ISSN 1000-3304CN 11-1857/O6

高温热处理对聚酰胺-酰亚胺薄膜超低热膨胀行为的影响

白兰 翟磊 何民辉 王畅鸥 莫松 范琳

引用本文: 白兰, 翟磊, 何民辉, 王畅鸥, 莫松, 范琳. 高温热处理对聚酰胺-酰亚胺薄膜超低热膨胀行为的影响[J]. 高分子学报. doi: 10.11777/j.issn1000-3304.2019.19099 shu
Citation:  Lan Bai, Lei Zhai, Min-hui He, Chang-ou Wang, Song Mo and Lin Fan. Effect of High Temperature Annealing on Thermal Expansion Behavior of Poly(amide-imide) Films with Ultralow Coefficient of Thermal Expansion[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19099 shu

高温热处理对聚酰胺-酰亚胺薄膜超低热膨胀行为的影响

    通讯作者: 翟磊, E-mail: zhailei@iccas.ac.cn 范琳, E-mail: fanlin@iccas.ac.cn
摘要: 采用刚性结构的二酐与含酰胺结构的二胺设计制备了具有高耐热稳定性的聚酰胺-酰亚胺薄膜,系统研究了高温热处理对薄膜热膨胀行为的影响. 结果表明,薄膜经高温热处理后玻璃化转变温度(Tg)有较明显提高,并在30 ~ 400 °C宽温域内具有超低热膨胀特性;随着热处理温度提高至400 °C,薄膜的CTE由负值逐渐趋近于0. 利用双折射、红外光谱、广角X射线衍射(WAXRD)和X射线散射(WAXS)等方法,对聚合物聚集态结构的变化规律进行考察发现,随着热处理温度升高,薄膜的面内分子链取向程度增大,链间氢键相互作用增强,且分子链堆积更加紧密;当热处理温度达到425 °C时,由于膜厚方向上分子链间距离增大导致薄膜呈较明显热收缩. 研究结果表明,通过分子结构和制备工艺可实现薄膜热膨胀性能的有效调控,为制备兼具高耐热和超低CTE的聚合物薄膜提供了新思路.

English

    1. [1]

      Zhuang Y B, Seong J G, Lee Y M. Prog Polym Sci, 2019, 92: 35 − 88 doi: 10.1016/j.progpolymsci.2019.01.004

    2. [2]

      Zhang Q, Tsai C Y, Li L J, Liaw D J. Nat Commun, 2019, 10: 1239 (1 – 8)

    3. [3]

      Fan Zhenguo(范振国), Chen Wenxin(陈文欣), Wei Shiyang(魏世洋), Liu Teng(刘腾), Liu Siwei(刘四委), Chi Zhenguo(池振国), Zhang Yi(张艺), Xu Jiarui(许家瑞). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 179 − 188

    4. [4]

      Liu H, Zhai L, Bai L, He M H, Wang C O, Mo S, Fan L. Polymer, 2019, 163: 106 − 114 doi: 10.1016/j.polymer.2018.12.045

    5. [5]

      Takizawa K, Fukudome H, Kozaki Y, Ando S. Macromolecules, 2014, 47(12): 3951 − 3958 doi: 10.1021/ma500236z

    6. [6]

      Jung Y, Yang Y, Kim S, Kim H S, Park T G, Yoo B W. Eur Polym J, 2013, 49(11): 3642 − 3650 doi: 10.1016/j.eurpolymj.2013.07.034

    7. [7]

      Wang Z H, Chen X, Yang H X, Zhao J, Yang S Y. Chinese J Polym Sci, 2019, 37(3): 268 − 278 doi: 10.1007/s10118-019-2173-8

    8. [8]

      Yu X H, Liang W H, Cao J H, Wu D Y. Polymers, 2017, 9(9): 451(1-19)

    9. [9]

      Hasegawa M, Hoshino Y, Katsura N, Ishii J. Polymer, 2017, 111: 91 − 102 doi: 10.1016/j.polymer.2017.01.028

    10. [10]

      Jo B W, Ahn K H, Lee S J. Polymer, 2014, 55(22): 5829 − 5836 doi: 10.1016/j.polymer.2014.09.016

    11. [11]

      Wei Shiyang(魏世洋), Zheng Zhibo(郑智博), Yu Qiaoxi(余桥溪), Fan Zhenguo(范振国), Liu Siwei(刘四委), Chi Zhenguo(池振国), Zhang Yi(张艺), Xu Jiarui(许家瑞). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 402 − 409

    12. [12]

      Huang J C, Zhu Z K, Yin J, Zhang D M, Qian X F. J Appl Polym Sci, 2001, 79(5): 794 − 800 doi: 10.1002/(ISSN)1097-4628

    13. [13]

      Song G L, Zhang Y, Wang D M, Chen C H, Zhou H W, Zhao X G, Dang G D. Polymer, 2013, 54(9): 2335 − 2340 doi: 10.1016/j.polymer.2013.02.051

    14. [14]

      Feng Y, Luo L B, Huang J Y, Li K, Li B Y, Wang H N, Liu X Y. J Appl Polym Sci, 2016, 133(28): 1 − 10

    15. [15]

      Numata S, Miwa T. Polymer, 1989, 30(6): 1170 − 1174 doi: 10.1016/0032-3861(89)90100-6

    16. [16]

      Leu T S, Wang C S. Polymer, 2002, 43(25): 7069 − 7074 doi: 10.1016/S0032-3861(02)00530-X

    17. [17]

      Cheng S W, Huang T T, Tsai C L, Liou G S. J Mater Chem C, 2017, 5(33): 8444 − 8453 doi: 10.1039/C7TC02819A

    18. [18]

      Huang F, Rad A T, Zheng W, Nieh M P, Cornelius C J. Polymer, 2017, 108: 105 − 120 doi: 10.1016/j.polymer.2016.11.046

    19. [19]

      Liu F Y, Liu Z H, Gao S Y, You Q L, Zou L Y, Chen J, Liu J Y, Liu X Q. RSC Adv, 2018, 8(34): 19034 − 19040 doi: 10.1039/C8RA02479K

    20. [20]

      UrRehman S, Song G L, Jia H, Zhou H W, Zhao X G, Dang G D, Chen C H. J Appl Polym Sci, 2013, 129(5): 2561 − 2570 doi: 10.1002/app.38969

    21. [21]

      Lian M, Lu X M, Lu Q H. Macromolecules, 2018, 51: 10127 − 10135 doi: 10.1021/acs.macromol.8b02282

    22. [22]

      Luo L B, Zhang J, Huang J Y, Feng Y, Peng C R, Wang X, Liu X Y. J Appl Polym Sci, 2016, 133(39): 1 − 8

    23. [23]

      Guo Haiquan(郭海泉), Yao Haibo(姚海波), Ma Xiaoye(马晓野), Qiu Xuepeng(邱雪鹏), Gao Lianxun(高连勋). Acta Polymerica Sinica(高分子学报), 2015, (3): 356 − 362

    24. [24]

      Hasegawa M, Kaneki T, Tsukui M, Okubo N, Ishii J. Polymer, 2016, 99: 292 − 306 doi: 10.1016/j.polymer.2016.07.010

    25. [25]

      Yue Z Y, Cai Y B, Xu S A. J Polym Res, 2014, 21(6): 1 − 8

    26. [26]

      Song G L, Wang D M, Dang G D, Zhou H W, Chen C H, Zhao X G. High Perform Polym, 2014, 26(4): 413 − 419 doi: 10.1177/0954008313517250

    27. [27]

      Hasegawa M, Sakamoto Y, Tanaka Y, Kobayashi Y. Eur Polym J, 2010, 46(7): 1510 − 1524 doi: 10.1016/j.eurpolymj.2010.04.014

    28. [28]

      Wang S, Yang G J, Wu S B, Ren G, Yang W, Liu X K. e-Polymers, 2016, 16(5): 395 − 402

    29. [29]

      Liu Y W, Huang J, Tan J H, Zeng Y, Liu J J, Zhang H L, Pei Y, Xiang X W, Liu Y J. Polymer, 2017, 114: 289 − 297 doi: 10.1016/j.polymer.2017.03.006

    30. [30]

      Dal Kim S, Lee B, Byun T, Chung I S, Park J, Shin I, Ahn N Y, Seo M, Lee Y, Kim Y, Kim W Y, Kwon H, Moon H, Yoo S, Kim S Y. Sci Adv, 2018, 4(10): eaau1956(1 – 10)

    31. [31]

      Hasegawa M, Koseki K. High Perform Polym, 2006, 18(5): 697 − 717 doi: 10.1177/0954008306068231

    32. [32]

      Hasegawa M, Watanabe Y, Tsukuda S, Ishii J. Polym Int, 2016, 65(9): 1063 − 1073 doi: 10.1002/pi.2016.65.issue-9

    33. [33]

      Song G L, Zhang X D, Wang D M, Zhao X G, Zhou H W, Chen C H, Dang G D. Polymer, 2014, 55(15): 3242 − 3246 doi: 10.1016/j.polymer.2014.05.041

    34. [34]

      Hu J H, Li R K, Chen C, Lu Z, Zeng K, Yang G. Polymer, 2018, 146: 133 − 141 doi: 10.1016/j.polymer.2018.05.001

    35. [35]

      Preston J. J Polym Sci, Part A: Polym Chem, 1966, 4(3): 529 − 539 doi: 10.1002/pol.1966.150040307

    36. [36]

      Ishii J, Takata A, Oami Y, Yokota R, Vladimirov L, Hasegawa M. Eur Polym J, 2010, 46(4): 681 − 693 doi: 10.1016/j.eurpolymj.2010.01.007

    37. [37]

      Terui Y, Ando S. J Polym Sci, Part B: Polym Phys, 2004, 42(12): 2354 − 2366 doi: 10.1002/(ISSN)1099-0488

    38. [38]

      Wen L, Zhang J H, Zhou T, Zhang A M. Vib Spectrosc, 2016, 86: 160 − 172 doi: 10.1016/j.vibspec.2016.07.001

    39. [39]

      Ree M, Kim K, Woo S H, Chang H. J Appl Phys, 1997, 81(2): 698 − 708 doi: 10.1063/1.364210

    40. [40]

      Brillhart M V, Cebe P. J Polym Sci, Part B: Polym Phys, 1995, 33(6): 927 − 936 doi: 10.1002/polb.1995.090330608

    41. [41]

      Sekiguchi K, Takizawa K, Ando S. J Photopolym Sci Technol, 2013, 26(3): 327 − 332 doi: 10.2494/photopolymer.26.327

    1. [1]

      董思远朱平刘继广王笃金董侠 . 透明聚酰胺聚集态结构与拉伸性能的热处理效应. 高分子学报, doi: 10.11777/j.issn1000-3304.2018.18198

    2. [2]

      乔宗文高保娇陈涛 . 侧链磺化型聚砜质子交换膜的设计与制备及其性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2015.14366

    3. [3]

      江建第张昆刘重阳吴国章 . 脂肪族聚酰胺热膨胀行为的研究. 高分子学报, doi: 10.3724/SP.J.1105.2013.12241

    4. [4]

      张燕珠刘四委黄爱萍张艺池振国许家瑞 . 热处理对尼龙6及其与聚酰胺嵌段共聚物共混体系晶体熔融行为和结晶结构的影响. 高分子学报, doi: 10.3724/SP.J.1105.2010.00231

    5. [5]

      王志亮李皆富聂静杨曙光 . 水热处理对聚酰胺6纤维结构和性能的影响. 高分子学报, doi: 10.11777/j.issn1000-3304.2016.16109

    6. [6]

      刘振海吴庸烈金淑芳陈仲庆田鹤琴 . 酰亚胺类高聚物热稳定性与化学结构的关系. 高分子学报,

    7. [7]

      宋锐杨德彬谢巧丽何领好刘宝菲 . 热处理对聚偏氟乙烯-酰胺类溶剂所制薄膜结晶行为的影响. 高分子学报,

    8. [8]

      周恩乐徐白玲贾连达 . 顺丁橡胶的聚集态结构及其拉伸行为. 高分子学报,

    9. [9]

      邓建平赵伟国杨万泰 . 螺旋聚(N-炔丙基酰胺)的合成及侧基对螺旋结构稳定性影响. 高分子学报,

    10. [10]

      张宏放杨宝泉张利华莫志深 . 热处理对尼龙1010结构影响研究. 高分子学报,

    11. [11]

      莫志深张宏放杨玲刘淑莹王佛松CHEN J.SCHAEFER H.LIU Z.X.HEEGER A.J. . 热处理对聚噻吩结构性质的影响. 高分子学报,

    12. [12]

      周重光贝小来周长忍 . 双马来酰亚胺在改进硅橡胶热稳定性中的作用. 高分子学报,

    13. [13]

      王岱珂赵晓江王佛松 . 通过等离子体表面处理提高聚乙炔稳定性. 高分子学报,

    14. [14]

      章家立何忠义 . 热处理对聚芳醚腈的结晶行为及熔融的影响. 高分子学报,

    15. [15]

      贾连达程杰成于文汇王国英綦玉臣刘丽 . 热处理过程中非晶态聚芳酯超分子结构的变化. 高分子学报,

    16. [16]

      申进波佟斌赵玮潘月秀冯霄石建兵支俊格董宇平 . 含膦酰杂菲侧基聚乙炔的合成与热稳定性. 高分子学报, doi: 10.3724/SP.J.1105.2009.00769

    17. [17]

      单国荣曹志海黄志明翁志学 . 丙烯酰胺双水相聚合体系稳定性研究. 高分子学报,

    18. [18]

      刘永刚郑致刚彭增辉李文萃邓舒鹏胡立发曹召良宣丽 . 单体结构对全息聚合物分散液晶光栅稳定性的影响. 高分子学报, doi: 10.3724/SP.J.1105.2010.09098

    19. [19]

      范召东谢择民 . 星形聚硅氧烷的热稳定性研究和结构表征. 高分子学报,

    20. [20]

      方维娜樊春海柳华杰 . pH对DNA折纸纳米结构折叠与溶液稳定性的影响. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.17064

  • Figure 1.  Schematic diagram of preparation for annealed PAI films

    Figure 1.  (a) TGA and (b) TMA curves of annealed PAI films

    Figure 2.  Effect of annealing temperature on CTE of PAI films

    Figure 3.  Effect of annealing temperature on Δn of PAI films

    Figure 4.  (a) ATR-FTIR spectra and (b) amide wavenumber variation of annealed PAI films

    Figure 5.  (a) Reflection WAXRD and (b) transmission WAXS profiles of annealed PAI films

    Figure 6.  Effect of annealing temperature on interchain distances of PAI films

    Figure 7.  Photographs of annealed PAI films: (a) PAI-350, (b) PAI-375, (C) PAI-400 and (d) PAI-425

    Figure 8.  Relationship between CTE and interchain distances of annealed PAI films

    Figure 9.  Relationship of CTE, hydrogen bonding and Δn of annealed PAI films

    Table 1.  Thermal properties of annealed PAI films a

    PAIs Tg (°C) Td (°C) T5 (°C) T10 (°C) Rw (%) CTE (ppm/°C)
    30 − 200 °C 30 − 300 °C 30 − 400 °C
    PAI-350 413 515 525 543 52.5 −1.24 −2.29 −6.87
    PAI-375 416 519 526 543 52.2 −1.11 −2.02 −3.86
    PAI-400 444 511 514 532 53.4 −0.34 −1.39 −3.84
    PAI-425 511 516 535 52.1 −2.49 −3.12 −4.55
    a Tg: the glass-transition temperature, determined by DMA; Td, T5 and T10: the onset, 5% and 10% weight loss decomposition temperatures by TGA; Rw: residual weight retention at 700 °C, all measured by TGA. CTE: in-plane coefficient of thermal expansion in the temperature range of 30 – 200, 30 – 300 and 30 – 400 °C, evaluated by TMA in nitrogen
    下载: 导出CSV

    Table 2.  Refractive indices and birefringence of annealed PAI films a

    PAIs nTE nTM nav Δn
    PAI-350 1.8596 1.6158 1.7820 0.2438
    PAI-375 1.8609 1.6146 1.7826 0.2463
    PAI-400 1.8734 1.6111 1.7902 0.2623
    PAI-425 1.8807 1.6186 1.7976 0.2621
    a nTE, nTM: determined at 632.8 nm; nav and Δn: calculated by equations as follows: nav2 = (2nTE2 + nTM2)/3 and Δn = nTEnTM, respectively
    下载: 导出CSV

    Table 3.  The XRD and WAXS data of annealed PAI films a

    PAIs 2θ (°) FWHM d-spacing (Å) d (ch-pack) (Å)
    PAI-350 20.6 1.61 4.32 4.50
    PAI-375 20.8 1.55 4.26 4.47
    PAI-400 21.0 1.37 4.22 4.47
    PAI-425 20.9 1.26 4.25 4.46
    a FWHM: Full width at half peak maximum; d-spacing: calculated by Bragg’s equation in reflection XRD; d (ch-pack): calculated by equation $d = q/2{{\text{π}}} $ in transmittance WAXS
    下载: 导出CSV
  • 加载中
图(10)表(3)
计量
  • PDF下载量:  28
  • 文章访问数:  585
  • HTML全文浏览量:  148
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计