ISSN 1000-3304CN 11-1857/O6

聚合物超分子体系:设计、组装与功能

张希 王力彦 徐江飞 陈道勇 史林启 周永丰 沈志豪

引用本文: 张希, 王力彦, 徐江飞, 陈道勇, 史林启, 周永丰, 沈志豪. 聚合物超分子体系:设计、组装与功能[J]. 高分子学报, 2019, 50(10): 973-987. doi: 10.11777/j.issn1000-3304.2019.19109 shu
Citation:  Xi Zhang, Li-yan Wang, Jiang-fei Xu, Dao-yong Chen, Lin-qi Shi, Yong-feng Zhou and Zhi-hao Shen. Polymeric Supramolecular Systems: Design, Assembly and Functions[J]. Acta Polymerica Sinica, 2019, 50(10): 973-987. doi: 10.11777/j.issn1000-3304.2019.19109 shu

聚合物超分子体系:设计、组装与功能

摘要: 高分子科学和超分子化学的相互作用产生了多种多样的聚合物超分子体系,其可能具有丰富的超分子结构,并由此带来特殊的性质与功能. 我国许多高校和科研院所自20世纪80年代开始从事聚合物超分子体系的研究,并在高分子自组装、超分子聚合以及功能超分子体系等研究方面取得了一系列重要创新成果. 由于篇幅有限,此综述只选择介绍了几个代表性的研究实例,展示了如何从分子设计出发,发展和建立自组装的方法,将结构构筑与功能组装结合,构建多种多样的聚合物超分子体系的思想和成果.

English

    1. [1]

      Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH, 1995. 1 – 271

    2. [2]

      Ringsdorf H, Schlarb B, Venzmer J. Angew Chem Int Ed, 1988, 27(1): 113 − 158 doi: 10.1002/anie.198801131

    3. [3]

      Tang Wen(唐雯), Yue Kan(岳衎), Cheng Stephen Z D(程正迪). Acta Polymerica Sinica(高分子学报), 2018, (8): 959 − 972 doi: 10.11777/j.issn1000-3304.2018.18102

    4. [4]

      Wang Y, Xu H, Zhang X. Adv Mater, 2009, 21(28): 2849 − 2864 doi: 10.1002/adma.v21:28

    5. [5]

      Liu K, Kang Y, Wang Z, Zhang X. Adv Mater, 2013, 25(39): 5530 − 5548 doi: 10.1002/adma201302015

    6. [6]

      Wang C, Wang Z, Zhang X. Acc Chem Res, 2012, 45(4): 608 − 618 doi: 10.1021/ar200226d

    7. [7]

      Ahlers M, Muller W, Reichert A, Ringsdorf H, Venzmer J. Angew Chem Int Ed, 1990, 29(11): 1269 − 1285 doi: 10.1002/anie.199012691

    8. [8]

      Zhou Q F, Li H M, Feng X D. Macromolecules, 1987, 20(1): 233 − 234 doi: 10.1021/ma00167a042

    9. [9]

      Zhou Q F, Zhu X L, Wen Z Q. Macromolecules, 1989, 22(1): 491 − 493 doi: 10.1021/ma00191a094

    10. [10]

      Xu G Z, Wu W, Shen D Y, Hou J N, Zhang S F, Xu M, Zhou Q F. Polymer, 1993, 34(9): 1818 − 1822 doi: 10.1016/0032-3861(93)90422-7

    11. [11]

      Zhou Q F, Wan X H, Zhu X L, Zhang F, Feng X D. Mol Cryst Liq Cryst, 1993, 231: 107 − 117

    12. [12]

      Hardouin F, Mery S, Achard M F, Noirez L, Keller P. J Phys II, 1991, 1(5): 511 − 520

    13. [13]

      Zhang D, Liu Y X, Wan X H, Zhou Q F. Macromolecules, 1999, 32(13): 4494 − 4496 doi: 10.1021/ma9901386

    14. [14]

      Wan X H, Tu H L, Liu Y X, Zhang D, Chen X F, Zhang H L, Zhou Q F. Chinese J Polym Sci, 2003, 21(1): 21 − 27

    15. [15]

      Tu H L, Wan X H, Liu Y X, Chen X F, Zhang D, Zhou Q F, Shen Z H, Ge J J, Jin S, Cheng S Z D. Macromolecules, 2000, 33(17): 6315 − 6320 doi: 10.1021/ma991768a

    16. [16]

      Yin X Y, Ye C, Ma X, Chen E Q, Qi X Y, Duan X F, Wan X H, Cheng S Z D, Zhou Q F. J Am Chem Soc, 2003, 125(23): 6854 − 6855 doi: 10.1021/ja034462z

    17. [17]

      Chen S, Gao L C, Zhao X D, Chen X F, Fan X H, Xie P Y, Zhou Q F. Macromolecules, 2007, 40(16): 5718 − 5725 doi: 10.1021/ma0703554

    18. [18]

      Chai C P, Zhu X Q, Wang P, Ren M Q, Chen X F, Xu Y D, Fan X H, Ye C, Chen E Q, Zhou Q F. Macromolecules, 2007, 40(26): 9361 − 9370 doi: 10.1021/ma071670t

    19. [19]

      Chen S, Zhang L Y, Gao L C, Chen X F, Fan X H, Shen Z, Zhou Q F. J Polym Sci, Part A: Polym Chem, 2009, 47(2): 505 − 514 doi: 10.1002/pola.v47:2

    20. [20]

      Chen X F, Shen Z, Wan X H, Fan X H, Chen E Q, Ma Y, Zhou Q F. Chem Soc Rev, 2010, 39(8): 3072 − 3101 doi: 10.1039/b814540g

    21. [21]

      Hou Pingping(候平平), Zhang Zhenyu(张振宇), Ping Jing(平静), Shen Zhihao(沈志豪), Fan Xinghe(范星河), Zhou Qifeng(周其凤). Acta Polymerica Sinica(高分子学报), 2017, (10): 1591 − 1608 doi: 10.11777/j.issn1000-3304.2017.17116

    22. [22]

      Tenneti K K, Chen X F, Li C Y, Tu Y F, Wan X H, Zhou Q F, Sics I, Hsiao B S. J Am Chem Soc, 2005, 127(44): 15481 − 15490 doi: 10.1021/ja053548k

    23. [23]

      Shi L Y, Zhou Y, Fan X H, Shen Z H. Macromolecules, 2013, 46(13): 5308 − 5316 doi: 10.1021/ma400944z

    24. [24]

      Zhou F, Gu K H, Zhang Z Y, Zhang M Y, Zhou S, Shen Z, Fan X H. Angew Chem Int Ed, 2016, 55(48): 15007 − 15011 doi: 10.1002/anie.201608043

    25. [25]

      Xie H L, Jie C K, Yu Z Q, Liu X B, Zhang H L, Shen Z H, Chen E Q, Zhou Q F. J Am Chem Soc, 2010, 132(23): 8071 − 8080 doi: 10.1021/ja101184u

    26. [26]

      Zhu Y F, Guan X L, Shen Z H, Fan X H, Zhou Q F. Macromolecules, 2012, 45(8): 3346 − 3355 doi: 10.1021/ma300538h

    27. [27]

      Zhang L Y, Chen S, Zhao H, Shen Z H, Chen X F, Fan X H, Zhou Q F. Macromolecules, 2010, 43(14): 6024 − 6032 doi: 10.1021/ma100847g

    28. [28]

      Zhu Y F, Zhang Z Y, Zhang Q K, Hou P P, Hao D Z, Qiao Y Y, Shen Z H, Fan X H, Zhou Q F. Macromolecules, 2014, 47(9): 2803 − 2810 doi: 10.1021/ma500606e

    29. [29]

      Yi Y, Fan X H, Wan X H, Li L, Zhao N, Chen X F, Xu J, Zhou Q F. Macromolecules, 2004, 37(20): 7610 − 7618 doi: 10.1021/ma0400463

    30. [30]

      Zhang Z Y, Zhang Q K, Shen Z, Yu J P, Wu Y X, Fan X H. Macromolecules, 2016, 49(2): 475 − 482 doi: 10.1021/acs.macromol.5b02630

    31. [31]

      Ping J, Pan H, Hou P P, Zhang M Y, Wang X, Wang C, Chen J, Wu D, Shen Z H, Fan X H. ACS Appl Mater Interfaces, 2017, 9(7): 6130 − 6137 doi: 10.1021/acsami.6b15893

    32. [32]

      Liu S, Pan Q, Xie J, Jiang M. Polymer, 2000, 41(18): 6919 − 6929 doi: 10.1016/S0032-3861(99)00853-8

    33. [33]

      Chen D, Jiang M. Acc Chem Res, 2005, 38(6): 494 − 502 doi: 10.1021/ar040113d

    34. [34]

      Wang M, Jiang M, Ning F, Chen D, Liu S, Duan H. Macromolecules, 2002, 35(15): 5980 − 5989 doi: 10.1021/ma0201330

    35. [35]

      Dou H, Jiang M, Peng H, Chen D, Hong Y. Angew Chem, 2003, 42(13): 1516 − 1519 doi: 10.1002/anie.200250254

    36. [36]

      Wang J, Jiang M. J Am Chem Soc, 2005, 128(11): 3703 − 3708

    37. [37]

      Gu C, Chen D, Jiang M. Macromolecules, 2004, 37(4): 1666 − 1669 doi: 10.1021/ma035386n

    38. [38]

      Chen G, Jiang M. Chem Soc Rev, 2011, 40(5): 2254 − 2266 doi: 10.1039/c0cs00153h

    39. [39]

      Su L, Wang C, Polzer F, Lu Y, Chen G, Jiang M. ACS Macro Lett, 2014, 3(6): 534 − 539 doi: 10.1021/mz500211v

    40. [40]

      Su L, Zhang W, Wu X, Zhang Y, Chen X, Liu G, Chen G, Jiang M. Small, 2015, 11(33): 4191 − 4200 doi: 10.1002/smll.v11.33

    41. [41]

      Liu X, Jiang M, Yang S, Chen M, Chen D, Yang C, Wu K. Angew Chem Int Ed, 2002, 41(16): 2950 − 2953 doi: 10.1002/1521-3773(20020816)41:16<2950::AID-ANIE2950>3.0.CO;2-K

    42. [42]

      Xie D, Jiang M, Zhang G, Chen D. Chem Eur J, 2007, 13(12): 3346 − 3353 doi: 10.1002/(ISSN)1521-3765

    43. [43]

      Guo M, Jiang M, Pispas S, Zhou C. Macromolecules, 2008, 41(24): 9744 − 9749 doi: 10.1021/ma801975s

    44. [44]

      Zhang Y, Jiang M, Zhao J, Ren X, Chen D, Zhang G. Adv Funct Mater, 2005, 15(4): 695 − 699 doi: 10.1002/(ISSN)1616-3028

    45. [45]

      Yu S, Hu J, Pan X, Yao P, Jiang M. Langmuir, 2006, 22(6): 2754 − 2759 doi: 10.1021/la053158b

    46. [46]

      Hu J, Yu S, Yao P. Langmuir, 2007, 23(11): 6358 − 6364 doi: 10.1021/la063419x

    47. [47]

      Liao X, Chen G, Liu X, Chen W, Chen F, Jiang M. Angew Chem Int Ed, 2010, 49(26): 4409 − 4413 doi: 10.1002/anie.201000141

    48. [48]

      Liu X, Jiang M. Angew Chem Int Ed, 2006, 45(23): 3846 − 3850 doi: 10.1002/anie.200504364

    49. [49]

      Lehn J M. Science, 2002, 295(5564): 2400 − 2403 doi: 10.1126/science.1071063

    50. [50]

      Zhang L F, Eisenberg, A. Polym Adv Technol, 1998, 9(10-11): 677 − 699 doi: 10.1002/(ISSN)1099-1581

    51. [51]

      Schenning A P H J, Elissen-Román C, Weener J W, Baars M W P L, van der Gaast S J, Meijer E W. J Am Chem Soc, 1998, 120(32): 8199 − 8208 doi: 10.1021/ja9736774

    52. [52]

      Yan D Y, Zhou Y F, Hou J. Science, 2004, 303(5654): 65 − 67 doi: 10.1126/science.1090763

    53. [53]

      Zhou Y F, Yan D Y. Chem Commun, 2009, 10(10): 1172 − 1188

    54. [54]

      Zhou Y F, Yan D Y. Angew Chem Int Ed, 2004, 43(37): 4896 − 4899 doi: 10.1002/anie.200460325

    55. [55]

      Guo B, Shi Z Q, Yao Y, Zhou Y F, Yan D Y. Langmuir, 2009, 25(12): 6622 − 6626 doi: 10.1021/la901366g

    56. [56]

      Fan Y J, Zhang D P, Wang J, Jin H B, Zhou Y F, Yan D Y. Chem Commun, 2015, 51: 7234 − 7237 doi: 10.1039/C5CC01802A

    57. [57]

      Yu S R, Dong R J, Chen J X, Jiang W F, Zhou Y F, Yan D Y. Biomacromolecules, 2014, 15(5): 1828 − 1836 doi: 10.1021/bm5002203

    58. [58]

      Shi Z Q, Zhou Y F, Yan D Y. Macromol Rapid Commun, 2008, 29(5): 412 − 418 doi: 10.1002/(ISSN)1521-3927

    59. [59]

      Zhou Y F, Yan D Y, Dong W Y, Tian Y. J Phys Chem B, 2007, 111(6): 1262 − 1270 doi: 10.1021/jp0673563

    60. [60]

      Jin H B, Zheng Y L, Liu Y, Cheng H, Zhou Y F, Yan D Y. Angew Chem Int Ed, 2011, 123(44): 10536 − 10540 doi: 10.1002/ange.v123.44

    61. [61]

      Hou Z L, Huang T, Cai C Y, Resheed T, Yu C Y, Zhou Y F, Yan D Y. Chinese J Polym Sci, 2017, 35(5): 602 − 610 doi: 10.1007/s10118-017-1921-x

    62. [62]

      Huang T, Hou Z L, Xu Q S, Huang L, Li C L, Zhou Y F. Langmuir, 2017, 33: 340 − 346 doi: 10.1021/acs.langmuir.6b03869

    63. [63]

      Wang Jie(王洁), Li Huimei(李惠梅), Ni Yunzhou(倪云洲), Zhou Yongfeng(周永丰), Yan Deyue(颜德岳). Acta Polymerica Sinica(高分子学报), 2016, (7): 971 − 978 doi: 10.11777/j.issn1000-3304.2016.16083

    64. [64]

      Huang T, Li H M, Huang L, Li S L, Li K, Zhou Y F. Langmuir, 2016, 32(4): 991 − 996 doi: 10.1021/acs.langmuir.5b04478

    65. [65]

      Li H M, Zhang A D, Li K, Huang W, Mai Y Y, Zhou Y F, Yan D Y. Mater Chem Front, 2018, 2: 1040 − 1045 doi: 10.1039/C8QM00059J

    66. [66]

      Tao W, Liu Y, Jiang BB, Yu S R, Huang W, Zhou Y F, Yan D Y. J Am Chem Soc, 2012, 134(2): 762 − 764 doi: 10.1021/ja207924w

    67. [67]

      Jiang W F, Liu Y, Yu C Y, Li S L, Li Y J, Zhou Y. Chem Commun, 2016, 52(53): 8223 − 8226 doi: 10.1039/C6CC03445D

    68. [68]

      Li Huimei(李慧梅), Wang Jie(王洁), Ni Yunzhou(倪云洲), Zhou Yongfeng(周永丰), Yan Deyue(颜德岳). Acta Chimica Sinica(化学学报), 2016, 74(5): 415 − 421

    69. [69]

      Jiang Wenfeng(江文峰), Chen Jianxin(陈建新), Yu Songrui(吁松瑞), Zhou Yongfeng(周永丰), Yan Deyue(颜德岳). Acta Polymerica Sinica(高分子学报), 2014, (10): 1398 − 1407 doi: 10.11777/j.issn1000-3304.2014.14039

    70. [70]

      Liu Y, Yu C Y, Jin H B, Jiang B B, Zhu X Y, Zhou Y F, Lu Z Y, Yan D Y. J Am Chem Soc, 2013, 135(12): 4765 − 4770 doi: 10.1021/ja3122608

    71. [71]

      Zhang D P, Fan Y J, Li H M, Li K, Yan Y, Zhou Y F, Yan D Y. RSC Adv, 2015, 5(59): 47762 − 47765 doi: 10.1039/C5RA08661B

    72. [72]

      Zhang D P, Liu Y N, Fan Y J, Yu C Y, Zheng Y L, Jin H B, Fu L, Zhou Y F, Yan D Y. Adv Funct Mater, 2016, 26: 7652 − 7661 doi: 10.1002/adfm.v26.42

    73. [73]

      Jiang W F, Zhou Y F, Yan D Y. Chem Soc Rev, 2015, 44(12): 3874 − 3889 doi: 10.1039/C4CS00274A

    74. [74]

      Zhou Y F, Yan D Y. J Am Chem Soc, 2005, 127(30): 10468 − 10469 doi: 10.1021/ja0505696

    75. [75]

      Zhou Y F, Yan D Y. Angew Chem Int Ed, 2005, 44(21): 3223 − 3226 doi: 10.1002/anie.200462622

    76. [76]

      Jin H B, Huang W, Zhu X Y, Zhou Y F, Yan D Y. Chem Soc Rev, 2012, 41: 5986 − 5997 doi: 10.1039/c2cs35130g

    77. [77]

      Mai YY, Zhou Y F, Yan D Y. Macromolecules, 2005, 38(21): 8679 − 8686 doi: 10.1021/ma051377y

    78. [78]

      Hong H Y, Mai YY, Zhou Y F, Yan D Y, Cui J. Macromol Rapid Commun, 2007, 28(28): 591 − 596

    79. [79]

      Radowski M, Shukla A, Böttcher C, Pickaert G, Rehage H, Haag R. Angew Chem Int Ed, 2007, 46(8): 1265 − 1269 doi: 10.1002/anie.200603801

    80. [80]

      Wang Y L, Li B, Zhou Y F, Lu Z Y, Yan D Y. Soft Matter, 2013, 9(12): 3293 − 3304 doi: 10.1039/c3sm27396b

    81. [81]

      Liu Y N, Jin J Y, Deng H P, Li K, Zheng Y L, Yu C Y, Zhou Y F. Angew Chem Int Ed, 2016, 55(28): 8084 − 8089

    82. [82]

      Yu C Y, Ma L, Li S L, Tan H N, Zhou Y F, Yan D Y. Sci Rep, 2016, 6: 26264 doi: 10.1038/srep26264

    83. [83]

      Tan H N, Wang W, Yu C Y, Zhou Y F, Lu Z Y, Yan D Y. Soft Matter, 2015, 11: 8460 − 8470 doi: 10.1039/C5SM01495F

    84. [84]

      Tan H N, Yu C Y, Lu Z Y, Zhou Y F, Yan D Y. Soft Matter, 2017, 13: 6178 − 6188 doi: 10.1039/C7SM01170A

    85. [85]

      Yu C Y, Ma L, Li K, Li S L, Liu Y N, Liu L F, Zhou Y F, Yan D Y. Langmuir, 2017, 33: 388 − 399 doi: 10.1021/acs.langmuir.6b03480

    86. [86]

      Zhou Y F, Huang W, Liu J Y, Zhu X Y, Yan D Y. Adv Mater, 2010, 22(41): 4567 − 4590 doi: 10.1002/adma.201000369

    87. [87]

      Zhu X Y, Zhou Y F, Yan D Y. J Polym Sci,Part B: Polym Phys, 2011, 49(18): 1277 − 1286 doi: 10.1002/polb.22320

    88. [88]

      Wang D L, Zhao T Y, Zhu X Y, Yan D Y, Wang W X. Chem Soc Rev, 2015, 44(12): 4023 − 4071 doi: 10.1039/C4CS00229F

    89. [89]

      Liu J Y, Huang W, Pang Y, Yan D Y. Chem Soc Rev, 2015, 44(12): 3942 − 3953 doi: 10.1039/C5CS00318K

    90. [90]

      Qi Meiwei(戚美薇), Huang Wei(黄卫), Xiao Guyu(肖谷雨), Zhu Xinyuan(朱新远), Gao Chao (高超), Zhou Yongfeng(周永丰). Acta Polymerica Sinica(高分子学报), 2017, (2): 214 − 228 doi: 10.11777/j.issn1000-3304.2017.16324

    91. [91]

      Iler R K. J Colloid Interface Sci, 1966, 21(6): 569 − 594 doi: 10.1016/0095-8522(66)90018-3

    92. [92]

      Decher G, Hong J D. Makromol Chem Macromol Symp, 1991, 46(1): 321 − 327 doi: 10.1002/(ISSN)1521-3900a

    93. [93]

      Wang L Y, Wang Z Q, Zhang X, Shen J C, Chi L, Fuchs H. Macromol Rapid Commun, 1997, 18(6): 509 − 514 doi: 10.1002/marc.1997.030180609

    94. [94]

      Stockton W B, Rubner M F. Macromolecules, 1997, 30(9): 2717 − 2725 doi: 10.1021/ma9700486

    95. [95]

      Wang F, Ma N, Chen Q X, Wang W B, Wang L Y. Langmuir, 2007, 23(19): 9540 − 9542 doi: 10.1021/la701969q

    96. [96]

      Zhang X, Chen H, Zhang H Y. Chem Commun, 2007, (14): 1395 − 1405 doi: 10.1039/B615590A

    97. [97]

      Chen H, Zeng G H, Wang Z Q, Zhang X, Peng M L, Wu L Z, Tung C H. Chem Mater, 2005, 17(26): 6679 − 6685 doi: 10.1021/cm051959u

    98. [98]

      Ma N, Zhang H Y, Song B, Wang Z Q, Zhang X. Chem Mater, 2005, 17(20): 5065 − 5069 doi: 10.1021/cm051221c

    99. [99]

      Ma N, Wang Y P, Wang Z Q, Zhang X. Langmuir, 2006, 22(8): 3906 − 3909 doi: 10.1021/la053441a

    100. [100]

      Xiong H M, Cheng M H, Zhou Z, Zhang X, Shen J C. Adv Mater, 1998, 10(7): 529 − 532 doi: 10.1002/(SICI)1521-4095(199805)10:7<529::AID-ADMA529>3.0.CO;2-E

    101. [101]

      Such G K, Quinn J F, Quinn A, Tjipto E, Caruso F. J Am Chem Soc, 2006, 128(29): 9318 − 9319 doi: 10.1021/ja063043+

    102. [102]

      Caruso F, Caruso R A, Möhwald H. Science, 1998, 282(5391): 1111 − 1114 doi: 10.1126/science.282.5391.1111

    103. [103]

      An Z H, Lu G, Möhwald H, Li J B. Chem Eur J, 2004, 10(22): 5848 − 5852 doi: 10.1002/chem.200400090

    104. [104]

      Wang X, Liu F, Zheng X W, Sun J Q. Angew Chem Int Ed, 2011, 50(48): 11378 − 11381 doi: 10.1002/anie.v50.48

    105. [105]

      Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z Q, Jiang L, Li X Y. J Am Chem Soc, 2004, 126(10): 3064 − 3065 doi: 10.1021/ja0398722

    106. [106]

      Yang L, Tan X, Wang Z, Zhang X. Chem Rev, 2015, 115(15): 7196 − 7239 doi: 10.1021/cr500633b

    107. [107]

      Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37 − 49 doi: 10.11777/j.issn1000-3304.2017.16262

    108. [108]

      De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W. Chem Rev, 2009, 109(11): 5687 − 5754 doi: 10.1021/cr900181u

    109. [109]

      Fouquey C, Lehn J M, Levelut A M. Adv Mater, 1990, 2(5): 254 − 257 doi: 10.1002/adma.19900020506

    110. [110]

      Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Ky Hirschberg J H K, Lange R F M, Lowe J K L, Meijer E W. Science, 1997, 278(5343): 1601 − 1604 doi: 10.1126/science.278.5343.1601

    111. [111]

      Bosman A W, Sijbesma R P, Meijer E W. Mater Today, 2004, 7(4): 34 − 39 doi: 10.1016/S1369-7021(04)00187-7

    112. [112]

      Zhang Z, Xia B, Han C, Yu Y, Huang F. Org Lett, 2010, 12(15): 3285 − 3287 doi: 10.1021/ol100883k

    113. [113]

      Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z, Huang F. Angew Chem Int Ed, 2011, 50(6): 1397 − 1401 doi: 10.1002/anie.v50.6

    114. [114]

      Yang W, Greenaway A, Lin X, Matsuda R, Blake A J, Wilson C, Lewis W, Hubberstey P, Kitagawa S, Champness N R, Schroder M. J Am Chem Soc, 2010, 132(41): 14457 − 14469 doi: 10.1021/ja1042935

    115. [115]

      Zhang K D, Tian J, Hanifi D, Zhang Y, Sue A C H, Zhou T Y, Zhang L, Zhao X, Liu Y, Li Z T. J Am Chem Soc, 2013, 135(47): 17913 − 17918 doi: 10.1021/ja4086935

    116. [116]

      Zhang L, Zhou T Y, Tian J, Wang H, Zhang D W, Zhao X, Liu Y, Li Z T. Polym Chem, 2014, 5(16): 4715 − 4721 doi: 10.1039/C4PY00139G

    117. [117]

      Tian J, Zhou T Y, Zhang S C, Aloni S, Altoe M V, Xie S H, Wang H, Zhang D W, Zhao X, Liu Y, Li Z T. Nat Commun, 2014, 5: 5574 doi: 10.1038/ncomms6574

    118. [118]

      Tian J, Xu Z Y, Zhang D W, Wang H, Xie S H, Xu D W, Ren Y H, Wang H, Liu Y, Li Z T. Nat Commun, 2016, 7: 11580 doi: 10.1038/ncomms11580

    119. [119]

      Liu Y, Yu Y, Gao J, Wang Z, Zhang X. Angew Chem Int Ed, 2010, 49(37): 6576 − 6579 doi: 10.1002/anie.201002415

    120. [120]

      Huang Z, Yang L, Liu Y, Wang Z, Scherman O A, Zhang X. Angew Chem Int Ed, 2014, 53(21): 5351 − 5355 doi: 10.1002/anie.v53.21

    121. [121]

      Chen L, Huang Z, Xu J F, Wang Z, Zhang X. Polym Chem, 2016, 7(7): 1397 − 1404 doi: 10.1039/C5PY01923K

    122. [122]

      Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 3 − 8 doi: 10.11777/j.issn1000-3304.2017.16235

    123. [123]

      Song Q, Xu J F, Zhang X. J Polym Sci Part A: Polym Chem, 2017, 55(4): 604 − 609 doi: 10.1002/pola.28404

    124. [124]

      Yang L, Liu X, Tan X, Yang H, Wang Z, Zhang X. Polym Chem, 2014, 5(2): 323 − 326 doi: 10.1039/C3PY01161E

    125. [125]

      Liu X, Xu J F, Wang Z, Zhang X. Polym Chem, 2016, 7(13): 2333 − 2336 doi: 10.1039/C6PY00071A

    126. [126]

      Liu X, Qin B, Xu J F, Wang Z, Zhang X. J Photochem Photobiol A: Chem, 2018, 355: 414 − 418 doi: 10.1016/j.jphotochem.2017.07.025

    127. [127]

      Song Q, Gao Y, Xu J F, Qin B, Serpe M J, Zhang X. ACS Macro Lett, 2016, 5(10): 1084 − 1088 doi: 10.1021/acsmacrolett.6b00592

    128. [128]

      Xu W, Song Q, Xu J F, Serpe M J, Zhang X. ACS Appl Mater Interfaces, 2017, 9(13): 11368 − 11372 doi: 10.1021/acsami.7b02850

    129. [129]

      Qin B, Zhang S, Song Q, Huang Z, Xu J F, Zhang X. Angew Chem Int Ed, 2017, 56(26): 7639 − 7643 doi: 10.1002/anie.201703572

    130. [130]

      Qin B, Zhang S, Huang Z, Xu J F, Zhang X. Macromolecules, 2018, 51(5): 1620 − 1625 doi: 10.1021/acs.macromol.8b00289

    131. [131]

      Zhang S, Qin B, Huang Z, Xu J F, Zhang X. ACS Macro Lett, 2019, (2): 8,177 − 182

    132. [132]

      Laskey R A, Honda B M, Mills A D, Finch J T. Nature, 1978, 275: 416 − 420 doi: 10.1038/275416a0

    133. [133]

      Mayhew M, Da Silva A C R, Martin J, Erdjument-Bromage H, Tempst P, Hartl F U. Nature, 1996, 379: 420 − 426 doi: 10.1038/379420a0

    134. [134]

      Weissman J S, Rye H S, Fenton W A, Beechem J M, Horwich A L. Cell, 1996, 84: 481 − 490 doi: 10.1016/S0092-8674(00)81293-3

    135. [135]

      Horwich A L, Farr G W, Fenton W A. Chem Rev, 2006, 106: 1917 − 1930 doi: 10.1021/cr040435v

    136. [136]

      Tandon S, Horowitz P. J Biol Chem, 1986, 261: 15615 − 15618

    137. [137]

      Tandon S, Horowitz P M. J Biol Chem, 1987, 262: 4486 − 4491

    138. [138]

      Rozema D, Gellman S H. J Am Chem Soc, 1995, 117: 2373 − 2374 doi: 10.1021/ja00113a036

    139. [139]

      Liu X, Liu Y, Zhang Z K, Huang F, Tao Q, Ma R J, An Y L, Shi L Q. Chem Eur J, 2013, 19: 7437 − 7442 doi: 10.1002/chem.201300634

    140. [140]

      Huang F, Shen L L, Wang J Z, Qu A T, Yang H R. Zhang Z K, An Y L, Shi L Q. ACS Appl Mater Interfaces, 2016, 8: 3669 − 3678 doi: 10.1021/acsami.5b08843

    141. [141]

      Ma F H, An Y L, Wang J Z, Song Y Q, Liu Y, Shi L Q. ACS Nano, 2017, 11: 10549 doi: 10.1021/acsnano.7b05947

    142. [142]

      Ganguli S, Yoshimoto K, Tomita S, Sakuma H, MatsuokaT, Shiraki K, Nagasaki Y. J Am Chem Soc, 2009, 131: 6549 − 6553 doi: 10.1021/ja900786z

    143. [143]

      Kameta N, Masuda M, Shimizu T. ACS Nano, 2012, 6(6): 5249 − 5258 doi: 10.1021/nn301041y

    144. [144]

      Beierle J M, Yoshimatsu K, Chou B, Mathews M A A, Lesel B K, Shea K J. Angew Chem Int Ed, 2014, 53: 9275 − 9280 doi: 10.1002/anie.201404881

    145. [145]

      Huang F, Wang J Z, Qu A T, Shen L L, Liu J J, Liu J F, Zhang Z K, An Y L, Shi L Q. Angew Chem Int Ed, 2014, 53: 8985 − 8990 doi: 10.1002/anie.201400735

    1. [1]

      徐江飞张希 . 中国超分子聚合物的研究与动态. 高分子学报, 2017, (1): 37-49. doi: 10.11777/j.issn1000-3304.2017.16262

    2. [2]

      李其易雷霆姚泽凡王婕妤裴坚 . 共轭高分子的多级组装. 高分子学报, 2019, 50(1): 1-12. doi: 10.11777/j.issn1000-3304.2018.18223

    3. [3]

      汪峰董盛谊郑波黄飞鹤 . 基于冠醚衍生物的超分子聚合物. 高分子学报, 2011, (9): 956-964. doi: 10.3724/SP.J.1105.2011.10377

    4. [4]

      李梦雪吴海平朱有龙王朝 . 力学自适应性电学高分子的简介、设计及其应用. 高分子学报, 2019, 50(3): 247-260. doi: 10.11777/j.issn1000-3304.2019.18237

    5. [5]

      林铭昌陈国颂 . 基于糖和苯硼酸动态共价键的高效蛋白质表面修饰方法. 高分子学报, 2017, (7): 1113-1120. doi: 10.11777/j.issn1000-3304.2017.16347

    6. [6]

      冯志成朱博姚洪喜王铭钧杨晓慧 . 主链含四重氢键基元聚氨酯的合成与性能. 高分子学报, 2012, (3): 318-325. doi: 10.3724/SP.J.1105.2012.11185

    7. [7]

      候平平张振宇平静沈志豪范星河周其凤 . 甲壳型液晶高分子的构筑、自组装及其功能化. 高分子学报, 2017, (10): 1591-1608. doi: 10.11777/j.issn1000-3304.2017.17116

    8. [8]

      周加境吴迪卢德荣段宏伟 . 高分子修饰金纳米粒子的自组装研究进展. 高分子学报, 2018, 0(8): 1033-1047. doi: 10.11777/j.issn1000-3304.2018.18050

    9. [9]

      杨岭罗宇飞贾欣茹黄兰吉岩王冰冰危岩 . PAMAM树枝状高分子自组装膜的微摩擦性能研究. 高分子学报, 2004, (5): 780-784.

    10. [10]

      肖春生丁建勋贺超良陈学思 . 糖聚肽高分子的合成、自组装及生物医学应用. 高分子学报, 2018, (1): 45-55. doi: 10.11777/j.issn1000-3304.2018.17282

    11. [11]

      杨朝晖曹维孝 . 一种含有偶氮磺酸基与吡啶基的高分子氢键自组装及自组装超薄膜. 高分子学报, 2004, (5): 776-779.

    12. [12]

      李金王雯雯褚立强 . 表面等离子体共振光谱研究蛋白质-高分子结合体在金表面的自组装. 高分子学报, 2018, 0(10): 1328-1335. doi: 10.11777/j.issn1000-3304.2018.18063

    13. [13]

      竹本喜一 . 功能高分子. 高分子学报, 1979, (6): 370-384.

    14. [14]

      高玲玲佟斌姚桂君董宇平张茂锋LAMJacky Wing Yip唐本忠 . PbS纳米粒子与全共轭高分子的自组装膜原位复合及其光电转换性质. 高分子学报, 2005, (3): 313-316.

    15. [15]

      候平平沈志豪范星河 . 侧基含纳米构筑单元的甲壳型液晶高分子的多层次自组装. 高分子学报, 2017, (7): 1038-1046. doi: 10.11777/j.issn1000-3304.2017.17042

    16. [16]

      余登斌孟文清蒋春霞陈德本钟安永 . 高分子化8-羟基喹啉锂的合成与静电自组装研究. 高分子学报, 2008, (7): 708-713. doi: 10.3724/SP.J.1105.2008.00708

    17. [17]

      李文武邱东张兴华 . 高分子科学中的平均场理论和1/N展开. 高分子学报, 2013, (2): 160-165. doi: 10.3724/SP.J.1105.2013.12177

    18. [18]

      陶杰林翠玲王兆龙魏斌华奇侠万雪婷邱化玉尹守春 . 基于金属配位和主客体相互作用分级自组装构筑超分子凝胶. 高分子学报, 2017, (1): 93-100. doi: 10.11777/j.issn1000-3304.2017.16244

    19. [19]

      吴红枚魏高原 . 几种自组装拉胀分子网络的分子模拟. 高分子学报, 2004, (2): 201-207.

    20. [20]

      姚灏王景霞宋昕张海涛范晓东田威 . 超声和光双重调控的AB2主客体型两亲分子的超分子自组装与程序化控释研究. 高分子学报, 2017, (1): 63-70. doi: 10.11777/j.issn1000-3304.2017.16202

  • Figure 1.  Polymeric supramolecular systems: design, assembly and functions

    Figure 2.  Chemical structures of some mesogen-jacketed liquid crystalline polymers (MJLCPs)

    Figure 3.  Liquid crystalline phases self-assembled by supramolecular MJLCP mesogens (Adapted with permission from Ref.[21]; Copyright (2017) Acta Polymerica Sinica)

    Figure 4.  Hydrogen-bonding grafting copolymer and its self-assembling into non-covalent connected micelles (NCCMs)

    Figure 5.  Schematic description of the solvent/non-solvent method that used for fabrication of NCCMs

    Figure 6.  Supramolecular self-assemblies from amphiphilic hyperbranched polymers: (a) macroscopic multiwall tubes, (b) micelles, (c) vesicles, (d) honeycomb film, (e) large compound vesicles and (f) tube network

    Figure 7.  The unimolecular micelle aggregate (UMA) and small micelle aggregate (SMA) mechanisms for the self-assembly of large micelles

    Figure 8.  The software interface of HBP builder (a) and a phase diagram for the self-assembly of amphiphilic hyperbranched polymers (b)

    Figure 9.  Layer-by-layer assembly driven by hydrogen bonding

    Figure 10.  Unconventional layer-by-layer assembly: preassembly in solution and layer-by-layer assembly at solid-liquid interface

    Figure 11.  The construction of 2D supramolecular organic framework (SOF)

    Figure 12.  Ways for fabricating supramolecular polymers: traditional and supramonomer strategies (Reprinted with permission from Ref.[123]; Copyright (2017) Wiley-VCH)

    Figure 13.  Schematic diagram of natural molecular chaperone (a) and controllable assembly for simulating molecular chaperone (b)

    Figure 14.  Maintenance of Aβ peptide homeostasis by MSPM-based nanochaperones: (a) illustration of the degradation of amyloid fibrils and MSPMs-Aβ complexes; (b) inhibition of the Aβ fibrillation process (Reprinted with permission from Ref.[145]; Copyright (2014) Wiley-VCH)

  • 加载中
图(15)
计量
  • PDF下载量:  472
  • 文章访问数:  2002
  • HTML全文浏览量:  2215
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计