ISSN 1000-3304CN 11-1857/O6

酰亚胺基N-型高分子半导体研究进展

史永强 王英锋 郭旭岗

引用本文: 史永强, 王英锋, 郭旭岗. 酰亚胺基N-型高分子半导体研究进展[J]. 高分子学报, 2019, 50(9): 873-889. doi: 10.11777/j.issn1000-3304.2019.19100 shu
Citation:  Yong-qiang Shi, Ying-feng Wang and Xu-gang Guo. Recent Progress of Imide-functionalized N-type Polymer Semiconductors[J]. Acta Polymerica Sinica, 2019, 50(9): 873-889. doi: 10.11777/j.issn1000-3304.2019.19100 shu

酰亚胺基N-型高分子半导体研究进展

    作者简介: 郭旭岗,男,1976年生. 南方科技大学材料科学与工程系教授,博士生导师,分别于1999和2002年在兰州大学获学士和硕士学位(导师:杨正银教授),2009年在美国肯塔基大学获博士学位(导师:Mark D. Watson教授),2009 ~ 2012年在美国西北大学Tobin  J. Marks教授课题组进行博士后研究. 2012年加入南方科技大学任副教授,2018年晋升为正教授. 主持和完成国家自然科学基金面上项目/深圳市孔雀团队等项目8项. 2013年入选深圳市孔雀计划B类人才,2018年被评为广东省珠江学者特聘教授. 主要研究方向是有机和高分子半导体材料及其光电器件;
    通讯作者: 郭旭岗, E-mail: guoxg@sustech.edu.cn
摘要: 近年来,高分子半导体材料由于其可溶液化加工及柔性等特点,引起了学术界以及工业界的广泛关注. 然而,相比于P-型高分子半导体,由于缺电子结构单元的缺乏、空间位阻效应及合成上的挑战,N-型高分子半导体材料的研究仍然相对较少,开发高性能的N-型高分子半导体仍然是有机电子领域面临的巨大挑战. 本专论回顾了N-型高分子半导体材料的最新研究进展,重点介绍了我们课题组开发的酰亚胺基高分子半导体及其在有机场效应晶体管(OFETs)和有机太阳能电池(OPVs)中的应用. 通过对分子结构设计以及相应的器件性能的总结,以期为高性能N-型高分子半导体材料的设计和开发提供进一步的指导和借鉴.

English

    1. [1]

      Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G. Phys Rev Lett, 1978, 40(22): 1472 − 1472 doi: 10.1103/PhysRevLett.40.1472

    2. [2]

      Dai Shuixing(代水星), Zhan Xiaowei(占肖卫). Acta Polymerica Sinica(高分子学报), 2017, (11): 1706 − 1714 doi: 10.11777/j.issn1000-3304.2017.17214

    3. [3]

      Bin Haijun(宾海军), Li Yongfang(李永舫). Acta Polymerica Sinica(高分子学报), 2017, (9): 1444 − 1461 doi: 10.11777/j.issn1000-3304.2017.17119

    4. [4]

      Zhang J Q, Tan H S, Guo X G, Facchetti A, Yan H. Nat Energy, 2018, (3): 720 − 731

    5. [5]

      Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2018, (2): 223 − 230 doi: 10.11777/j.issn1000-3304.2018.17297

    6. [6]

      Huang Fei (黄飞). Acta Polymerica Sinica(高分子学报), 2018, (9): 1141 − 1143 doi: 10.11777/j.issn1000-3304.2018.18181

    7. [7]

      Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. Nat Mater, 2005, 4(11): 864 − 868 doi: 10.1038/nmat1500

    8. [8]

      Heeney M, Zhang W M, Crouch D J, Chabinyc M L, Gordeyev S, Hamilton R, Higgins S J, McCulloch I, Skabara P J, Sparrowe D, Tierney S. Chem Commun, 2007, (47): 5061 − 5063 doi: 10.1039/b712398a

    9. [9]

      Yi Z R, Wang S, Liu Y Q. Adv Mater, 2015, 27(24): 3589 − 3606 doi: 10.1002/adma.201500401

    10. [10]

      Guo X G, Facchetti A, Marks T J. Chem Rev, 2014, 114(18): 8943 − 9021 doi: 10.1021/cr500225d

    11. [11]

      Sun H L, Wang L, Wang Y F, Guo X G. Chem Eur J, 2019, 25(1): 87 − 105 doi: 10.1002/chem.v25.1

    12. [12]

      Chen H J, Guo Y L, Yu G, Zhao Y, Zhang J, Gao D, Liu H T, Liu Y Q. Adv Mater, 2012, 24(34): 4618 − 4622 doi: 10.1002/adma.v24.34

    13. [13]

      Li J, Zhao Y, Tan H S, Guo Y L, Di C A, Yu G, Liu Y Q, Lin M, Lim S H, Zhou Y H, Su H B, Ong B S. Sci Rep, 2012, (2): 754

    14. [14]

      Mei J G, Diao Y, Appleton AL, Fang L, Bao Z N. J Am Chem Soc, 2013, 135(18): 6724 − 6746 doi: 10.1021/ja400881n

    15. [15]

      Yang J, Zhao Z Y, Wang S, Guo Y L, Liu Y Q. Chem, 2018, 4(12): 2748 − 2785 doi: 10.1016/j.chempr.2018.08.005

    16. [16]

      Xu X M, Yao Y F, Shan B W, Gu X, Liu D Q, Liu J Y, Xu J B, Zhao N, Hu W P, Miao Q. Adv Mater, 2016, 28(26): 5276 − 5283 doi: 10.1002/adma.201601171

    17. [17]

      Zhao Y, Guo Y L, Liu Y Q. Adv Mater, 2013, 25(38): 5372 − 5391 doi: 10.1002/adma.201302315

    18. [18]

      Zaumseil J, Sirringhaus H. Chem Rev, 2007, 107(4): 1296 − 1323 doi: 10.1021/cr0501543

    19. [19]

      Yang Jie(杨杰), Chen Jinyang(陈金佯), Sun Yunlong(孙云龙), Shi Longxian(施龙献), Guo Yunlong(郭云龙), Wang Shuai(王帅), Liu Yunqi(刘云圻). Acta Polymerica Sinica(高分子学报), 2017, (7): 1082 − 1096 doi: 10.11777/j.issn1000-3304.2017.17020

    20. [20]

      Guo X G, Watson M D. Org Lett, 2008, 10(23): 5333 − 5336 doi: 10.1021/ol801918y

    21. [21]

      Letizia J A, Salata M R, Tribout C M, Facchetti A, Ratner M A, Marks T J. J Am Chem Soc, 2008, 130(30): 9679 − 9694 doi: 10.1021/ja710815a

    22. [22]

      Guo X G, Ortiz R P, Zheng Y, Hu Y, Noh Y Y, Baeg K J, Facchetti A, Marks T J. J Am Chem Soc, 2011, 133(5): 1405 − 1418 doi: 10.1021/ja107678m

    23. [23]

      Zhou N J, Guo X G, Ortiz R P, Harschneck T, Manley E F, Lou S J, Hartnett P E, Yu X G, Horwitz N E, Burrezo P M, Aldrich T J, López Navarrete J T, Wasielewski M R, Chen L X, Chang R P H, Facchetti A, Marks T J. J Am Chem Soc, 2015, 137(39): 12565 − 12579 doi: 10.1021/jacs.5b06462

    24. [24]

      Wang Y F, Guo H, Harbuzaru A, Uddin M A, Arrechea-Marcos I, Ling S H, Yu J W, Tang Y M, Sun H L, López Navarrete J T, Ortiz R P, Woo H Y, Guo X G. J Am Chem Soc, 2018, 140(19): 6095 − 6108 doi: 10.1021/jacs.8b02144

    25. [25]

      Shi Y Q, Guo H, Qin M C, Zhao J Y, Wang Y X, Wang H, Wang Y L, Facchetti A, Lu X H, Guo X G. Adv Mater, 2018, 30(10): 1705745 doi: 10.1002/adma.v30.10

    26. [26]

      Shi Y Q, Guo H, Qin M C, Wang Y X, Zhao J Y, Sun H L, Wang H, Wang Y L, Zhou X, Facchetti A, Lu X H, Zhou M, Guo X G. Chem Mater, 2018, 30(21): 7988 − 8001 doi: 10.1021/acs.chemmater.8b03670

    27. [27]

      Saito M, Osaka I, Suda Y, Yoshida H, Takimiya K. Adv Mater, 2016, 28(32): 6921 − 6925 doi: 10.1002/adma.201601373

    28. [28]

      Wang Y F, Guo H, Ling S H, Arrechea-Marcos I, Wang Y X, López Navarrete J T, Ortiz R P, Guo X G. Angew Chem Int Ed, 2017, 56(33): 9924 − 9929 doi: 10.1002/anie.201702225

    29. [29]

      Guo X G, Watson M D. Macromolecules, 2011, 44(17): 6711 − 6716 doi: 10.1021/ma2009063

    30. [30]

      Guo X G, Kim F S, Seger M J, Jenekhe S A, Watson M D. Chem Mater, 2012, 24(8): 1434 − 1442 doi: 10.1021/cm2034273

    31. [31]

      Dou C D, Long X J, Ding Z C, Xie Z Y, Liu J, Wang L X. Angew Chem Int Ed, 2016, 55(4): 1436 − 1440 doi: 10.1002/anie.201508482

    32. [32]

      Long X J, Gao Y, Tian H K, Dou C D, Yan D H, Geng Y H, Liu J, Wang L X. Chem Commun, 2017, 53(10): 1649 − 1652 doi: 10.1039/C6CC09684K

    33. [33]

      Yu J W, Ornelas J L, Tang Y M, Uddin M A, Guo H, Yu S M, Wang Y L, Woo H Y, Zhang S M, Xing G C, Guo X G, Huang W. ACS Appl Mater Interfaces, 2017, 9(48): 42167 − 42178 doi: 10.1021/acsami.7b11863

    34. [34]

      Osaka I, Shimawaki M, Mori H, Doi I, Miyazaki E, Koganezawa T, Takimiya K. J Am Chem Soc, 2012, 134(11): 3498 − 3507

    35. [35]

      Zhang Q Q, Kelly M A, Bauer N, You W. Accounts Chem Res, 2017, 50(9): 2401 − 2409 doi: 10.1021/acs.accounts.7b00326

    36. [36]

      Liu J, Ye G, van der Zee B, Dong J J, Qiu X K, Liu Y R, Portale G, Chiechi R C, Koster L J A. Adv Mater, 2018, 30(44): 1804290 doi: 10.1002/adma.v30.44

    37. [37]

      Liao Q G, Wang Y L, Uddin M A, Chen J H, Guo H, Shi S B, Wang Y, Woo H Y, Guo X G. ACS Macro Lett, 2018, 7(5): 519 − 524 doi: 10.1021/acsmacrolett.8b00032

    38. [38]

      Huang H, Yang L, Facchetti A, Marks T J. Chem Rev, 2017, 117(15): 10291 − 10318 doi: 10.1021/acs.chemrev.7b00084

    39. [39]

      Zhan X W, Tan Z A, Domercq B, An Z S, Zhang X, Barlow S, Li Y F, Zhu D B, Kippelen B, Marder S R. J Am Chem Soc, 2007, 129(23): 7246 − 7247 doi: 10.1021/ja071760d

    40. [40]

      Yan H, Chen Z H, Zheng Y, Newman C, Quinn J R, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457(7230): 679 − 686 doi: 10.1038/nature07727

    41. [41]

      Kim F S, Guo X G, Watson M D, Jenekhe S A. Adv Mater, 2010, 22(4): 478 − 482 doi: 10.1002/adma.v22:4

    42. [42]

      Fukutomi Y, Nakano M, Hu J Y, Osaka I, Takimiya K. J Am Chem Soc, 2013, 135(31): 11445 − 11448 doi: 10.1021/ja404753r

    43. [43]

      Kang B, Kim R, Lee S B, Kwon S K, Kim Y H, Cho K. J Am Chemi Soc, 2016, 138(11): 3679 − 3686 doi: 10.1021/jacs.5b10445

    44. [44]

      Wang Y, Hasegawa T, Matsumoto H, Michinobu T. J Am Chem Soc, 2019, 141(8): 3566 − 3575 doi: 10.1021/jacs.8b12499

    45. [45]

      Fu B Y, Wang C Y, Rose B D, Jiang Y D, Chang M, Chu P H, Yuan Z B, Fuentes-Hernandez C, Kippelen B, Brédas J L, Collard D M, Reichmanis E. Chem Mater, 2015, 27(8): 2928 − 2937 doi: 10.1021/acs.chemmater.5b00173

    46. [46]

      Lei T, Cao Y, Fan Y L, Liu C J, Yuan S C, Pei J. J Am Chem Soc, 2011, 133(16): 6099 − 6101 doi: 10.1021/ja111066r

    47. [47]

      Kim G, Han A R, Lee H R, Lee J, Oh J H, Yang C. Chem Commun, 2014, 50(17): 2180 − 2183 doi: 10.1039/c3cc48013e

    48. [48]

      Yue W, Nikolka M, Xiao M F, Sadhanala A, Mcculloch I. J Mater Chem C, 2016, 4(41): 9704 − 9710 doi: 10.1039/C6TC03000A

    49. [49]

      Lei T, Dou J H, Cao X Y, Wang J Y, Pei J. J Am Chem Soc, 2013, 135(33): 12168 − 12171 doi: 10.1021/ja403624a

    50. [50]

      Lei T, Dou J H, Cao X Y, Wang J Y, Pei J. Adv Mater, 2013, 25(45): 6589 − 6593 doi: 10.1002/adma.201302278

    51. [51]

      Yan Z Q, Sun B, Li Y N. Chem Commun, 2013, 49(36): 3790 − 3792 doi: 10.1039/c3cc40531a

    52. [52]

      Dai Y Z, Ai N, Lu Y, Zheng Y Q, Dou J H, Shi K, Lei T, Wang J Y, Pei J. Chem Sci, 2016, 7(9): 5753 − 5757 doi: 10.1039/C6SC01380E

    53. [53]

      Casey A, Han Y, Fei Z P, White A J P, Anthopoulos TD, Heeney M. J Mater Chem C, 2015, 3(2): 265 − 275 doi: 10.1039/C4TC02008A

    54. [54]

      Shi S B, Wang Y X, Uddin M A, Zhou X, Guo H, Liao Q G, Zhu X C, Cheng X, Woo H Y, Guo X G. Adv Electron Mater, 2017, 3(12): 1700100 doi: 10.1002/aelm.201700100

    55. [55]

      Shi S B, Wang H, Chen P, Uddin M A, Wang Y X, Tang Y M, Guo H, Cheng X, Zhang S M, Woo H Y, Guo X G. Polym Chem, 2018, 9(28): 3873 − 3884 doi: 10.1039/C8PY00540K

    56. [56]

      Shi S B, Wang H, Uddin M A, Yang K, Su M Y, Bianchi L, Chen P, Cheng X, Guo H, Zhang S M, Woo H Y, Guo X G. Chem Mater, 2019, 31(5): 1808 − 1817 doi: 10.1021/acs.chemmater.9b00118

    57. [57]

      Wang H, Huang J, Uddin M A, Liu B, Chen P, Shi S B, Tang Y M, Xing G C, Zhang S M, Woo H Y, Guo H, Guo X G. ACS Appl Mater Interfaces, 2019, 11(10): 10089 − 10098 doi: 10.1021/acsami.8b22457

    58. [58]

      Chen J H, Yang K, Zhou X, Guo X G. Chem-Asian J, 2018, 13(18): 2587 − 2600 doi: 10.1002/asia.v13.18

    59. [59]

      Chen J H, Zhang X H, Wang G, Uddin M A, Tang Y M, Wang Y L, Liao Q G, Facchetti A, Marks T J, Guo X G. J Mater Chem C, 2017, 5(37): 9559 − 9569 doi: 10.1039/C7TC02903A

    60. [60]

      Wang Y F, Yan Z L, Guo H, Uddin M A, Ling S H, Zhou X, Su H M, Dai J F, Woo H Y, Guo X G. Angew Chem Int Ed, 2017, 56(48): 15304 − 15308 doi: 10.1002/anie.201708421

    61. [61]

      Wang Y F, Yan Z L, Uddin M A, Zhou X, Yang K, Tang Y M, Liu B, Shi Y Q, Sun H L, Deng A Y, Dai J F, Woo H Y, Guo X G. Solar RRL, 2019. 1900107 doi: 10.1002/solr.201900107

    62. [62]

      Chen W, Wang Y F, Pang G T, Koh C W, Djurišić A B, Wu Y H, Tu B, Liu F Z, Chen R, Woo H Y, Guo X G, He Z B. Adv Funct Mater, 2019, 1808855

    63. [63]

      Sun H L, Tang Y M, Guo H, Uddin M A, Ling S H, Wang R Z, Wang Y F, Zhou X, Woo H Y, Guo X G. Solar RRL, 2019, 3(2): 1800265 doi: 10.1002/solr.v3.2

    64. [64]

      Sun H L, Tang Y M, Koh C W, Ling S H, Wang R Z, Yang K, Yu J W, Shi Y Q, Wang Y F, Woo H Y, Guo X G. Adv Mater, 2019, 31(15): 1807220 doi: 10.1002/adma.v31.15

    65. [65]

      Lei T, Wang J Y, Pei J. Chem Mater, 2014, 26(1): 594 − 603 doi: 10.1021/cm4018776

    66. [66]

      Lei T, Cao Y, Zhou X, Peng Y, Bian J, Pei J. Chem Mater, 2012, 24(10): 1762 − 1770 doi: 10.1021/cm300117x

    1. [1]

      杨杰陈金佯孙云龙施龙献郭云龙王帅刘云圻 . 新型共轭聚合物的设计合成及其在场效应晶体管的应用. 高分子学报, 2017, (7): 1082-1096. doi: 10.11777/j.issn1000-3304.2017.17020

    2. [2]

      郭亦堃赵达慧 . 苝二酰亚胺聚合物受体设计及在全聚合物太阳能电池中的应用. 高分子学报, 2018, (2): 174-185. doi: 10.11777/j.issn1000-3304.2018.17268

    3. [3]

      江宇高垚田洪坤丁军桥耿延候王佛松 . 基于氟代异靛蓝并[7, 6-g]异靛蓝的共轭聚合物的合成及其半导体性质. 高分子学报, 2017, (7): 1141-1149. doi: 10.11777/j.issn1000-3304.2017.17022

    4. [4]

      姚惠峰侯剑辉 . 高性能聚合物光伏材料的设计与应用. 高分子学报, 2016, (11): 1468-1481. doi: 10.11777/j.issn1000-3304.2016.16216

    5. [5]

      傅杨武申伟陈明君 . 供体-受体型共轭聚合物电子结构和导电性能的理论设计. 高分子学报, 2013, (7): 870-877. doi: 10.3724/SP.J.1105.2013.12282

    6. [6]

      杨述张伟沈星星刘莹杜晓艳陈珊肖作杨震宇左启群丁黎明 . 含均苯四甲酸二酰亚胺受体单元的共轭高分子的合成及其在有机太阳能电池上的应用. 高分子学报, 2012, (8): 838-845. doi: 10.3724/SP.J.1105.2012.11375

    7. [7]

      宋春鹏曲轶刘剑刚韩艳春 . 全高分子太阳能电池活性层相分离结构调控. 高分子学报, 2018, (2): 145-163. doi: 10.11777/j.issn1000-3304.2018.17236

    8. [8]

      李韦伟 . 给体/受体双缆型共轭聚合物材料及单组分有机太阳能电池器件. 高分子学报, 2019, 0(0): 0-0. doi: 10.11777/j.issn1000-3304.2019.18212

    9. [9]

      李韦伟 . 给体/受体双缆型共轭聚合物材料及其单组分有机太阳能电池器件. 高分子学报, 2019, 50(3): 209-218. doi: 10.11777/j.issn1000-3304.2019.18212

    10. [10]

      顾鹏程姚奕帆董焕丽胡文平 . 共轭聚合物微纳晶的制备与表征及其在场效应晶体管器件中的应用. 高分子学报, 2014, (8): 1029-1040. doi: 10.11777/j.issn1000-3304.2014.14103

    11. [11]

      张有地石来涛陈义旺 . 无规共聚策略设计聚合物太阳能电池的展望与思考. 高分子学报, 2019, 50(1): 13-26. doi: 10.11777/j.issn1000-3304.2018.18193

    12. [12]

      柯鑫孟令贤万相见张昕常美佳李晨曦陈永胜 . 基于引达省并二噻吩吡喃的稠环受体材料的设计合成及其在有机太阳能电池中的应用研究. 高分子学报, 2019, 50(0): 1-10. doi: 10.11777/j.issn1000-3304.2019.19131

    13. [13]

      熊文涛郭亦堃赵达慧孙艳明 . 基于非卤素溶剂的高性能全聚合物太阳能电池. 高分子学报, 2018, (2): 315-320. doi: 10.11777/j.issn1000-3304.2018.17267

    14. [14]

      邓云峰鲍程田洪坤谢志元耿延候 . 含二噻吩并[3,2-b:2,3-d]氧膦杂环戊二烯共轭聚合物的 合成及其在薄膜晶体管和体异质结太阳能电池中的应用. 高分子学报, 2013, (5): 609-618. doi: 10.3724/SP.J.1105.2013.12405

    15. [15]

      崔勇姚惠峰杨晨熠张少青侯剑辉 . 具有接近15%能量转换效率的有机太阳能电池. 高分子学报, 2018, (2): 223-230. doi: 10.11777/j.issn1000-3304.2018.17297

    16. [16]

      黄飞 . 有机叠层太阳能电池光电转化效率突破17%. 高分子学报, 2018, 0(9): 1141-1143. doi: 10.11777/j.issn1000-3304.2018.18181

    17. [17]

      张升水刘庆国杨蕾玲FARRINGTON G.C. . 高分子阳离子导体的极性基效应. 高分子学报, 1993, (3): 366-369.

    18. [18]

      张希王力彦徐江飞陈道勇史林启周永丰沈志豪 . 聚合物超分子体系:设计、组装与功能. 高分子学报, 2019, 50(10): 973-987. doi: 10.11777/j.issn1000-3304.2019.19109

    19. [19]

      王德禧崔大源罗伯良王秀岗吴人洁 . 聚丙烯腈高分子半导体纤维的研究——聚丙烯腈高分子半导纤维的制备及其半导体特性. 高分子学报, 1984, (1): 1-5.

    20. [20]

      庄会岩倪玉山丁孟贤 . 热致性液晶聚酯酰亚胺高分子的合成. 高分子学报, 1994, (6): 666-671.

  • Figure 1.  Various approaches for developing N-type polymer semiconductors: (a) design and synthesis of new acceptor unit; (b) substitution with electron-withdrawing group; (c) backbone engineering

    Figure 2.  Representative molecular structures of N-type polymer semiconductors based on various key electron-accepting building blocks. The electron-accepting unit is marked in red and the electron-donating unit is marked in blue.

    Figure 3.  (a) Synthetic route to the dibrominated TBDI monomer and (b) the chemical structures of the TBDI-based polymers. The electron-accepting unit is marked in red and the electron-donating unit is marked in blue.

    Figure 4.  (a) Synthetic route to the representative ladder-type heteroarene BTI5 with 15 rings and 5 imide groups and (b) the chemical structures of polymer semiconductors based on BTI1(or BTI)-BTI5, including both donor-acceptor (D-A) type copolymers and acceptor-acceptor (or all-acceptor, A-A) homopolymers. The electron-accepting unit is marked in red and the electron-donating unit is marked in blue.

    Figure 5.  Synthetic route to (a) dibrominated DTzTI monomer and (b) dibrominated BTzI monomer; (c) The improved synthetic route to dibrominated BTzI; (d) The chemical structures of the corresponding polymers (The electron-accepting unit is marked in red and the electron-donating unit is marked in blue.)

    Figure 6.  Synthetic route to (a) fluorinated s-FBTI2 and (b) f-FBTI2 monomers; (c) The chemical structures of their corresponding polymers (The electron-accepting unit is marked in red and the electron-donating unit is marked in blue.)

    Figure 7.  Two major strategies proposed to develop new imide-functionalized building blocks for constructing N-type polymer semiconductors: (a) ring fusion and (b) atomic substitution

    Figure 8.  β Position functionalized ladder-type building blocks for constructing N-type polymer semiconductors

  • 加载中
图(8)
计量
  • PDF下载量:  192
  • 文章访问数:  1137
  • HTML全文浏览量:  675
  • 引证文献数: 0
文章相关
  • 通讯作者:  郭旭岗, guoxg@sustech.edu.cn
  • 收稿日期:  2019-05-13
  • 修稿日期:  2019-06-03
  • 刊出日期:  2019-09-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计