful.)

    Figure 20.  (a) Schematic illustration of the preparation of the PDMP-Li GPE; (b) Detailed charge/discharge curves of the pouch-type cell with the PDMP-Li GPE (Reprinted with permission from Ref.[72]; Copyright (2017) The Royal Society of Chemistry) (The online version is colorful.)

    Figure 21.  Prospects for the future development of in situ generated polymer electrolyte

    Table 1.  Parameters and properties of PVC-based polymer electrolytes generated in situ by free radical polymerization

    PrecursorInitiator and initiation conditionsElectrolyte stateIonic conductivity
    at 25 °C
    (S cm−1)
    Lithium-ion
    transference number (tLi+)
    Electrochemical window (V)Ref.
    LiDFOB/VC/AIBNAIBN, 60 °C 24 h or
    80 °C 10 h
    Solid2.23 × 10−50.574.5[40]
    LSnPS/LiDFOB/
    VC/AIBN
    AIBN, 60 °C 120 hSolid2 × 10−40.604.5[41]
    LiDFOB/EC/DEC/
    VC/AIBN
    AIBN, 60 °C 24 h or
    80 °C 2 h
    Gel5.59 × 10−40.344.8[42]
    下载: 导出CSV
  • 加载中
图(21)表(1)
计量
  • PDF下载量:  190
  • 文章访问数:  1411
  • HTML全文浏览量:  779
  • 引证文献数: 0
文章相关
  • 通讯作者:  崔光磊, cuigl@qibebt.ac.cn
  • 收稿日期:  2019-05-09
  • 修稿日期:  2019-06-08
  • 刊出日期:  2019-09-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计