ISSN 1000-3304CN 11-1857/O6

多响应性甲氧基聚乙二醇丙烯酸酯-甲基丙烯酸共聚物的相变及荧光发射

董晓晶 曹红岩 姜绪宝 孔祥正 李树生

引用本文: 董晓晶, 曹红岩, 姜绪宝, 孔祥正, 李树生. 多响应性甲氧基聚乙二醇丙烯酸酯-甲基丙烯酸共聚物的相变及荧光发射[J]. 高分子学报. doi: 10.11777/j.issn1000-3304.2019.19106 shu
Citation:  Xiao-jing Dong, Hong-yan Cao, Xu-bao Jiang, Xiang-zheng Kong and Shu-sheng Li. Phase Transition and Fluorescence Emission Characteristics ofMulti-responsive Copolymer of Oligo(ethylene glycol)Methyl Ether Acrylate and Methylacrylic Acid[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19106 shu

多响应性甲氧基聚乙二醇丙烯酸酯-甲基丙烯酸共聚物的相变及荧光发射

    通讯作者: 李树生, E-mail: chm_liss@ujn.edu.cn
摘要: 通过甲氧基聚乙二醇丙烯酸酯(OEGA)与甲基丙烯酸(MAA)自由基共聚制备了共聚物P(OEGA-MAA). 通过氢核磁共振谱(1H-NMR)及凝胶渗透色谱(GPC)对其结构进行了表征,对其相变及荧光性能进行测试,结果表明P(OEGA-MAA)对温度、pH及盐浓度具有响应性,并且在紫外光照射下发出肉眼可见的蓝色荧光. 在此基础上,进一步研究了单体配比、pH及盐浓度等因素对其低临界溶解温度(LCST)的影响,表征了该聚合物受外界刺激时的荧光变化,揭示了其荧光性质与刺激响应时相分离过程的内在联系,提出了聚乙二醇氧原子间簇集诱导是该聚合物系的主要发光机理. 本研究对了解PEG基刺激响应聚合物的荧光发射机理及拓展其实际应用均具有重要的意义.

English

    1. [1]

      Yamada A, Hiruta Y, Wang J, Ayano E, Kanazawa H. Biomacromolecules, 2015, 16: 2356 − 2362 doi: 10.1021/acs.biomac.5b00591

    2. [2]

      Wang H, Ke F, Mararenko A, Wei Z, Banerjee P, Zhou S. Nanoscale, 2014, 6: 7443 − 7452 doi: 10.1039/C4NR01030B

    3. [3]

      Park C H, Lee S, Pornnoppadol G, Nam Y S, Kim S H, Kim B J. ACS Appl Mater Interfaces, 2018, 10: 9023 − 9031 doi: 10.1021/acsami.7b19468

    4. [4]

      Kim T H, Swager T M. Angew Chem Int Ed, 2003, 42: 4803 − 4806 doi: 10.1002/anie.200352075

    5. [5]

      Wu W, Huang F, Pan S, Mu W, Meng X, Yang H, Xu Z, Ragauskas A J, Deng Y. J Mater Chem A, 2015, 3: 1995 − 2005 doi: 10.1039/C4TA04761C

    6. [6]

      Shang C, Wei N, Zhuo H, Shao Y, Zhang Q, Zhang Z, Wang H. J Mater Chem C, 2017, 5: 8082 − 8090 doi: 10.1039/C7TC02381B

    7. [7]

      Taniguchi R, Yamada T, Sada K, Kokado K. Macromolecules, 2014, 47: 6382 − 6388 doi: 10.1021/ma501198d

    8. [8]

      Lin J, Zeng X, Xiao Y, Tang L, Nong J, Liu Y, Zhou H, Ding B, Xu F, Tong H, Deng Z, Hong X. Chem Sci, 2019, 10: 1219 − 1226 doi: 10.1039/C8SC04363A

    9. [9]

      Chen M, Li L, Wu H, Pan L, Li S, He B, Zhang H, Sun J Z, Qin A, Tang B Z. ACS Appl Mater Interfaces, 2018, 10: 12181 − 12188 doi: 10.1021/acsami.8b03178

    10. [10]

      Chai J, Wu Y, Yang B, Liu B. J Mater Chem C, 2018, 6: 4057 − 4064 doi: 10.1039/C8TC00509E

    11. [11]

      Wang X, Li J, Yan Q, Chen Y, Fan A, Wang Z, Zhao Y. Macromol Biosci, 2018, 18: 1700339 doi: 10.1002/mabi.201700339

    12. [12]

      Ekbote A, Han S H, Jadhav T, Mobin S M, Lee J Y, Misra R. J Mater Chem C, 2018, 6: 2077 − 2087 doi: 10.1039/C7TC05450E

    13. [13]

      Zeng G, Liu M, Jiang R, Huang Q, Huang L, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. Polym Chem, 2017, 8: 4746 − 4751 doi: 10.1039/C7PY00884H

    14. [14]

      Lin Y K, Fang J Y, Wang S W, Lee R S. React Funct Polym, 2018, 130: 29 − 42 doi: 10.1016/j.reactfunctpolym.2018.05.008

    15. [15]

      Saghebasl S, Davaran S, Rahbarghazi R, Montaseri A, Salehi R, Ramazani A. J Biomat Sci-Polym Ed, 2018, 29: 1185 − 1206 doi: 10.1080/09205063.2018.1447627

    16. [16]

      Saeki S, Kuwahara N, Nakata M, Kaneko M. Polymer, 1976, 17: 685 − 689 doi: 10.1016/0032-3861(76)90208-1

    17. [17]

      Cao H, Wang Q, Li M, Chen Z. Colloid Polym Sci, 2015, 293: 441 − 451 doi: 10.1007/s00396-014-3422-6

    18. [18]

      Sun X, Zebibula A, Dong X, Zhang G, Zhang D, Qian J, He S. ACS Appl Mater Interfaces, 2018, 10: 25037 − 25046 doi: 10.1021/acsami.8b05546

    19. [19]

      Liu Y, Mao L, Liu X, Liu M, Xu D, Jiang R, Deng F, Li Y, Zhang X, Wei Y. Mater Sci Eng C, 2017, 79: 590 − 595 doi: 10.1016/j.msec.2017.05.108

    20. [20]

      Long Z, Liu M, Jiang R, Wan Q, Mao L, Wan Y, Deng F, Zhang X, Wei Y. Chem Eng J, 2017, 308: 527 − 534 doi: 10.1016/j.cej.2016.09.053

    21. [21]

      Kafer F, Liu F, Stahlschmidt U, Jérôme V, Freitag R, Karg M, Agarwa S. Langmuir, 2015, 31: 8940 − 8946 doi: 10.1021/acs.langmuir.5b02006

    22. [22]

      Wang Y, Bin X, Chen X, Zheng S, Zhang Y, Yuan W Z. Macromol Rapid Commun, 2018, 39: 1800528 doi: 10.1002/marc.201800528

    23. [23]

      Miao X, Liu T, Zhang C, Geng X, Meng Y, Li X. Phys Chem Chem Phys, 2016, 18: 4295 − 4299 doi: 10.1039/C5CP07134H

    24. [24]

      Pucci A, Rausa R, Ciardelli F. Macromol Chem Phys, 2008, 209: 900 − 906 doi: 10.1002/macp.200700581

    25. [25]

      Lutz J F, Weichenhan K, Akdemirö, Hoth A. Macromolecules, 2007, 40: 2503 − 2508 doi: 10.1021/ma062925q

    26. [26]

      Can A, Zhang Q, Rudolph T, Schacher F, Gohy J F, Schubert U, Richard H. Eur Polym J, 2015, 69: 460 − 471 doi: 10.1016/j.eurpolymj.2015.04.008

    27. [27]

      Luzon M, Boyer C, Peinado C, Corrales T, Whittaker M, Tao L, Davis T P. J Polym Sci, Part A: Polym Chem, 2010, 48: 2783 − 2792 doi: 10.1002/pola.24027

    28. [28]

      Lu H, Feng L, Li S, Zhang J, Lu H, Feng S. Macromolecules, 2015, 48: 476 − 482 doi: 10.1021/ma502352x

    29. [29]

      Guan X, Meng L, Jin Q, Lu B, Chen Y, Li Z, Wang L, Lai S, Lei Z. Macromol Mater Eng, 2018, 303: 1700553 doi: 10.1002/mame.201700553

    30. [30]

      Huang H, Hou L, Zhu F, Li J, Xu M. RSC Adv, 2018, 8: 9334 − 9343 doi: 10.1039/C8RA01018H

    31. [31]

      Cao H, Guo F, Chen Z, Kong X Z. Nanoscale Res Lett, 2018, 13: 209 − 218 doi: 10.1186/s11671-018-2610-6

    32. [32]

      Park T G, Hoffman A. Macromolecules, 1993, 26: 5045 − 5048 doi: 10.1021/ma00071a010

    1. [1]

      张伟高保娇陈迎鑫 . 侧链含8-羟基喹啉铝配合物的聚苯乙烯的合成与发光性能研究. 高分子学报, doi: 10.3724/SP.J.1105.2011.10364

    2. [2]

      何嫄於麟谭松巍蒋宏亮涂克华王利群 . 壳聚糖-O-聚(聚乙二醇甲醚甲基丙烯酸酯)接枝共聚物的ATRP合成及其自组装研究. 高分子学报, doi: 10.3724/SP.J.1105.2010.09280

    3. [3]

      王海侨刘宇宋娜何畅李永舫李效玉 . 不同低聚乙二醇链长的聚对亚苯基亚乙烯基类交替型发光共聚物. 高分子学报,

    4. [4]

      GUAN XiaolinLAI Shoujun . 荧光双重敏感响应型水溶聚合物的合成及其发光性能研究. 高分子学报, doi: 10.3724/SP.J.1105.2012.11133

    5. [5]

      胡蓉辛德华秦安军唐本忠 . 聚集诱导发光聚合物. 高分子学报, doi: 10.11777/j.issn1000-3304.2018.17280

    6. [6]

      赵莹杨丽敏张莉周维金吴瑾光鲍春丽王笃金徐端夫 . 含三价铕荧光络合物与聚甲基丙烯酸甲酯的发光材料. 高分子学报,

    7. [7]

      孟准聂俊何勇 . 聚乙二醇双丙烯酸酯在超临界二氧化碳中的光聚合研究. 高分子学报, doi: 10.3724/SP.J.1105.2010.09257

    8. [8]

      卓丁陈智王晓龙阮英波赵雪梅冉蓉 . 紫外光引发聚乙二醇二甲基丙烯酸酯的RAFT交联聚合研究. 高分子学报, doi: 10.3724/SP.J.1105.2010.09185

    9. [9]

      郑晋文王晓安泽胜 . RAFT聚合诱导自组装制备不同嵌段序列氧化响应性聚合物囊泡. 高分子学报, doi: 10.11777/j.issn1000-3304.2019.19070

    10. [10]

      蒋旭红涂伟萍 . 沉淀聚合法制备窄分散聚(甲基丙烯酸缩水甘油酯-co-乙二醇二甲基丙烯酸酯)功能聚合物微球. 高分子学报, doi: 10.3724/SP.J.1105.2009.00084

    11. [11]

      杜福胜洪薇李福绵 . 含咔唑生色基团的甲基丙烯酸酯类单体及其聚合物的荧光行为. 高分子学报,

    12. [12]

      陈传福刘卫宏陈永明任长玉习复 . 甲基丙烯酸三苯墓甲酯和甲基丙烯酸酯类的共聚物在溶液中的螺旋诱导和解旋作用. 高分子学报,

    13. [13]

      刘文忠刘景江林合韩孝族 . 交联对聚己二酸乙二醇酯聚氨酯/甲基丙烯酸甲酯交联聚合物的力学阻尼、相容性及形态的影响. 高分子学报,

    14. [14]

      陈双基薛梅李福绵 . 甲基丙烯酸-N,N-二甲氨基乙酯及其聚合物的热和pH响应性. 高分子学报,

    15. [15]

      黄媛媛高建峰彭慧晴吴骊珠佟振合陈玉哲杨清正 . 聚集诱导发光超分子聚合物的光物理性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.16248

    16. [16]

      梁爱辉王涵曹恬罗明刘德旺陈意王志平 . 具有聚集诱导发光特性的磷光聚合物的合成及性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2018.18160

    17. [17]

      陈文娜杨建王身国贝建中 . 聚丙交酯/聚乙二醇多嵌段共聚物的合成及其性能. 高分子学报,

    18. [18]

      方云夏咏梅蔡琨刘雪锋宗李燕马铃 . 非电解质聚合物与烷基硫酸钠同系物间团簇化临界浓度的变化规律. 高分子学报,

    19. [19]

      潘江庆张灿马振民 . 苯乙烯-甲基丙烯酸四甲基哌啶醇酯共聚物对聚丙烯的光照接枝研究. 高分子学报,

    20. [20]

      严隽坦周培庆张宝生沈培明王进张红珍 . 甲基丙烯酸甲酯-二乙烯苯共聚物交联度的表征. 高分子学报,

  • Figure 1.  Synthesis of P(OEGA-MAA) through free radical polymerization of OEGA and MAA (a); Phase separations of a solution of P7 (Prepared with OEGA/MAA at 3/7 by molar ratio, 2.0 mg/mL, pH = 1) with heating and cooling (b); Optical image of P7 powder under UV lamp (c); Excitation and emission spectra of P7 powder (d)

    Figure 2.  1H-NMR spectra of OEGA (top) and P8 (bottom) in DMSO-d6

    Figure 3.  Temperature-dependence of light transmittance of P(OEGA-MAA) of different compositions (a), their fluorescence emission (b), and variations of fluorescence emission and transmittance with temperature for aqueous P7 solution (2.0 mg/mL, pH = 1) (c)

    Figure 4.  Temperature-dependence of light transmittance of P7 at different concentrations (pH = 1) (a), and the corresponding fluorescence emission (b)

    Figure 5.  Temperature-dependence of light transmittance of aqueous P7 solution at different pH (2.0 mg/mL) (a) and the corresponding fluorescence emission (b)

    Figure 6.  Temperature-dependence of light transmittance of aqueous P7 solution (2 mg/mL, pH = 1) with different NaCl concentrations, (a) and the corresponding fluorescence emission (b)

    Table 1.  P(OEGA-MAA) prepared with varied OEGA/MAA ratio and the corresponding GPC and LCST data

    RunsOEGA/MAA (molar ratio)Yield (%)GPC aLCST a (ºC)
    Monomer feedingPolymer (by 1H-NMR)MnMw/Mn
    P010/010/018.460561.17
    P28/28.6/2.415.655201.12
    P37/36.7/3.333.756591.11
    P46/46.4/3.628.553361.15
    P55/54.1/5.925.352401.1778
    P64/65.4/4.636.857581.1462
    P73/73.3/6.735.954291.1340
    P82/82.3/7.760.852311.1632
    P100/100/1062.750111.12
    a GPC and LCST data obtained in water solution at polymer concentration of 2.0 mg/mL
    下载: 导出CSV
  • 加载中
图(6)表(1)
计量
  • PDF下载量:  20
  • 文章访问数:  466
  • HTML全文浏览量:  236
  • 引证文献数: 0
文章相关
  • 通讯作者:  李树生, chm_liss@ujn.edu.cn
  • 收稿日期:  2019-07-12
  • 修稿日期:  2019-08-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计