ISSN 1000-3304CN 11-1857/O6

光电高分子材料的研究进展

黄飞 薄志山 耿延候 王献红 王利祥 马於光 侯剑辉 胡文平 裴坚 董焕丽 王树 李振 帅志刚 李永舫 曹镛

引用本文: 黄飞, 薄志山, 耿延候, 王献红, 王利祥, 马於光, 侯剑辉, 胡文平, 裴坚, 董焕丽, 王树, 李振, 帅志刚, 李永舫, 曹镛. 光电高分子材料的研究进展[J]. 高分子学报, 2019, 50(10): 988-1046. doi: 10.11777/j.issn1000-3304.2019.19110 shu
Citation:  Fei Huang, Zhi-shan Bo, Yan-hou Geng, Xian-hong Wang, Li-xiang Wang, Yu-guang Ma, Jian-hui Hou, Wen-ping Hu, Jian Pei, Huan-li Dong, Shu Wang, Zhen Li, Zhi-gang Shuai, Yong-fang Li and Yong Cao. Study on Optoelectronic Polymers: An Overview and Outlook[J]. Acta Polymerica Sinica, 2019, 50(10): 988-1046. doi: 10.11777/j.issn1000-3304.2019.19110 shu

光电高分子材料的研究进展

    通讯作者: 黄飞, E-mail: msfhuang@scut.edu.cn 李永舫, E-mail: liyf@iccas.ac.cn 曹镛, E-mail: yongcao@scut.edu.cn
摘要: 光电活性共轭高分子是高分子科学的前沿研究方向. 共轭高分子光电材料的研究在中国引起了学术界的广泛兴趣,中国的学者们对推动此研究领域的发展做出了重要贡献,并在新的高性能光电共轭高分子的分子设计、新型及可控聚合、性能调控以及光电应用等方面取得了一系列重要的创新成果. 本文总结和评述了中国学者在光电高分子领域的研究成果与最新进展,并展望了其未来的发展.

English

    1. [1]

      Shao S Y, Wang S M, Xu X S, Yang Y, Lv J H, Ding J Q, Wang L X, Jing X B, Wang F S. Chem Sci, 2018, 9(46): 8656 − 8664 doi: 10.1039/C8SC03753A

    2. [2]

      Ni Z J, Wang H L, Zhao Q, Zhang J Q, Wei Z X, Dong H L, Hu W P. Adv Mater, 2019, 31(10): 1806010 doi: 10.1002/adma.v31.10

    3. [3]

      Meng L X, Zhang Y M, WanX J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S. Science, 2018, 361(6407): 1094 − 1098 doi: 10.1126/science.aat2612

    4. [4]

      Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539 − 541 doi: 10.1038/347539a0

    5. [5]

      Qiu S, Lu P, Liu X, Shen F Z, Liu L L, Ma Y G, Shen J C. Macromolecules, 2003, 36(26): 9823 − 9829 doi: 10.1021/ma034929q

    6. [6]

      Liu L L, Qiu S, Wang B L, Zhang W, Lu P, Xie Z Q, Hanif M, Ma Y G, Shen J C. J Phys Chem B, 2005, 109(49): 23366 − 23370 doi: 10.1021/jp0547818

    7. [7]

      Wu Y G, Zhang J Y, Fei Z P, Bo Z S. J Am Chem Soc, 2008, 130(23): 7192 − 7193 doi: 10.1021/ja801422n

    8. [8]

      Tour J M, Lamba J J S. J Am Chem Soc, 1993, 115(11): 4935 − 4936 doi: 10.1021/ja00064a083

    9. [9]

      Yao Y X, Lamba J J S, Tour J M. J Am Chem Soc, 1998, 120(12): 2805 − 2810 doi: 10.1021/ja972744r

    10. [10]

      Zhang Q T, Tour J M. J Am Chem Soc, 1997, 119(41): 9624 − 9631 doi: 10.1021/ja964223u

    11. [11]

      Zhang C Y, Tour J M. J Am Chem Soc, 1999, 121(38): 8783 − 8790 doi: 10.1021/ja991683p

    12. [12]

      Chen Y L, Li F H, Bo Z S. Macromolecules, 2010, 43(3): 1349 − 1355 doi: 10.1021/ma902375a

    13. [13]

      Chen Y L, Huang W G, Li C H, Bo Z S. Macromolecules, 2010, 43(24): 10216 − 10220 doi: 10.1021/ma1021117

    14. [14]

      Pouliot J R, Grenier F, Blaskovits J T, Beaupre S, Leclerc M. Chem Rev, 2016, 116(22): 14225 − 14274 doi: 10.1021/acs.chemrev.6b00498

    15. [15]

      Geng Yanhou(耿延候), Sui Ying(睢颖). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 109 − 117

    16. [16]

      Guo Q, Dong J, Wan D, Wu D, You J S. Macromol Rapid Commun, 2013, 34(6): 522 − 527 doi: 10.1002/marc.v34.6

    17. [17]

      Gao Y, Zhang X J, Tian H K, Zhang J D, Yan D H, Geng Y H, Wang F S. Adv Mater, 2015, 27(42): 6753 − 6759 doi: 10.1002/adma.201502896

    18. [18]

      Gao Y, Bai J H, Sui Y, Han Y, Deng Y F, Tian H K, Geng Y H, Wang F S. Macromolecules, 2018, 51(21): 8752 − 8760 doi: 10.1021/acs.macromol.8b01112

    19. [19]

      Song H, Deng Y F, Gao Y, Jiang Y, Tian H K, Yan D H, Geng Y H, Wang F S. Macromolecules, 2017, 50(6): 2344 − 2353 doi: 10.1021/acs.macromol.6b02781

    20. [20]

      Gao Y, Deng Y F, Tian H K, Zhang J D, Yan D H, Geng Y H, Wang F S. Adv Mater, 2017, 29(13): 1606217 doi: 10.1002/adma.201606217

    21. [21]

      Guo K, Bai J H, Jiang Y, Wang Z L, Sui Y, Deng Y F, Han Y, Tian H K, Geng Y H. Adv Funct Mater, 2018, 28(31): 1801097 doi: 10.1002/adfm.v28.31

    22. [22]

      Chen F Z, Jiang Y, Sui Y, Zhang J D, Tian H K, Han Y, Deng Y F, Hu W P, Geng Y H. Macromolecules, 2018, 51(21): 8652 − 8661 doi: 10.1021/acs.macromol.8b01885

    23. [23]

      Sakamoto J, Rehahn M, Wegner G, Schlüter A D. Macromol Rapid Commun, 2009, 30(9-10): 653 − 687 doi: 10.1002/marc.v30:9/10

    24. [24]

      Jayakannan M, van Dongen J L J, Janssen R A J. Macromolecules, 2001, 34(16): 5386 − 5393 doi: 10.1021/ma0100403

    25. [25]

      Sun H, Feng F D, Yu M H, Wang S. Macromol Rapid Commun, 2007, 28(18-19): 1905 − 1911

    26. [26]

      Han X, Chen X W, Vamvounis G, Holdcroft S. Macromolecules, 2005, 38(4): 1114 − 1122 doi: 10.1021/ma0488562

    27. [27]

      Liu M F, Chen Y L, Zhang C, Li C H, Li W W, Bo Z S. Polym Chem, 2013, 4(4): 895 − 899 doi: 10.1039/c2py21070c

    28. [28]

      Yokoyama A, Miyakoshi R, Yokozawa T. Macromolecules, 2004, 37(4): 1169 − 1171 doi: 10.1021/ma035396o

    29. [29]

      Huang L, Wu S P, Qu Y, Geng Y H, Wang F S. Macromolecules, 2008, 41(22): 8944 − 8947 doi: 10.1021/ma801538q

    30. [30]

      Sui A G, Shi X C, Wu S P, Tian H K, Geng Y H, Wang F S. Macromolecules, 2012, 45(13): 5436 − 5443 doi: 10.1021/ma3009299

    31. [31]

      Sui A G, Shi X C, Tian H K, Geng Y H, Wang F S. Polym Chem, 2015, 6(45): 4819 − 4827

    32. [32]

      Wu S P, Sun Y Q, Huang L, Wang J W, Zhou Y H, Geng Y H, Wang F S. Macromolecules, 2010, 43(10): 4438 − 4440 doi: 10.1021/ma100537d

    33. [33]

      Shi X C, Sui A G, Wang Y X, Li Y S, Geng Y H, Wang F S. Chem Commun, 2015, 51(11): 2138 − 2140 doi: 10.1039/C4CC08012B

    34. [34]

      Sui A G, Shi X C, Tian H K, Geng Y H, Wang F S. Polym Chem, 2014, 5(24): 7072 − 7080 doi: 10.1039/C4PY00917G

    35. [35]

      Huang W G, Su L J, Bo Z S. J Am Chem Soc, 2009, 131(30): 10348 − 10349 doi: 10.1021/ja9033846

    36. [36]

      Huang W G, Wang M, Du C, Chen Y L, Qin R P, Su L J, Zhang C, Liu Z P, Li C H, Bo Z S. Chem Eur J, 2011, 17(2): 440 − 444 doi: 10.1002/chem.201002574

    37. [37]

      Wu Z Q, Ono R J, Chen Z, Bielawski C W. J Am Chem Soc, 2010, 132(40): 14000 − 14001 doi: 10.1021/ja106999q

    38. [38]

      Liu N, Qi C G, Wang Y, Liu D F, Yin J, Zhu Y Y, Wu Z Q. Macromolecules, 2013, 46(19): 7753 − 7758 doi: 10.1021/ma4016664

    39. [39]

      Gao L M, Hu Y Y, Yu Z P, Liu N, Yin J, Zhu Y Y, Ding Y S, Wu Z Q. Macromolecules, 2014, 47(15): 5010 − 5018 doi: 10.1021/ma5013539

    40. [40]

      Yu Z P, Ma C H, Wang Q, Liu N, Yin J, Wu Z Q. Macromolecules, 2016, 49(4): 1180 − 1190 doi: 10.1021/acs.macromol.5b02759

    41. [41]

      Liu Q, Liu W M, Yao B, Tian H K, Xie Z Y, Geng Y H, Wang F S. Macromolecules, 2007, 40(6): 1851 − 1857 doi: 10.1021/ma0628073

    42. [42]

      Zhang X J, Qu Y, Bu L J, Tian H K, Zhang J P, Wang L X, Geng Y H, Wang F S. Chem Eur J, 2007, 13(21): 6238 − 6248 doi: 10.1002/(ISSN)1521-3765

    43. [43]

      Liu Q, Qu Y, Geng Y H, Wang F S. Macromolecules, 2008, 41(16): 5964 − 5966 doi: 10.1021/ma801172k

    44. [44]

      Wang Q L, Qu Y, Tian H K, Geng Y H, Wang F S. Macromolecules, 2011, 44(6): 1256 − 1260 doi: 10.1021/ma102954h

    45. [45]

      Liu C F, Wang Q L, Tian H K, Geng Y H, Yan D H. Polymer, 2013, 54(9): 2459 − 2465 doi: 10.1016/j.polymer.2013.02.040

    46. [46]

      Bu L J, Guo X Y, Yu B, Qu Y, Xie Z Y, Yan D H, Geng Y H, Wang F S. J Am Chem Soc, 2009, 131(37): 13242 − 13243 doi: 10.1021/ja905980w

    47. [47]

      Qu J H, Gao B R, Tian H K, Zhang X J, Wang Y, Xie Z Y, Wang H Y, Geng Y H, Wang F S. J Mater Chem A, 2014, 2(10): 3632 − 3640 doi: 10.1039/c3ta14701k

    48. [48]

      Ouyang J, Li Y F. Polymer, 1997, 38(8): 1971 − 1976 doi: 10.1016/S0032-3861(96)00749-5

    49. [49]

      Ouyang J, Li Y F. Polymer, 1997, 38(15): 3997 − 3999 doi: 10.1016/S0032-3861(97)00087-6

    50. [50]

      Shi G Q, Jin S, Xue G, Li C. Science, 1995, 267(5200): 994 − 996 doi: 10.1126/science.267.5200.994

    51. [51]

      Shi G Q, Li C, Liang Y Q. Adv Mater, 1999, 11(13): 1145 − 1146 doi: 10.1002/(ISSN)1521-4095

    52. [52]

      Li M, Tang S, Shen F, Liu M, Xie W, Xia H, Liu L, Tian L, Xie Z, Lu P, Hanif M, Lu D, Cheng G, Ma Y. Chem Commun, 2006, (32): 3393 − 3395 doi: 10.1039/b607242a

    53. [53]

      Gu C, Fei T, Zhang M, Li C N, Lu D, Ma Y G. Electrochem Commun, 2010, 12(4): 553 − 556 doi: 10.1016/j.elecom.2010.01.041

    54. [54]

      Gu C, Fei T, Yao L, Lv Y, Lu D, Ma Y G. Adv Mater, 2011, 23(4): 527 − 530 doi: 10.1002/adma.v23.4

    55. [55]

      Shen Z Q, Yang M J, Shi M X, Cai Y P. J Polym Sci Polym Lett Ed, 1982, 20(8): 411 − 416 doi: 10.1002/pol.1982.130200802

    56. [56]

      Cao Y, Qian R Y, Wang F S, Zhao X J. Makromol Chem, Rapid Commun, 1982, 3(10): 687 − 692 doi: 10.1002/marc.1982.030031007

    57. [57]

      Cao Yong(曹镛), Wang Fosong(王佛松), Zhao Xiaojiang(赵晓江), Qian Renyuan(钱人元). Chinese Science Bulletin(科学通报), 1984, 29(3): 153 − 155

    58. [58]

      Bai Chunli(白春礼), Fu Heng(傅亨), Tang Youqi(唐有祺), Cao Yong(曹镛), Qian Renyuan(钱人元), Lu Kunquan(陆坤权), Zhao Yaqin(赵雅琴), Chang Longcun(常龙存). Acta Phys-Chim Sin(物理化学学报), 1985, 1(2): 162 − 168 doi: 10.3866/PKU.WHXB19850207

    59. [59]

      Cao Yong(曹镛), Guo Kezhen(郭可珍), Qian Renyuan(钱人元). Acta Chimica Sinica(化学学报), 1985, 43(5): 425 − 432

    60. [60]

      Jing X B, Wu Y N, Gong X F, Yu H Y, Zhang W G, Wang F S. Makromol Chem, Rapid Commun, 1984, 5(6): 311 − 318 doi: 10.1002/marc.1984.030050602

    61. [61]

      Qian R Y, Qiu J J. Polym J, 1987, 19: 157 − 172 doi: 10.1295/polymj.19.157

    62. [62]

      Pei Q B, Qian R Y. J Electroanal Chem, 1992, 322(1-2): 153 − 166 doi: 10.1016/0022-0728(92)80073-D

    63. [63]

      MacDiarmid A G, Chiang J C, Halpern M. Polym Prep, 1984, 25: 248

    64. [64]

      Wang S L, Wang F S, Ge X H. Synth Met, 1986, 16(1): 99 − 104 doi: 10.1016/0379-6779(86)90158-X

    65. [65]

      Geng Y H, Li J, Sun Z C, Jing X B, Wang F S. Synth Met, 1998, 96(1): 1 − 6 doi: 10.1016/S0379-6779(98)00032-0

    66. [66]

      Gao J B, Li K, Zhang W J, Wang C, Wu Z W, Ji Y P, Zhou Y, Shibata M, Yosomiya R. Macromol Rapid Comm, 1999, 20(10): 560 − 563 doi: 10.1002/(ISSN)1521-3927

    67. [67]

      Zhu K Z, Wang L X, Jing X B, Wang F S. Macromolecules, 2001, 34(24): 8453 − 8455 doi: 10.1021/ma0108665

    68. [68]

      Zhu Y, Hu D, Wan M X, Jiang L, Wei Y. Adv Mater, 2007, 19(16): 2092 − 2096 doi: 10.1002/(ISSN)1521-4095

    69. [69]

      Jing Xiabin(景遐斌), Wang Lixiang(王利祥), Wang Xianhong(王献红), Geng Yanhou(耿延候), Wang Fosong(王佛松). Acta Polymerica Sinica(高分子学报), 2005, (5): 655 − 663 doi: 10.3321/j.issn:1000-3304.2005.05.003

    70. [70]

      Li S Z, Cao Y, Xue Z J. Synth Met, 1987, 20(2): 141 − 149 doi: 10.1016/0379-6779(87)90553-4

    71. [71]

      Cao Y, Smith P, Heeger A J. Synth Met, 1992, 48(1): 91 − 97 doi: 10.1016/0379-6779(92)90053-L

    72. [72]

      Wang Y J, Wang X H, Li J, Mo Z S, Zhao X J, Jing X B, Wang F S. Adv Mater, 2001, 13(20): 1582 − 1585 doi: 10.1002/1521-4095(200110)13:20<1582::AID-ADMA1582>3.0.CO;2-J

    73. [73]

      Luo J, Zhang H M, Wang X H, Zhao X J, Wang F S. Macromolecules, 2007, 40(23): 8132 − 8135 doi: 10.1021/ma070883f

    74. [74]

      Shi X, Lu A, Cai J, Zhang L N, Zhang H M, Li J, Wang X H. Biomacromolecules, 2012, 13(8): 2370 − 2378 doi: 10.1021/bm3006243

    75. [75]

      Wang Y G, Wu W, Cheng L, He P, Wang C X, Xia Y Y. Adv Mater, 2008, 20(11): 2166 − 2170 doi: 10.1002/(ISSN)1521-4095

    76. [76]

      Lu Q, Zhao Q, Zhang H M, Li J, Wang X H, Wang F S. ACS Macro Lett, 2013, 2(2): 92 − 95 doi: 10.1021/mz3005605

    77. [77]

      Gao H, Lu Q, Liu N J, Wang X H, Wang F S. J Mater Chem A, 2015, 3(14): 7215 − 7218 doi: 10.1039/C5TA00379B

    78. [78]

      Chen C Y, Peng H J, Hou T Z, Zhai P Y, Li B Q, Tang C, Zhu W C, Huang J Q, Zhang Q. Adv Mater, 2017, 29(23): 1606802 doi: 10.1002/adma.201606802

    79. [79]

      Wang D W, Li F, Zhao J P, Ren W C, Chen Z G, Tan J, Wu Z S, Gentle I, Lu, G Q, Cheng H M. ACS Nano, 2009, 3(7): 1745 − 1752 doi: 10.1021/nn900297m

    80. [80]

      Zhou S P, Zhang H M, Zhao Q, Wang X H, Wang F S. Carbon, 2013, 52: 440 − 450 doi: 10.1016/j.carbon.2012.09.055

    81. [81]

      Wang H, Feng Q Y, Gong F, Li Y, Zhou G, Wang Z S. J Mater Chem A, 2013, 1(1): 97 − 104 doi: 10.1039/C2TA00705C

    82. [82]

      Chen Y, Wang X H, Li J, Wang X H, Wang F S. Corros Sci, 2007, 49(7): 3052 − 3063 doi: 10.1016/j.corsci.2006.11.007

    83. [83]

      Luo Y Z, Wang X H, Guo W, M. Rohwerder J Electrochem Soc, 2015, 162(6): C294 − C301 doi: 10.1149/2.1101506jes

    84. [84]

      Wang X F, Wang J L, Si Y, Ding B, Yu J Y, Sun G, Luo W J, Zheng G. Nanoscale, 2012, 4(23): 7585 − 7592 doi: 10.1039/c2nr32730a

    85. [85]

      Wu Z Q, Chen X D, Zhu S B, Zhou Z W, Yao Y, Quan W, Liu B. Sens Actuator B-Chem, 2013, 178: 485 − 493 doi: 10.1016/j.snb.2013.01.014

    86. [86]

      Zhao J J, Wu G, Hu Y, Liu Y, Tao X M, Chen W. J Mater Chem A, 2015, 3(48): 24333 − 24337 doi: 10.1039/C5TA06734K

    87. [87]

      Snook G A, Kao P, Best A S. J Power Source, 2011, 196(1): 1 − 12 doi: 10.1016/j.jpowsour.2010.06.084

    88. [88]

      Huang J Y, Wang K, Wei Z X. J Mater Chem, 2010, 20(6): 1117 − 1121 doi: 10.1039/B919928D

    89. [89]

      Zhang H H, Zhang Y N, Gu C, Ma Y G. Adv Energy Mater, 2015, 5(10): 1402175 doi: 10.1002/aenm.201402175

    90. [90]

      Zhang H H, Yao M M, Wei J B, Zhang Y W, Zhang S T, Gao Y, Li J Y, Lu P, Yang B, Ma Y G. Adv Energy Mater, 2017, 7(21): 1701063 doi: 10.1002/aenm.201701063

    91. [91]

      Wu Q, Xu Y, Yao Z Y, Liu A R, Shi G Q. ACS Nano, 2010, 4(4): 1963 − 1970 doi: 10.1021/nn1000035

    92. [92]

      Yao B W, Wang H Y, Zhou Q Q, Wu M M, Zhang M, Li C, Shi G Q. Adv Mater, 2017, 29(28): 1700974 doi: 10.1002/adma.v29.28

    93. [93]

      Ma Y G, Zhang H Y, Shen J C, Che C M. Synth Met, 1988, 94(3): 245 − 248

    94. [94]

      Liu J, Zou J H, Yang W, Wu H B, Li C, Zhang B, Peng J B, Cao Y. Chem Mater, 2008, 20(13): 4499 − 4506 doi: 10.1021/cm800129h

    95. [95]

      Li Y Y, Wu H B, Zou J H, Ying L, Yang W, Cao Y. Org Electron, 2009, 10(5): 901 − 909 doi: 10.1016/j.orgel.2009.04.021

    96. [96]

      Mo Y Q, Tian R Y, Shi W, Cao Y. Chem Commun, 2005, (39): 4925 − 4926 doi: 10.1039/b507518a

    97. [97]

      Lin J Y, Zhu W S, Liu F, Xie L H, Zhang L, Xia R, Xing G C, Huang W. Macromolecules, 2014, 47(3): 1001 − 1007 doi: 10.1021/ma402585n

    98. [98]

      Bai L P, Liu B, Han Y M, Yu M N, Wang J, Zhang X W, Ou C J, Lin J Y, Zhu W S, Xie L H, Yin C R, Zhao J F, Wang J P, Bradley D D C, Huang W. ACS Appl Mater Interfaces, 2017, 9(43): 37856 − 37863 doi: 10.1021/acsami.7b08980

    99. [99]

      Liu J, Min C C, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B, Wang F S. Appl Phys Lett, 2006, 88(8): 083505 doi: 10.1063/1.2178408

    100. [100]

      Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y, Pei J. J Am Chem Soc, 2007, 129(37): 11314 − 11315 doi: 10.1021/ja073466r

    101. [101]

      Lai W Y, Zhu R, Fan Q L, Hou L T, Cao Y, Huang W. Macromolecules, 2006, 39(11): 3707 − 3709 doi: 10.1021/ma060154k

    102. [102]

      Shao S Y, Hu J, Wang X D, Wang L X, Jing X B, Wang F S. J Am Chem Soc, 2017, 139(49): 17739 − 17742 doi: 10.1021/jacs.7b10257

    103. [103]

      Guan R, Xu Y H, Ying L, Yang W, Wu H B, Chen Q L, Cao Y. J Mater Chem, 2009, 19(4): 531 − 537 doi: 10.1039/B813927J

    104. [104]

      Liu J, Yu L, Zhong C M, He R F, Yang W, Wu H B, Cao Y. RSC Adv, 2012, 2(2): 689 − 696 doi: 10.1039/C1RA00610J

    105. [105]

      Ma Z H, Chen L C, Ding J Q, Wang L X, Jing X B, Wang F S. Adv Mater, 2011, 23(32): 3726 − 3729 doi: 10.1002/adma.v23.32

    106. [106]

      Luo J, Xie G, Gong S, Chen T, Yang C. Chem Commun, 2016, 52(11): 2292 − 2295 doi: 10.1039/C5CC09797E

    107. [107]

      Hou Q, Xu Y S, Yang W, Yuan M, Peng J B, Cao Y. J Mater Chem, 2002, 12(10): 2887 − 2892 doi: 10.1039/b203862e

    108. [108]

      Yang R Q, Tian R Y, Hou Q, Yang W, Cao Y. Macromolecules, 2003, 36(20): 7453 − 7460 doi: 10.1021/ma034134j

    109. [109]

      Yang J, Jiang C Y, Zhang Y, Yang R Q, Yang W, Hou Q, Cao Y. Macromolecules, 2004, 37(4): 1211 − 1218 doi: 10.1021/ma035743u

    110. [110]

      Yang R Q, Tian R Y, Yan J G, Zhang Y, Yang J, Hou Q, Yang W, Zhang C, Cao Y. Macromolecules, 2005, 38(2): 244 − 253 doi: 10.1021/ma047969i

    111. [111]

      Chen L, Zhang B H, Cheng Y X, Xie Z Y, Wang L X, Jing X B, Wang F S. Adv Funct Mater, 2010, 20(18): 3143 − 3153 doi: 10.1002/adfm.201000840

    112. [112]

      Zhang M, Xue S F, Dong W Y, Wang Q, Fei T, Gu C, Ma Y G. Chem Commun, 2010, 46(22): 3923 − 3925 doi: 10.1039/c001170c

    113. [113]

      Tu G L, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B, Wang F S. Appl Phys Lett, 2004, 85(12): 2172 doi: 10.1063/1.1793356

    114. [114]

      Liu J, Shao S Y, Chen L, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv Mater, 2007, 19(14): 1859 − 1863 doi: 10.1002/(ISSN)1521-4095

    115. [115]

      Liu J, Chen L, Shao S Y, Xie Z, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv Mater, 2007, 19(23): 4224 − 4228 doi: 10.1002/(ISSN)1521-4095

    116. [116]

      Liu J, Cheng Y X, Xie Z Y, Geng Y H, Wang L X, Jing X B, Wang F S. Adv Mater, 2008, 20(7): 1357 − 1362 doi: 10.1002/(ISSN)1521-4095

    117. [117]

      Jiang J X, Xu Y H, Yang W, Guan R, Liu Z Q, Zhen H Y, Cao Y. Adv Mater, 2006, 18(13): 1769 − 1773 doi: 10.1002/(ISSN)1521-4095

    118. [118]

      Shao S Y, Ding J Q, Wang L X, Jing X B, Wang F S. J Am Chem Soc, 2012, 134(50): 20290 − 20293 doi: 10.1021/ja310158j

    119. [119]

      Huang F, Wu H B, Wang D L, Yang W, Cao Y. Chem Mater, 2004, 16(4): 708 − 716 doi: 10.1021/cm034650o

    120. [120]

      Huang F, Hou L T, Wu H B, Wang X H, Shen H L, Cao W, Yang W, Cao Y. J Am Chem Soc, 2004, 126(31): 9845 − 9853 doi: 10.1021/ja0476765

    121. [121]

      Zeng W J, Wu H B, Zhang C, Huang F, Peng J B, Yang W, Cao Y. Adv Mater, 2007, 19(6): 810 − 814 doi: 10.1002/(ISSN)1521-4095

    122. [122]

      Zheng H, Zheng Y N, Liu N L, Ai N, Wang Q, Wu S, Zhou J H, Hu D G, Yu S F, Han S H, Xu W, Luo C, Meng Y H, Jiang Z X, Chen Y W, Li D Y, Huang F, Wang J, Peng J B, Cao Y. Nat Commun, 2013, 4: 1971 doi: 10.1038/ncomms2971

    123. [123]

      Pei Q B, Yu G, Zhang C, Yang Y, Heeger A J. Science, 1995, 269(5227): 1086 − 1088 doi: 10.1126/science.269.5227.1086

    124. [124]

      Sun Q J, Wang H Q, Yang C H, Li Y F. J Mater Chem, 2003, 13(4): 800 − 806 doi: 10.1039/b209469j

    125. [125]

      Yang C H, Sun Q J, Qiao J, Li Y F. J Phys Chem B, 2003, 107(47): 12981 − 12988 doi: 10.1021/jp034818t

    126. [126]

      Fresta E, Costa R D. J Mater Chem C, 2017, 5(23): 5643 − 5675 doi: 10.1039/C7TC00202E

    127. [127]

      Tang S, Edman L. Top Curr Chem, 2016, 374(40): 375 − 395

    128. [128]

      Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789 − 1791 doi: 10.1126/science.270.5243.1789

    129. [129]

      Zhou Q M, Hou Q, Zheng L P, Deng X Y, Yu G, Cao Y. Appl Phys Lett, 2004, 84(10): 1653 − 1655 doi: 10.1063/1.1667614

    130. [130]

      Wang E G, Wang L, Lan L F, Luo C, Zhuang W L, Peng J B, Cao Y. Appl Phys Lett, 2008, 92(3): 033307 doi: 10.1063/1.2836266

    131. [131]

      Hou J H, Tan Z A, Yan Y, He Y J, Yang C Y, Li Y F. J Am Chem Soc, 2006, 128(14): 4911 − 4916 doi: 10.1021/ja060141m

    132. [132]

      Qin R P, Li W W, Li C H, Du C, Veit C, Schleiermacher H F, Andersson M, Bo Z S, Liu Z P, Inganäs O, Wuerfel U, Zhang F L. J Am Chem Soc, 2009, 131(41): 14612 − 14613 doi: 10.1021/ja9057986

    133. [133]

      Liang Y Y, Xu Z, Xia J B, Tsai S T, Wu Y, Li G, Ray C, Yu L P. Adv Mater, 2010, 22(20): E135 − E138 doi: 10.1002/adma.200903528

    134. [134]

      Huo L J, Zhang S Q, Guo X, Xu F, Li Y F, Hou J H. Angew Chem Int Ed, 2011, 50(41): 9697 − 9702 doi: 10.1002/anie.201103313

    135. [135]

      Cui C H, Wong W Y, Li Y F. Energy Environ Sci, 2014, 7: 2276 − 2284 doi: 10.1039/C4EE00446A

    136. [136]

      Huo L J, Liu T, Sun X B, Cai Y H, Heeger A J, Sun Y M. Adv Mater, 2015, 27(18): 2938 − 2944 doi: 10.1002/adma.v27.18

    137. [137]

      Chen Z H, Cai P, Chen J W, Liu X C, Zhang L J, Lan L F, Peng J B, Ma Y G, Cao Y. Adv Mater, 2014, 26(16): 2586 − 2591 doi: 10.1002/adma.v26.16

    138. [138]

      Liu Y H, Zhao J B, Li Z K, Mu C, Ma W, Hu H W, Jiang K, Lin H R, Ade H, Yan H. Nat Commun, 2014, 5: 5293 doi: 10.1038/ncomms6293

    139. [139]

      Zhao J B, Li Y K, Yang G F, Jiang K, Lin H R, Ade H, Ma W, Yan H. Nat Energy, 2016, 1(2): 15027 doi: 10.1038/nenergy.2015.27

    140. [140]

      Jin Y C, Chen Z M, Dong S, Zheng N N, Ying L, Jiang X F, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28(44): 9811 − 9818 doi: 10.1002/adma.201603178

    141. [141]

      Jin Y, Chen Z, Xiao M, Peng J, Fan B, Ying L, Zhang G, Jiang X F, Qin Q W, Liang Z Q, Huang F, Cao Y. Adv Energy Mater, 2017, 7(22): 1700944 doi: 10.1002/aenm.201700944

    142. [142]

      Chen H, Hu Z M, Wang H, Liu L, Chao P, Qu J, Chen W, Liu A H, He F. Joule, 2018, 2(8): 1623 − 1634 doi: 10.1016/j.joule.2018.05.010

    143. [143]

      He C, He Q G, He Y J, Li Y F, Bai F L, Yang C H, Ding Y Q, Wang L X, Ye J P. Sol Energy Mater Sol Cells, 2006, 90(12): 1815 − 1827 doi: 10.1016/j.solmat.2005.11.004

    144. [144]

      Zhang J, Yang Y, He C, He Y J, Zhao G J, Li Y F. Macromolecules, 2009, 42(20): 7619 − 7622 doi: 10.1021/ma901896n

    145. [145]

      Zhang J, Deng D, He C, He Y J, Zhang M J, Zhang Z G, Zhang Z J, Li Y F. Chem Mater, 2010, 23(3): 817 − 822

    146. [146]

      Liu Y S, Wan X J, Yin B, Zhou J Y, Long G K, Yin S G, Chen Y S. J Mater Chem, 2010, 20(12): 2464 − 2468 doi: 10.1039/b925048d

    147. [147]

      Kan B, Zhang Q, Li M M, Wan X J, Ni W, Long G K, Wang Y C, Yang X, Feng H, Chen Y. J Am Chem Soc, 2014, 136(44): 15529 − 15532 doi: 10.1021/ja509703k

    148. [148]

      Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z X. Nat Commun, 2016, 7: 13740 doi: 10.1038/ncomms13740

    149. [149]

      Zheng L, Zhou Q, Deng X, Yuan M, Yu G, Cao Y. J Phys Chem B, 2004, 108(32): 11921 − 11926 doi: 10.1021/jp048890i

    150. [150]

      Zhao G, He Y, Xu Z, Hou J, Zhang M, Min J, Chen H Y, Ye M, Hong Z, Yang Y, Li Y F. Adv Funct Mater, 2010, 20(9): 1480 − 1487 doi: 10.1002/adfm.200902447

    151. [151]

      He Y J, Chen H Y, Hou J H, Li Y F. J Am Chem Soc, 2010, 132(4): 1377 − 1382 doi: 10.1021/ja908602j

    152. [152]

      Zhao G, He Y J, Li Y F. Adv Mater, 2010, 22(39): 4355 − 4358 doi: 10.1002/adma.v22:39

    153. [153]

      Tang C W. Appl Phys Lett, 1986, 48(2): 183 − 185 doi: 10.1063/1.96937

    154. [154]

      Zhan X W, Tan Z A, Domercq B, An Z S, Zhang X, Barlow S, Li Y F, Zhu D B, Kippelen B, Marder S. J Am Chem Soc, 2007, 129(23): 7246 − 7247 doi: 10.1021/ja071760d

    155. [155]

      Liu T, Guo Y, Yi YY, Huo L J, Xue X X, Sun X B, Fu H T, Xiong W T, Meng D, Wang Z H, Liu F, Russel T, Sun Y M. Adv Mater, 2016, 28(45): 10008 − 10015 doi: 10.1002/adma.201602570

    156. [156]

      Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W. Adv Mater, 2015, 27(7): 1170 − 1174 doi: 10.1002/adma.201404317

    157. [157]

      Lin Y Z, He Q, Zhao F W, Huo L J, Mai J Q, Lu X H, Su C J, Li T F, Wang J Y, Zhu J S, Sun Y M, Wang C R, Zhan X W. J Am Chem Soc, 2016, 138(9): 2973 − 2976 doi: 10.1021/jacs.6b00853

    158. [158]

      Yang Y K, Zhang Z G, Bin H J, Chen S S, Gao L, Xue L W, Yang C D, Li Y F. J Am Chem Soc, 2016, 138(45): 15011 − 15018 doi: 10.1021/jacs.6b09110

    159. [159]

      Zhao W C, Li S S, Yao H F, Zhang S Q, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21): 7148 − 7151 doi: 10.1021/jacs.7b02677

    160. [160]

      Yao H F, Cui Y, Yu R N, Gao B W, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56(11): 3045 − 3049 doi: 10.1002/anie.201610944

    161. [161]

      Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2018, (2): 129 − 131 doi: 10.11777/j.issn1000-3304.2018.18019

    162. [162]

      Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2018, (2): 223 − 230 doi: 10.11777/j.issn1000-3304.2018.17297

    163. [163]

      Sun C, Xia R X, Shi H, Yao H F, Liu X, Hou J H, Huang F, Yip H L, Cao Y. Joule, 2018, 2(9): 1816 − 1826 doi: 10.1016/j.joule.2018.06.006

    164. [164]

      Kan B, Feng H R, Wan X J, Liu F, Ke X, Wang Y B, Wang Y C, Zhang H T, Li C X, Hou J, Chen Y S. J Am Chem Soc, 2017, 139(13): 4929 − 4934 doi: 10.1021/jacs.7b01170

    165. [165]

      Kan B, Zhang J B, Liu F, Wan X J, Li C X, Ke X, Wang Y C, Feng H R, Zhang T M, Long G K, Friend R, Bakulin A, Chen Y S. Adv Mater, 2018, 30(3): 1704904 doi: 10.1002/adma.201704904

    166. [166]

      Li X J, Pan F, Sun C K, Zhang M, Wang Z W, Du J Q, Wang J, Miao M, Xue L W, Zhang C F, Liu F, Li Y F. Nat Commun, 2019, 10: 519 doi: 10.1038/s41467-019-08508-3

    167. [167]

      Xiao Z, Jia X, Li D, Wang S Z, Geng X J, Liu F, Chen J W, Yang S F, Russel T P, Ding L M. Sci Bull, 2018, 62(22): 1494 − 1496

    168. [168]

      Huang Fei(黄飞). Acta Polymerica Sinica(高分子学报), 2018, (9): 1141 − 1143 doi: 10.11777/j.issn1000-3304.2018.18181

    169. [169]

      Li S X, Zhan L L, Liu F, Ren J, Shi M M, Li C Z, Russel T P, Chen H Z. Adv Mater, 2018, 30(6): 1705208 doi: 10.1002/adma.201705208

    170. [170]

      Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P. Joule, 2019, 3(4): 1140 − 1151 doi: 10.1016/j.joule.2019.01.004

    171. [171]

      https://www.nrel.gov/pv/cell-efficiency.html

    172. [172]

      Qian D P, Ye L, Zhang M J, Liang Y R, Li L J, Huang Y, Guo X, Zhang S Q, Tan Z A, Hou J H. Macromolecules, 2012, 45(24): 9611 − 9617 doi: 10.1021/ma301900h

    173. [173]

      Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J H. Adv Mater, 2016, 28(23): 4734 − 4739 doi: 10.1002/adma.v28.23

    174. [174]

      Fan Q, Wang Y, Zhang M, Wu B, Guo X, Jiang Y, Li W, Guo B, Ye C, Su W, Fang J, Ou X, Liu F, Wei Z, Sum T, Russell T, Li Y F. Adv Mater, 2017, 30(6): 1704546

    175. [175]

      Liu T, Luo Z H, Fan Q P, Zhang G Y, Zhang L, Gao W, Guo X, Ma W, Zhang M J, Yang C L, Li Y F, Yan H. Energy Environ Sci, 2018, 11(11): 3275 − 3282 doi: 10.1039/C8EE01700J

    176. [176]

      Cui Y, Yao H F, Hong L, Zhang T, Xu Y, Xian K H, Gao B W, Qin J Z, Zhang J Q, Wei Z X, Hou J H. Adv Mater, 2019, 31(14): 1808356 doi: 10.1002/adma.v31.14

    177. [177]

      Zhang S Q, Qin Y P, Zhu J, Hou J H. Adv Mater, 2018, 30(20): 1800868 doi: 10.1002/adma.v30.20

    178. [178]

      Li S S, Ye L, Zhao W C, Yan H P, Yang B, Liu D L, Li W N, Ade H, Hou J H. J Am Chem Soc, 2018, 140(23): 7159 − 7167 doi: 10.1021/jacs.8b02695

    179. [179]

      Yu R N, Yao H F, Hong L, Qin Y P, Zhu J, Cui Y, Li S S, Hou J H. Nat Commun, 2018, 9(1): 4645 doi: 10.1038/s41467-018-07017-z

    180. [180]

      Gao L, Zhang Z G, Bin H J, Xue L W, Yang Y K, Wang C, Liu F, Russell T P, Li Y F. Adv Mater, 2016, 28(37): 8288 − 8295 doi: 10.1002/adma.201601595

    181. [181]

      Bin H J, Gao L, Zhang Z G, Yang Y K, Zhang Y D, Zhang C F, Chen S S, Xue L W, Yang C, Xiao M, Li Y F. Nat Commun, 2016, 7: 13651 doi: 10.1038/ncomms13651

    182. [182]

      Xue L, Yang Y, Xu J, Zhang C, Bin H, Zhang Z, Beibei Qiu, Li X, Sun C, Gao L, Yao J, Chen X, Yang Y, Xiao M, Li Y. Adv Mater, 2017, 29(40): 1703344 doi: 10.1002/adma.201703344

    183. [183]

      Fan B B, Zhang K, Jiang X F, Ying L, Huang F, Cao Y. Adv Mater, 2017, 29(21): 1606396 doi: 10.1002/adma.201606396

    184. [184]

      Fan B B, Du X Y, Liu F, Zhong W K, Ying L, Xie R H, Tang X F, An K, Xin J M, Li N, Ma W, Brabec C J, Huang F, Cao Y. Nat Energy, 2018, 3(12): 1051 − 1058 doi: 10.1038/s41560-018-0263-4

    185. [185]

      Fan B B, Zhang D F, Li M J, Zhong W K, Zeng Z M Y, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 1 − 7

    186. [186]

      Cui C H, Fan X, Zhang M J, Zhang J, Min J, Li Y F. Chem Commun, 2011, 47(40): 11345 − 11347 doi: 10.1039/c1cc14132e

    187. [187]

      Wu Y, Yang H, Zou Y, Dong Y Y, Yuan J Y, Cui C H, Li Y F. Energy Environ Sci, 2019, 12(2): 675 − 683 doi: 10.1039/C8EE03608J

    188. [188]

      Sun C K, Pan F, Bin H J, Zhang J Q, Xue L W, Qiu B B, Wei Z X, Zhang Z G, Li Y F. Nat Commun, 2018, 9(1): 743 doi: 10.1038/s41467-018-03207-x

    189. [189]

      Xu X P, Yu T, Bi Z Z, Ma W, Li Y, Peng Q. Adv Mater, 2018, 30(3): 1703973 doi: 10.1002/adma.v30.3

    190. [190]

      Lai W B, Li C, Zhang J Q, Yang F, Colberts F J M, Guo B, Wang Q M, Li M M, Zhang A D, Janssen R A J, Zhang M J, Li W W. Chem Mater, 2017, 29(17): 7073 − 7077 doi: 10.1021/acs.chemmater.7b02534

    191. [191]

      Feng G T, Li J Y, Colberts F J M, Li M M, Zhang J Q, Yang F, Jin Y, Zhang F L, Janssen R A J, Li C, Li W W. J Am Chem Soc, 2017, 139(51): 18647 − 18656 doi: 10.1021/jacs.7b10499

    192. [192]

      Zhang Z G, Yang Y K, Yao J, Xue L W, Chen S S, Li X J, Morrison W, Yang C, Li Y F. Angew Chem Int Ed, 2017, 56(43): 13503 − 13507 doi: 10.1002/anie.201707678

    193. [193]

      Meng Y, Wu J, Guo X, Su W, Zhu L, Fang J, Zhang Z G, Liu F, Zhang M, Russell T P, Li Y. Sci China Chem, 2019, 62(7): 845 − 850 doi: 10.1007/s11426-019-9466-6

    194. [194]

      Dou C, Long X, Ding Z, Xie Z, Liu J, Wa ng, L. Angew Chem Int Ed, 2016, 55(4): 1436 − 1440 doi: 10.1002/anie.201508482

    195. [195]

      Long X J, Ding Z C, Dou C D, Zhang J D, Liu J, Wang L X. Adv. Mater, 2016, 28(30): 6504 − 6508 doi: 10.1002/adma.201601205

    196. [196]

      Guo Y K, Li Y K, Awartani O, Zhao J B, Han H, Ade H, Zhao D H, Yan H. Adv Mater, 2016, 28(38): 8483 − 8489 doi: 10.1002/adma.v28.38

    197. [197]

      Guo Y K, Li Y K, Awartani O, Han H, Zhao J B, Ade H, Zhao D H, Yan H. Adv Mater, 2017, 29(26): 1700309 doi: 10.1002/adma.201700309

    198. [198]

      Fan B B, Ying L, Wang Z F, He B T, Jiang X F, Huang F, Cao Y. Energy Environ Sci, 2017, 10(5): 1243 − 1251 doi: 10.1039/C7EE00619E

    199. [199]

      Fan B B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao, Y. Adv Mater, 2017, 29(47): 1703906 doi: 10.1002/adma.201703906

    200. [200]

      Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2019, 12(1): 157 − 163 doi: 10.1039/C8EE02863J

    201. [201]

      He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y. Nat Photonics, 2012, 6: 591 − 595 doi: 10.1038/nphoton.2012.190

    202. [202]

      Ouyang X H, Peng R X, Ai L, Zhang X Y, Ge Z Y. Nat Photon, 2015, 9: 520 − 524 doi: 10.1038/nphoton.2015.126

    203. [203]

      Zhang Z G, Qi B Y, Jin Z W, Chi D, Qi Z, Li Y F, Wang J Z. Energy Environ Sci, 2014, 7(6): 1966 − 1973 doi: 10.1039/c4ee00022f

    204. [204]

      Liu J, Wu J, Shao S Y, Deng Y F, Meng B, Xie Z Y, Geng Y H, Wang L X and Zhang F L. ACS Appl Mater Interfaces, 2014, 6: 8237 − 8245 doi: 10.1021/am501001v

    205. [205]

      Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip H L, Huang F, Cao Y. J Am Chem Soc, 2016, 138(6): 2004 − 2013 doi: 10.1021/jacs.5b12664

    206. [206]

      Xu B W, Zheng Z, Zhao K, Hou J H. Adv Mater, 2016, 28(3): 434 − 439 doi: 10.1002/adma.v28.3

    207. [207]

      Zhang Kai(张凯), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2017, (9): 1400 − 1414 doi: 10.11777/j.issn1000-3304.2017.17075

    208. [208]

      Zhang K, Gao K, Xia R X, Wu Z H, Sun C, Cao J M, Qian L, Li W Q, Liu S Y, Huang F, Peng X B, Ding L M, Yip H L, Cao Y. Adv Mater, 2016, 28(24): 4817 doi: 10.1002/adma.v28.24

    209. [209]

      Zhang K, Xia R X, Fan B B, Liu X, Wang Z, Dong S, Yip H L, Ying L, Huang F, Cao Y. Adv Mater, 2018, 30(36): 1803166 doi: 10.1002/adma.201803166

    210. [210]

      Xia Y J, Wang L, Deng X Y, Li D Y, Zhu X H, Cao Y. Appl Phys Lett, 2006, 89(8): 081106 doi: 10.1063/1.2338017

    211. [211]

      Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J. Science, 2009, 325(5948): 1665 − 1667 doi: 10.1126/science.1176706

    212. [212]

      Zhong Z M, Li K, Zhang J X, Ying L, Xie R H, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11(15): 14208 − 14214 doi: 10.1021/acsami.9b02092

    213. [213]

      Zhong Z M, Bu L J, Zhu P, Xiao T, Fan B B, Ying L, Lu G H, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11(8): 8350 − 8356 doi: 10.1021/acsami.8b20981

    214. [214]

      Zhang L Z, Yang T B, Shen L, Fang Y J, Dang L, Zhou N J, Guo X G, Hong Z R, Yang Y, Wu H B, Huang J S, Liang Y Y. Adv Mater, 2015, 27(41): 6496 − 6503 doi: 10.1002/adma.201502267

    215. [215]

      Qian G, Qi J, Wang Z Y. J Mater Chem, 2012, 22(25): 12867 − 12873 doi: 10.1039/c2jm30868a

    216. [216]

      Qi J, Ni L, Yang D Z, Zhou X K, Qiao W Q, Li M, Ma D G, Wang Z Y. J Mater Chem C, 2014, 2(13): 2431 − 2438 doi: 10.1039/c3tc32271h

    217. [217]

      Wang W B, Zhang F J, Du M D, Li L L, Zhang M, Wang K, Wang Y S, Hu B, Fang Y, Huang J S. Nano Lett, 2017, 17(3): 1995 − 2002 doi: 10.1021/acs.nanolett.6b05418

    218. [218]

      Xiong S X, Li L L, Qin F, Mao L, Luo B W, Jiang Y Y, Li Z F, Huang J S, Zhou Y H. ACS Appl Mater Interfaces, 2017, 9(10): 9176 − 9183 doi: 10.1021/acsami.6b16788

    219. [219]

      Hu X W, Yi C, Wang M, Hsu C H, Liu S J, Zhang K, Zhong C M, Huang F, Gong X, Cao Y. Adv Energy Mater, 2014, 4(15): 1400378 doi: 10.1002/aenm.201400378

    220. [220]

      Li L L, Zhang F J, Wang J, An Q S, Sun Q Q, Wang W B, Zhang J, Teng F. Sci Rep, 2015, 5: 9181 doi: 10.1038/srep09181

    221. [221]

      Li L L, Zhang F J, Wang W B, An Q S, Wang J, Sun Q Q, Zhang M. ACS Appl Mater Interfaces, 2015, 7(10): 5890 − 5897 doi: 10.1021/acsami.5b00041

    222. [222]

      Forrest S R. Nature, 2004, 428: 911 − 918 doi: 10.1038/nature02498

    223. [223]

      Drury C J, Mutsaers C M J, Hart C M, Leeuw D M. Appl Phys Lett, 1998, 73(1): 108 − 110 doi: 10.1063/1.121783

    224. [224]

      Tsumura A, Koezuka H, Ando T. Appl Phys Lett, 1986, 49(18): 1210 − 1212 doi: 10.1063/1.97417

    225. [225]

      Hu W P, Liu Y Q, Zhu D B. Physics, 1997, 26(11): 649 − 654

    226. [226]

      Yao J J, Yu C M, Liu Z T, Luo H W, Yang Y, Zhang G X, Zhang D Q. J Am Chem Soc, 2016, 138(1): 173 − 185 doi: 10.1021/jacs.5b09737

    227. [227]

      Osaka I, McCullough R D. Acc Chem Res, 2008, 41(9): 1202 − 1214 doi: 10.1021/ar800130s

    228. [228]

      Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P, de Leeuw D M. Nature, 1999, 401: 685 − 688 doi: 10.1038/44359

    229. [229]

      Lei T, Cao Y, Fan Y, Liu C J, Yuan S C, Pei J. J Am Chem Soc, 2011, 133(16): 6099 − 6101 doi: 10.1021/ja111066r

    230. [230]

      Lei T, Dou J H, Ma Z M, Yao C H, Liu C J, Wang J Y, Pei J. J Am Chem Soc, 2012, 134(49): 20025 − 20028 doi: 10.1021/ja310283f

    231. [231]

      Bürgi L, Turbiez M, Pfeiffer R, Bienewald F, Kirner H, Winnewisser C. Adv Mater, 2008, 20(11): 2217 − 2224 doi: 10.1002/(ISSN)1521-4095

    232. [232]

      Chen H, Guo Y L, Yu G, Zhao Y, Zhang J, Gao D, Liu H, Liu Y Q. Adv Mater, 2012, 24(34): 4618 − 4622 doi: 10.1002/adma.v24.34

    233. [233]

      Li J, Zhao Y, Tan H S, Guo Y L, Di C A, Yu G, Liu Y Q, Lin M, Lim S H, Zhou Y H, Su H B, Ong B S. Sci Rep, 2012, 2: 754 doi: 10.1038/srep00754

    234. [234]

      Ni Z J, Wang H L, Dong H L, Dang Y F, Zhao Q, Zhang X T, Hu W P. Nat Chem, 2019, 11: 271 − 277 doi: 10.1038/s41557-018-0200-y

    235. [235]

      Lei T, Dou J H, Cao X Y, Wang J Y, Pei J. J Am Chem Soc, 2013, 135(33): 12168 − 12717 doi: 10.1021/ja403624a

    236. [236]

      Lei T, Xia X, Wang J Y, Liu C J, Pei J. J Am Chem Soc, 2014, 136(5): 2135 − 2141 doi: 10.1021/ja412533d

    237. [237]

      Chen Z H, Zheng Y, Yan H, Facchetti A. J Am Chem Soc, 2009, 131(1): 8 − 9 doi: 10.1021/ja805407g

    238. [238]

      Chen H J, Guo Y L, Mao Z P, Yu G, Huang J Y, Zhao Y, Liu Y Q. Chem Mater, 2013, 25(18): 3589 − 3596 doi: 10.1021/cm401130n

    239. [239]

      Zhao Z Y, Yin Z H, Chen H J, Zheng L P, Zhu C G, Zhang L, Tan S T, Wang H L, Guo Y L, Tang Q X, Liu Y Q. Adv Mater, 2017, 29(4): 1602410 doi: 10.1002/adma.v29.4

    240. [240]

      Shi Y Q, Gou H, Qin M C, Zhao J Y, Wang H, Wang Y L, Facchetti A, Lu X H, Guo X G. Adv Mater, 2018, 30(10): 1705745 doi: 10.1002/adma.v30.10

    241. [241]

      Wang Y F, Guo H, Harbuzaru A, Uddin M A, Arrechea-Marcos I, Ling S H, Yu Y W, Tang Y M, Sun H L, Navarrete J T L, Ortiz R P, Woo H Y, Guo X G. J Am Chem Soc, 2018, 140(19): 6095 − 6108 doi: 10.1021/jacs.8b02144

    242. [242]

      Brédas J L, Beljonne D, Coropceanu V, Cornil J. Chem Rev, 2004, 104(11): 4971 − 5003 doi: 10.1021/cr040084k

    243. [243]

      Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Brédas J L. Chem Rev, 2007, 107(4): 926 − 952 doi: 10.1021/cr050140x

    244. [244]

      Dong H L, Fu X L, Liu J, Wang Z R, Hu W P. Adv Mater, 2013, 25(43): 6158 − 6183 doi: 10.1002/adma.201302514

    245. [245]

      Kang I, Yun H J, Chung D S, Kwon S K, Kim Y H. J Am Chem Soc, 2013, 135(40): 14896 − 14899 doi: 10.1021/ja405112s

    246. [246]

      Lee J, Han A R, Yu H, Shin T J, Yang C, Oh J H. J Am Chem Soc, 2013, 135(25): 9540 − 9547 doi: 10.1021/ja403949g

    247. [247]

      Mei J G, Bao Z N. Chem Mater, 2014, 26(1): 604 − 615 doi: 10.1021/cm4020805

    248. [248]

      Dou J H, Zheng Y Q, Lei T, Zhang S D, Wang Z, Zhang W B, Wang J Y, Pei J. Adv Funct Mater, 2014, 24(40): 6270 − 6278 doi: 10.1002/adfm.v24.40

    249. [249]

      Luo H W, Yu C M, Liu Z T, Zhang G X, Geng H, Yi Y P, Broch K, Hu Y Y, Sadhanala A, Jiang L, Qi P L, Cai Z X, Sirringhaus H, Zhang D Q. Sci Adv, 2016, 2(5): 1600076 doi: 10.1126/sciadv.1600076

    250. [250]

      Zhu M J, Pan S, Wang Y, Tang P, Qiu F, Lin Z Q, Peng J. Angew Chem Int Ed, 2018, 57(28): 8644 − 8648 doi: 10.1002/anie.v57.28

    251. [251]

      Dong H, Hu W. Acc Chem Res, 2016, 49(11): 2435 − 2443 doi: 10.1021/acs.accounts.6b00368

    252. [252]

      Lee B H, Hsu B B Y, Patel S N, Labram J, Luo C, Bazan G C, Heeger A J. Nano Lett, 2016, 16(1): 314 − 319 doi: 10.1021/acs.nanolett.5b03868

    253. [253]

      Luo C, Kyaw A K K, Perez L A, Patel S, Wang M, Grimm B, Bazan G C, Kramer E J, Heeger A J. Nano Lett, 2014, 14(5): 2764 − 2771 doi: 10.1021/nl500758w

    254. [254]

      Dong H L, Li H X, Wang E J, Wei Z M, Xu W, Hu W P, Yan S K. Langmuir, 2008, 24(23): 13241 − 13244 doi: 10.1021/la8026094

    255. [255]

      Wittmann J C, Smith P. Nature, 1991, 352(6334): 414 − 417 doi: 10.1038/352414a0

    256. [256]

      Pan G Z, Chen F, Hu L, Zhang K J, Dai J M, Zhang F P. Adv Funct Mater, 2015, 25(32): 5126 − 5133 doi: 10.1002/adfm.v25.32

    257. [257]

      Lin F-J, Guo C, Chuang WT, Wang CL, Wang Q, Liu H, Hsu C S, Jiang L. Adv Mater, 2017, 29(34): 1606987 doi: 10.1002/adma.v29.34

    258. [258]

      Jiang Y Y, Chen J Y, Sun Y L, Li Q Y, Cai Z X, Li J Y, Guo Y L, Hu W P, Liu Y Q. Adv Mater, 2019, 31(2): 1805761 doi: 10.1002/adma.201805761

    259. [259]

      Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J. Nat Energy, 2018, 3(7): 560 − 566 doi: 10.1038/s41560-018-0153-9

    260. [260]

      Zheng Y Q, Yao Z F, Lei T, Dou J H, Yang C Y, Zou L, Meng X Y, Ma W, Wang J Y, Pei J. Adv Mater, 2017, 29(42): 1701072 doi: 10.1002/adma.201701072

    261. [261]

      Yao Z F, Zheng Y Q, Li Q Y, Lei T, Zhang S, Zou L, Liu H Y, Dou J H, Lu Y, Wang J Y, Gu X D, Pei J. Adv Mater, 2019, 31(7): 1806747

    262. [262]

      Lei Y, Deng P, Zhang Q, Xiong Z, Li Q, Mai J, Lu X, Zhu X, Ong B S. Adv Funct Mater, 2018, 28(15): 1706372 doi: 10.1002/adfm.v28.15

    263. [263]

      Wang C L, Dong H L, Jiang L, Hu W P. Chem Soc Rev, 2018, 47(2): 422 − 500 doi: 10.1039/C7CS00490G

    264. [264]

      Kim D H, Han J T, Park Y D, Jang Y, Cho J H, Hwang M, Cho K. Adv Mater, 2006, 18(6): 719 − 723 doi: 10.1002/(ISSN)1521-4095

    265. [265]

      Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1246 − 1260 doi: 10.11777/j.issn1000-3304.2017.17127

    266. [266]

      Dong H L, Jiang S D, Jiang L, Liu Y L, Li H X, Hu W P, Wang E J, Yan S K, Wei Z M, Xu W, Gong X. J Am Chem Soc, 2009, 131(47): 17315 − 17320 doi: 10.1021/ja907015p

    267. [267]

      Liu Y, Dong H L, Jiang S D, Zhao G Y, Shi Q Q, Tan J H, Jiang L, Hu W P, Zhan X W. Chem Mater, 2013, 25(13): 2649 − 2655 doi: 10.1021/cm4011579

    268. [268]

      Xiao C Y, Zhao G Y, Zhang A D, Jiang W, Janssen R A J, Li W W, Hu W P, Wang Z H. Adv Mater, 2015, 27(34): 4963 − 4968 doi: 10.1002/adma.201502617

    269. [269]

      Ma Z Y, Geng Y H, Yan D H. Polymer, 2007, 48(1): 31 − 34 doi: 10.1016/j.polymer.2006.10.034

    270. [270]

      Xiao X L, Wang Z B, Hu Z J, He T B. J Phys Chem B, 2010, 114(22): 7452 − 7460 doi: 10.1021/jp911525d

    271. [271]

      Liu C F, Wang Q L, Tian H K, Liu J, Geng Y H, Yan D H. Polymer, 2013, 54(3): 1251 − 1258 doi: 10.1016/j.polymer.2012.12.054

    272. [272]

      Liu C F, Sui A G, Wang Q L, Tian H K, Geng Y H, Yan D H. Polymer, 2013, 54(13): 3150 − 3155 doi: 10.1016/j.polymer.2013.04.025

    273. [273]

      Yan Qingqing(燕青青), Yao Yifan(姚奕帆), Dong Huanli(董焕丽), Hu Wenping(胡文平). Scientia Sinica Chimica(中国科学-化学), 2016, 46(10): 1007 − 1022

    274. [274]

      Wegner G. Z Naturforsch B, 1969, 24(7): 824 − 826 doi: 10.1515/znb-1969-0708

    275. [275]

      Yao Y F, Dong H L, Liu F, Russell T P, Hu W P. Adv Mater, 2017, 29(29): 1701251 doi: 10.1002/adma.201701251

    276. [276]

      Xue M Q, Wang Y, Wang X W, Huang X C, Ji J H. Adv Mater, 2015, 27(39): 5923 − 5929 doi: 10.1002/adma.201502511

    277. [277]

      Swager T M. Acc Chem Res, 1998, 31(5): 201 − 207 doi: 10.1021/ar9600502

    278. [278]

      McQuade D T, Pullen A E, Swager T M. Chem Rev, 2000, 100(7): 2537 − 2574 doi: 10.1021/cr9801014

    279. [279]

      Thomas S W, Joly G D, Swager T M. Chem Rev, 2007, 107(4): 1339 − 1386 doi: 10.1021/cr0501339

    280. [280]

      Feng X L, Liu L B, Wang S, Zhu D B. Chem Soc Rev, 2010, 39(7): 2411 − 2419 doi: 10.1039/b909065g

    281. [281]

      Zhu C L, Liu L B, Yang Q, Lv F T, Wang S. Chem Rev, 2012, 112(8): 4687 − 4735 doi: 10.1021/cr200263w

    282. [282]

      Yuan H X, Wang B, Lv F T, Liu L B, Wang S. Adv Mater, 2014, 26(40): 6978 − 6982 doi: 10.1002/adma.v26.40

    283. [283]

      Zhang Jiangyan(张江艳), Yuan Huanxiang(袁焕祥), Zhu Chunlei(朱春雷), Liu Libing(刘礼兵), Lv Fengting(吕凤婷), Wang Shu(王树). Sci China Chem(中国科学: 化学), 2016, 46(2): 153 − 162

    284. [284]

      Jiang Y F, McNeill J. Chem Rev, 2017, 117(2): 838 − 859 doi: 10.1021/acs.chemrev.6b00419

    285. [285]

      Jiang Y Y, Pu K Y. Acc Chem Res, 2018, 51(8): 1840 − 1849 doi: 10.1021/acs.accounts.8b00242

    286. [286]

      Ho H A, Najari A, Leclerc M. Acc Chem Res, 2008, 41(2): 168 − 178 doi: 10.1021/ar700115t

    287. [287]

      Wu W, Bazan G C, Liu B. Chem, 2017, 2(6): 760 − 790 doi: 10.1016/j.chempr.2017.05.002

    288. [288]

      Duan X R, Liu L B, Feng F, Wang S. Acc Chem Res, 2010, 43(2): 260 − 270 doi: 10.1021/ar9001813

    289. [289]

      Feng F D, Wang H Z, Han L L, Wang S. J Am Chem Soc, 2008, 130(34): 11338 − 11343 doi: 10.1021/ja8011963

    290. [290]

      Feng F D, Liu L B, Wang S. Nat Protoc, 2010, 5(7): 1255 − 1264 doi: 10.1038/nprot.2010.79

    291. [291]

      Yang Q, Dong Y, Wu W, Zhu C L, Chong H, Lu J Y, Yu D H, Liu L, Lv F T, Wang S. Nat Commun, 2012, 3: 1206 doi: 10.1038/ncomms2209

    292. [292]

      Miranda O R, You C C, Phillips R, Kim I B, Ghosh P S, Bunz U H F, Rotello V M. J Am Chem Soc, 2007, 129(32): 9856 − 9857 doi: 10.1021/ja0737927

    293. [293]

      De M, Rana S, Akpinar H, Miranda O R, Arvizo R R, Bunz U H F, Rotello V M. Nat Chem, 2009, 1(6): 461 doi: 10.1038/nchem.334

    294. [294]

      Liu Xingfen(刘兴奋), Cai Xiaohui(蔡小慧), Huang Yanqin(黄艳琴), Shi Lin(石琳), Fan Quli(范曲立), Huang Wei(黄维). Acta Chimica Sinica(化学学报), 2014, 72: 440 − 446 doi: 10.7503/cjcu20130583

    295. [295]

      Sun Pengfei(孙鹏飞), Fan Quli(范曲立), Liu Lulin (柳露林), Deng Weixing(邓卫星), Lu Xiaomei(卢晓梅), Huang Wei(黄维). Acta Polymerica Sinica(高分子学报), 2014, (12): 1629 − 1634

    296. [296]

      Bajaj A, Miranda O R, Phillips R, Kim I B, Jerry D J, Bunz U H F, Rotello V M. J Am Chem Soc, 2010, 132(3): 1018 − 1022 doi: 10.1021/ja9061272

    297. [297]

      Feng X L, Yang G M, Liu L B, Lv F T, Yang Q, Wang S, Zhu D B. Adv Mater, 2012, 24(5): 637 − 641 doi: 10.1002/adma.201102026

    298. [298]

      Wu C F, Jin Y H, Schneider T, Burnham D R, Smith P B, Chiu D T. Angew Chem Int Ed, 2010, 49(49): 9436 − 9440 doi: 10.1002/anie.201004260

    299. [299]

      Wu C F, Hansen S J, Hou Q O, Yu J B, Zeigler M, Jin Y H, Burnham D R, McNeill J D, Olson J M, Chiu D T. Angew Chem Int Ed, 2011, 50(15): 3430 − 3434 doi: 10.1002/anie.201007461

    300. [300]

      Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Li uX, Jokerst J V, Pu K. Nat Biotechnol, 2017, 35(11): 1102 − 1110 doi: 10.1038/nbt.3987

    301. [301]

      Lu L D, Rininsland F H, Wittenburg S K, Achyuthan K E, McBranch D W, Whitten D G. Langmuir, 2005, 21(22): 10154 − 10159 doi: 10.1021/la046987q

    302. [302]

      Xing C F, Xu Q L, Tang H W, Liu L, Wang S. J Am Chem Soc, 2009, 131(36): 13117 − 13124 doi: 10.1021/ja904492x

    303. [303]

      Yuan H X, Chong H, Wang B, Zhu C, Liu L, Yang Q, Lv F, Wang S. J Am Chem Soc, 2012, 134(32): 13184 − 13187 doi: 10.1021/ja304986t

    304. [304]

      Bai H T, Yuan H X, Nie C Y, Wang B, Lv F T, Liu L B, Wang S. Angew Chem Int Ed, 2015, 54(45): 13208 − 13213 doi: 10.1002/anie.201504566

    305. [305]

      Zhou L, Lv F, Liu L, Shen G, Yan X, Bazan G C, Wang S. Adv Mater, 2018, 30(10): 1704888 doi: 10.1002/adma.v30.10

    306. [306]

      Di C A, Xu W, Zhu D B. Natl Sci Rev, 2016, 3(3): 269 − 271 doi: 10.1093/nsr/nww040

    307. [307]

      Kim J Y, Jung J H, Lee D E, Joo J. Synth Met, 2002, 126(2-3): 311 − 316 doi: 10.1016/S0379-6779(01)00576-8

    308. [308]

      Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Nat Mater, 2011, 10: 429 − 433 doi: 10.1038/nmat3012

    309. [309]

      Yao Q, Chen L D, Zhang W Q, Liufu S C, Chen X H. ACS Nano, 2010, 4(4): 2445 − 2451 doi: 10.1021/nn1002562

    310. [310]

      Kim G H, Shao L, Zhang K, Pipe K P. Nat Mater, 2013, 12: 719 − 723 doi: 10.1038/nmat3635

    311. [311]

      He M, Qiu F, Lin Z Q. Energy Environ Sci, 2013, 6(5): 1352 − 1361 doi: 10.1039/c3ee24193a

    312. [312]

      Shi W, Qu S Y, Chen H Y, Chen Y L, Yao Q, Chen L D. Angew Chem Int Ed, 2018, 57(27): 8037 − 8042 doi: 10.1002/anie.201802681

    313. [313]

      Meng Q, Jiang Q, Cai K, Chen L. Org Electron, 2019, 64: 79 − 85 doi: 10.1016/j.orgel.2018.10.010

    314. [314]

      Qu S Y, Yao Q, Wang L M, Hua J L, Chen L D. Polymer, 2018, 136: 149 − 156 doi: 10.1016/j.polymer.2017.12.048

    315. [315]

      Qu S Y, Wang M D, Chen Y L, Yao Q, Chen L D. RSC Adv, 2018, 8(59): 33855 − 33863 doi: 10.1039/C8RA07297C

    316. [316]

      Meng Q F, Cai K F, Du Y, Chen L D. J Alloy Comp, 2019, 778: 163 − 169 doi: 10.1016/j.jallcom.2018.10.381

    317. [317]

      Holdcroft G E, Underhill A E. Synth Met, 1985, 10(6): 427 − 434 doi: 10.1016/0379-6779(85)90200-0

    318. [318]

      Vicente R, Ribas J, Cassoux P, Valade L. Synth Met, 1986, 13(4): 265 − 280 doi: 10.1016/0379-6779(86)90188-8

    319. [319]

      Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D. Adv Mater, 2012, 24(7): 932 − 937 doi: 10.1002/adma.201104305

    320. [320]

      Jin W L, Liu L Y, Yang T, Shen H G, Zhu J, Xu W, Li S Z, Li Q, Chi L F, Di C A, Zhu D B. Nat Commun, 2018, 9: 3586 doi: 10.1038/s41467-018-05999-4

    321. [321]

      Zhang F J, Zang Y P, Huang D Z, Di C A, Zhu D B. Nat Commun, 2015, 6: 8356 doi: 10.1038/ncomms9356

    322. [322]

      Zhang Q, Sun Y M, Xu W, Zhu D B. Macromolecules, 2014, 47(2): 609 − 615 doi: 10.1021/ma4020406

    323. [323]

      Zhang F J, Zang Y P, Huang D Z, Di C A, Gao X K, Sirringhaus H, Zhu D B. Adv Funct Mater, 2015, 25(20): 3004 − 3012 doi: 10.1002/adfm.201404397

    324. [324]

      Hu D H, Liu Q, Tisdale J, Lei T, Pei J, Wang H, Urbas A, Hu B. ACS Nano, 2015, 9(5): 5208 − 5213 doi: 10.1021/acsnano.5b00589

    325. [325]

      Wang C L, Dong H L, Hu W P, Liu Y Q, Zhu D B. Chem Rev, 2012, 112(4): 2208 − 2267 doi: 10.1021/cr100380z

    326. [326]

      Shi K, Zhang F J, Di C A, Yan T W, Zou Y, Zhou X, Zhu D B, Wang J Y, Pei J. J Am Chem Soc, 2015, 137(22): 6979 − 6982 doi: 10.1021/jacs.5b00945

    327. [327]

      Ma W, Shi K, Wu Y, Lu Z Y, Liu H Y, Wang J Y, Pei J. ACS Appl Mater Interfaces, 2016, 8(37): 24737 − 24743 doi: 10.1021/acsami.6b06899

    328. [328]

      Kiefer D, Giovannitti A, Sun H, Biskup T, Hofmann A, Koopmans M, Cendra C, Weber S, Anton Koster L J, Olsson E, Rivnay J, Fabiano S, McCulloch I, Müller C. ACS Energy Lett, 2018, 3(2): 278 − 285 doi: 10.1021/acsenergylett.7b01146

    329. [329]

      Yang C Y, Jin W L, Wang J, Ding Y F, Nong S Y, Shi K, Lu Y, Dai Y Z, Zhuang F D, Lei T, Di C A, Zhu D B, Wang J Y, Pei J. Adv Mater, 2018, 30(43): 1802850 doi: 10.1002/adma.201802850

    330. [330]

      Zhang Q, Sun Y M, Xu W, Zhu D B. Energy Environ Sci, 2012, 5(11): 9639 − 9644 doi: 10.1039/c2ee23006b

    331. [331]

      Shi K, Lu Z, Yu Z, Liu H, Zou Y, Yang C, Dai Y, Lu Y, Wang J, Pei J. Adv Electron Mater, 2017, 3(11): 1700164 doi: 10.1002/aelm.201700164

    332. [332]

      Meredith G, Vandusen J, Williams D. Macromolecules, 1982, 15(5): 1385 − 1389 doi: 10.1021/ma00233a033

    333. [333]

      Li S J, Yang Z, Wang P, Kang H, Wu W, Ye C, Yang M J, Yang X Z. Macromolecules, 2002, 35(11): 4314 − 4316 doi: 10.1021/ma011598d

    334. [334]

      Tang H D, Luo J D, Qin J G. Kang H, Ye C Macromol Rapid Commun, 2000, 21(16): 1125 − 1129 doi: 10.1002/(ISSN)1521-3927

    335. [335]

      Luo J D, Qin J G, Kang H, Ye C. Chem Mater, 2001, 13(3): 927 − 931 doi: 10.1021/cm000692q

    336. [336]

      Li Z, Qin J G, Li S J, Ye C, Luo J, Cao Y. Macromolecules, 2002, 35(24): 9232 − 9235 doi: 10.1021/ma020769r

    337. [337]

      Wang Y, Wang C S, Wang X J, Guo Y, Xie B, Cui Z C, Liu L Y, Xu L, Zhang D M, Yang B. Chem Mater, 2005, 17(6): 1265 − 1268 doi: 10.1021/cm048482r

    338. [338]

      Dalton L R, Sullivan P A, Ba le, D H. Chem Rev, 2010, 110(1): 25 − 55 doi: 10.1021/cr9000429

    339. [339]

      Robinson B H, Dalton L R. J Phys Chem A, 2000, 104(20): 4785 − 4795 doi: 10.1021/jp993873s

    340. [340]

      Li Z, Li Q Q, Qin J G. Polym Chem, 2011, 2(12): 2723 − 2740 doi: 10.1039/c1py00205h

    341. [341]

      Wu W B, Qin J G, Li Z. Polymer, 2013, 54(17): 4351 − 4382 doi: 10.1016/j.polymer.2013.05.039

    342. [342]

      Tang R L, Li Z. Chem Rec, 2017, 17(1): 71 − 89 doi: 10.1002/tcr.201600065

    343. [343]

      Li Z, Zeng Q, Li Z, Dong S, Zhu Z, Li Q, Ye C, Di C, Liu Y, Qin J. Macromolecules, 2006, 39(24): 8544 − 8546 doi: 10.1021/ma061854s

    344. [344]

      Chen P, Li Z. Chinese J Polym Sci, 2017, 35(7): 793 − 798 doi: 10.1007/s10118-017-1949-y

    345. [345]

      Li Z, Wu W, Li Q, Yu G, Xiao L, Liu Y, Ye C, Qin J, Li Z. Angew Chem Int Ed, 2010, 49(15): 2763 − 2767 doi: 10.1002/anie.200906946

    346. [346]

      Gao J, Cui Y, Yu J, Lin W, Wang Z, Qian G. J Mater Chem, 2011, 21(9): 3197 − 3203 doi: 10.1039/c0jm03367g

    347. [347]

      He Y L, Chen L, Zhang H, Chen Z, Huo F Y, Li B, Zhen Z, Liu X H, Bo S H. J Mater Chem C, 2018, 6(5): 1031 − 1037 doi: 10.1039/C7TC04928E

    348. [348]

      Tang R L, Zhou S, Xiang W D, Xie Y J, Chen H, Peng Q, Yu G, Liu B W, Zeng H Y, Li Q Q, Li Z. J Mater Chem C, 2015, 3(17): 4545 − 4552 doi: 10.1039/C5TC00182J

    349. [349]

      Tang R L, Zhou S M, Chen Z Y, Yu G, Peng Q, Zeng H Y, Guo G C, Li Q Q, Li Z. Chem Sci, 2017, 8(1): 340 − 347 doi: 10.1039/C6SC02956F

    350. [350]

      Wu W B, Tang R L, Li Q Q, Li Z. Chem Soc Rev, 2015, 44(12): 3997 − 4022 doi: 10.1039/C4CS00224E

    351. [351]

      Li Z, Lam J W Y, Dong Y, Dong Y, Tang B Z, Qin A, Ye C. Polym Prepr, 2004, 45: 833 − 834

    352. [352]

      Li Z, Qin A J, Lam J W Y, Dong Y P, Dong Y Q, Ye C, Williams I D, Tang B Z. Macromolecules, 2006, 39(4): 1436 − 1442 doi: 10.1021/ma051924f

    353. [353]

      Xie J D, Hu L H, Shi W F, Deng X X, Cao Z Q, Shen Q S. J Polym Sci, Part B: Polym Phys, 2008, 46(12): 1140 − 1148 doi: 10.1002/(ISSN)1099-0488

    354. [354]

      Li Z, Yu G, Hu P, Ye C, Liu Y, Qin J, Li Z. Macromolecules, 2009, 42(5): 1589 − 1596 doi: 10.1021/ma8025223

    355. [355]

      Yin Xiuyang(殷修扬), Tang Runli(唐润理), Li Qianqian(李倩倩), Li Zhen(李振). Scientia Sinica Chimica(中国科学-化学), 2016, 46(5): 429 − 437

    356. [356]

      Wu W B, Huang L J, Fu Y J, Ye C, Qin J G, Li Z. Sci Bull, 2013, 58(22): 2753 − 2761 doi: 10.1007/s11434-013-5938-4

    357. [357]

      Liu G C, Chen P Y, Tang R L, Li Z. Sci China Chem, 2016, 59(12): 1561 − 1567 doi: 10.1007/s11426-016-0250-5

    358. [358]

      Chen J, Dong C-L, Zhao D M, Huang Y-C, Wang X X, Samad L, Dang L N, Shearer M, Shen S H, Guo L J. Adv Mater, 2017, 29(21): 1606198 doi: 10.1002/adma.201606198

    359. [359]

      Yu F T, Wang Z Q, Zhang S C, Ye H N, Kong K Y, Gong X Q, Hua J L, Tian H. Adv Funct Mater, 2018, 28(47): 1804512 doi: 10.1002/adfm.v28.47

    360. [360]

      Lu H, Hu R, Bai H T, Chen H, Lv F T, Liu L B, Wang S, Tian H. ACS Appl Mater Interfaces, 2017, 9(12): 10355 − 10359 doi: 10.1021/acsami.7b00069

    361. [361]

      Hu Z C, Zhang X, Yin Q W, Liu X C, Jiang X F, Chen Z M, Yang X Y, Huang F, Cao Y. Nano Energy, 2019, 60: 775 − 783 doi: 10.1016/j.nanoen.2019.04.027

    362. [362]

      Hu Z C, Wang Z F, Zhang X, Tang H R, Liu X C, Huang F, Cao Y. iScience, 2019, 13: 33 − 42 doi: 10.1016/j.isci.2019.02.007

    363. [363]

      Su W P, Schrieffer J R, Heeger A J. Phys Rev Lett, 1979, 42(25): 1698 − 1701 doi: 10.1103/PhysRevLett.42.1698

    364. [364]

      Chung T C, Moraes F, Flood J D, Heeger A J. Phys Rev B, 1984, 29(4): 2341 − 2343 doi: 10.1103/PhysRevB.29.2341

    365. [365]

      Heeger A J, Kivelson S, Schrieffer J R, Su W P. Rev Mod Phys, 1988, 60(3): 781 − 850 doi: 10.1103/RevModPhys.60.781

    366. [366]

      Mazumdar S, Dixit S N. Phys Rev Lett, 1983, 51(4): 292 − 295 doi: 10.1103/PhysRevLett.51.292

    367. [367]

      Takayama H, Lin-Liu Y R, Maki K. Phys Rev B, 1980, 21(6): 2388 − 2393 doi: 10.1103/PhysRevB.21.2388

    368. [368]

      Su Z B, Yu L. Commun Theor Phys, 1983, 2(4): 1203 − 1218 doi: 10.1088/0253-6102/2/4/1203

    369. [369]

      Su Z B, Yu L. Commun Theor Phys, 1983, 2(5): 1323 − 1339 doi: 10.1088/0253-6102/2/5/1323

    370. [370]

      Su Z B, Yu L. Commun Theor Phys, 1983, 2(5): 1341 − 1356 doi: 10.1088/0253-6102/2/5/1341

    371. [371]

      Su W P, Schrieffer J R. Proc Nat Acad Sci USA, 1980, 77(10): 5626 − 5629 doi: 10.1073/pnas.77.10.5626

    372. [372]

      Ito H, Terai A, Ono Y, Wada Y. J Phys Soc Jpn, 1984, 53(10): 3520 − 3531 doi: 10.1143/JPSJ.53.3520

    373. [373]

      Sun X, Wu C Q, Shen X C. Solid State Commun, 1985, 56(12): 1039 − 1041 doi: 10.1016/0038-1098(85)90866-X

    374. [374]

      Soos Z, Ramasesha S. Phys Rev B, 1984, 29(10): 5410 − 5422 doi: 10.1103/PhysRevB.29.5410

    375. [375]

      Wu C Q, Sun X, Nasu K. Phys Rev Lett, 1987, 59(7): 831 − 834 doi: 10.1103/PhysRevLett.59.831

    376. [376]

      Ohmine I, Karplus M, Schulten K. J Chem Phys, 1978, 68(5): 2298 − 2318 doi: 10.1063/1.436000

    377. [377]

      Shuai Z, Peng Q. Phys Rep, 2014, 537(4): 123 − 156 doi: 10.1016/j.physrep.2013.12.002

    378. [378]

      Peng Q, Yi Y P, Shuai Z G, Shao J S. J Am Chem Soc, 2007, 129(30): 9333 − 9339 doi: 10.1021/ja067946e

    379. [379]

      Zhang T, Peng Q, Quan CY, Nie H, Xie Y, Zhao Z, Tang B, Shuai Z. Chem Sci, 2016, 7(8): 5573 − 5580 doi: 10.1039/C6SC00839A

    380. [380]

      Brédas J L, Calbert J P, da Silva Filho D A, Cornil J. Proc Natl Acad Sci USA, 2002, 99(9): 5804 − 5809 doi: 10.1073/pnas.092143399

    381. [381]

      Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman H B, Sánchez-Carrera R S, Granados-Focil S, Schrier J, Mannsfeld S C B, Zoombelt A P, Bao Z, Aspuru-Guzik A. Nat Commun, 2011, 2: 437 doi: 10.1038/ncomms1451

    382. [382]

      Nan G, Yang X, Wang L, Shuai Z G, Zhao Y. Phys Rev B, 2009, 79: 115203 doi: 10.1103/PhysRevB.79.115203

    383. [383]

      Sakanoue T, Sirringhaus H. Nat Mater, 2010, 9: 736 − 740 doi: 10.1038/nmat2825

    384. [384]

      Ostroverkhova O. Chem Rev, 2016, 116(22): 13279 − 13412 doi: 10.1021/acs.chemrev.6b00127

    385. [385]

      Jiang Y Q, Geng H, Shi W, Peng Q, Zheng X Y, Shuai Z G. J Phys Chem Lett, 2014, 5(13): 2267 − 2273 doi: 10.1021/jz500825q

    386. [386]

      Ren X, Bluzek M J, Hanifi D A, Schulzetenberg A, Wu Y, Kim C H, Zhang Z, Johns J E, Salleo A, Fratini S, Troisi A, Douglas C J, Frisbie C D. Adv Electron Mater, 2017, 3(4): 1700018 doi: 10.1002/aelm.201700018

    387. [387]

      Yuen J D, Menon R, Coates N E, Namdas E B, Cho S, Hannahs S T, Moses D, Heeger A J. Nat Mater, 2009, 8: 572 − 575 doi: 10.1038/nmat2470

    388. [388]

      Dhoot A S, Wang G M, Moses D, Heeger A J. Phys Rev Lett, 2006, 96(24): 246403 doi: 10.1103/PhysRevLett.96.246403

    389. [389]

      Kronemeijer A J, Huisman E H, Katsouras I, van Hal P A, Geuns T C T, Blom P W M, van der Molen S J, de Leeuw D M. Phys Rev Lett, 2010, 105(15): 156604 doi: 10.1103/PhysRevLett.105.156604

    390. [390]

      Rodin A S, Fogler M M. Phys Rev Lett, 2010, 105(10): 106801 doi: 10.1103/PhysRevLett.105.106801

    391. [391]

      Asadi K, Kronemeijer A J, Cramer T, Koster J A L, Blom P W M, de Leeuw D M. Nat Commun, 2013, 4: 1710 doi: 10.1038/ncomms2708

    392. [392]

      Oberhofer H, Reuter K, Blumberger J. Chem Rev, 2017, 117(15): 10319 − 10357 doi: 10.1021/acs.chemrev.7b00086

    393. [393]

      Jiang Y Q, Zhong X X, Shi W, Peng Q, Geng H, Zhao Y, Shuai Z G. Nanoscale Horiz, 2016, 1(1): 53 − 59 doi: 10.1039/C5NH00054H

    394. [394]

      Kalinowski J, Cocchi M, Virgili D, Di Marco P, Fattori V. Chem Phys Lett, 2003, 380(5-6): 710 − 715 doi: 10.1016/j.cplett.2003.09.086

    395. [395]

      Francis T L, Mermer Ö, Veeraraghavan G, Wohlgenannt M. New J Phys, 2004, 6: 185 doi: 10.1088/1367-2630/6/1/185

    396. [396]

      Yao Y, Si W, Wu C Q. Synth Met, 2011, 161(7-8): 632 − 636 doi: 10.1016/j.synthmet.2010.11.049

    397. [397]

      Si W, Yao Y, Hou X Y, Wu C Q. Org Electron, 2014, 15(3): 824 − 828 doi: 10.1016/j.orgel.2013.12.021

    1. [1]

      孙蕾赵敬楠黄伟恒张文华李良彬 . 溶液溶度对共轭高分子溶液中分子链有序-无序转变的影响研究. 高分子学报, 2019, 50(8): 834-840. doi: 10.11777/j.issn1000-3304.2019.19023

    2. [2]

      陶磊赵原杨斌危岩吴海波 . 以多组分点击化学为基础的高分子合成——高分子合成的新机遇. 高分子学报, 2016, (11): 1482-1494. doi: 10.11777/j.issn1000-3304.2016.16218

    3. [3]

      李其易雷霆姚泽凡王婕妤裴坚 . 共轭高分子的多级组装. 高分子学报, 2019, 50(1): 1-12. doi: 10.11777/j.issn1000-3304.2018.18223

    4. [4]

      杨述张伟沈星星刘莹杜晓艳陈珊肖作杨震宇左启群丁黎明 . 含均苯四甲酸二酰亚胺受体单元的共轭高分子的合成及其在有机太阳能电池上的应用. 高分子学报, 2012, (8): 838-845. doi: 10.3724/SP.J.1105.2012.11375

    5. [5]

      田发银刘娜朱元元殷俊陈玉吴宗铨 . 点击聚合合成高分子量的主链咔唑聚合物. 高分子学报, 2013, (12): 1553-1560. doi: 10.3724/SP.J.1105.2013.13140

    6. [6]

      . 光电高分子专辑前言. 高分子学报, 2018, (2): 1-2.

    7. [7]

      卢宇源石彤非安立佳 . 树枝形高分子特性黏数反常行为的理论研究. 高分子学报, 2011, (9): 1060-1067. doi: 10.3724/SP.J.1105.2011.11060

    8. [8]

      董焕丽燕青青胡文平 . 共轭高分子光电功能材料的多尺度性能研究——聚合物电子学领域中的新机遇. 高分子学报, 2017, (8): 1246-1260. doi: 10.11777/j.issn1000-3304.2017.17127

    9. [9]

      高玲玲佟斌姚桂君董宇平张茂锋LAMJacky Wing Yip唐本忠 . PbS纳米粒子与全共轭高分子的自组装膜原位复合及其光电转换性质. 高分子学报, 2005, (3): 313-316.

    10. [10]

      汪茫沈菊李荣宇杨士林 . 含酞菁锰光电导功能高分子的合成. 高分子学报, 1996, (3): 318-322.

    11. [11]

      张兴华严大东 . 高分子结晶理论进展. 高分子学报, 2014, (8): 1041-1047. doi: 10.11777/j.issn1000-3304.2014.14130

    12. [12]

      唐敖庆江元生王铭钧 . 高分子凝胶化理论. 高分子学报, 1963, 5(1): 35-47.

    13. [13]

      钱保功 . 有机及高分子辐射化学. 高分子学报, 1959, 3(3): 93-98.

    14. [14]

      李执芬张树范刘同明潘习哲 . 聚西夫碱型共轭高分子的合成及电性能的研究. 高分子学报, 1980, (3): 162-167.

    15. [15]

      邵世洋丁军桥王利祥 . 高分子发光材料研究进展. 高分子学报, 2018, (2): 198-216. doi: 10.11777/j.issn1000-3304.2018.17289

    16. [16]

      宛新华王献红 . 有机催化实现含硫高分子的精确合成. 高分子学报, 2018, 0(7): 773-775. doi: 10.11777/j.issn1000-3304.2018.18139

    17. [17]

      安泽胜陈昶乐何军坡洪春雁李志波李子臣刘超吕小兵秦安军曲程科唐本忠陶友华宛新华王国伟王佳郑轲邹文凯 . 中国高分子合成化学的研究与发展动态. 高分子学报, 2019, 50(10): 1083-1132. doi: 10.11777/j.issn1000-3304.2019.19136

    18. [18]

      吕健勇贺志远王健君 . 防冰高分子材料. 高分子学报, 2017, (12): 1870-1882. doi: 10.11777/j.issn1000-3304.2017.17216

    19. [19]

      蒋绍阶李晓恩冯欣蕊 . 有机-无机杂化高分子絮凝剂PAC-PDMDAAC的合成与表征. 高分子学报, 2014, (4): 466-472. doi: 10.3724/SP.J.1105.2014.13294

    20. [20]

      薛金根王应德宋永才秦墨林 . 高分子量聚碳硅烷合成研究. 高分子学报, 2007, (3): 219-222.

  • Figure 1.  Synthetic route to ladder-type semiconducting polymers

    Figure 2.  Conjugated polymer synthesized via direct arylation polycondensation

    Figure 3.  Chemical structures of phosphorous ligands

    Figure 4.  Synthesis of PF8 with Ni(acac)2/L as the catalyst

    Figure 5.  Synthetic route to poly(phenylene sulfide-tetraaniline)

    Figure 6.  Doping reaction of polyaniline (PANI) of different oxidative states

    Figure 7.  Schematic model to describe the sol-gel transition of PANI/cellulose solution (Reprinted with permission from Ref.[74]; Copyright (2012) American Chemical Society)

    Figure 8.  PPy with different morphologies. Cross-sectional view of (a) PPy film, (b) NW networks, and (c) NW arrays. Their thicknesses were all controlled in the range of 2 mm to 2.5 mm. (d) Schematic model comparing the ion diffusion for PPy film, NW networks, and NW arrays; (e) Specific capacitances; (f) Stability of PPy with different morphologies (Reprinted with permission from Ref.[88]; Copyright (2010) The Royal Society of Chemistry)

    Figure 9.  (a) Illustration of electropolymerization technique to prepare zinc-porphyrin based CMP film and its application in supercapacitor; (b) Galvanostatic charge-discharge cuvers at different current densities; (c) Capacitance retention at different current densities (Reprinted with permission from Ref.[89]; Copyright (2015) John Wiley & Sons, Inc.)

    Figure 10.  (a – c) Digital pictures of PEDOT:PSS hydrogels with different geometric shapes; (d) Schematic illustration and SEM image of a solid fiber supercapacitor constructed by twisting two identical PEDOT:PSS porous fibers with gel electrolyte; (e) Comparison of the volumetric capacitance of PEDOT:PSS fiber supercapacitor with those of previously reported counterparts; SWNT = single-wall carbon nanotube, CNT = carbon nanotube, N-rGO = nitrogen doped reduced graphene oxide; CMC = sodium carboxymethyl cellulose and CF = carbon fiber; (f) Long-term test of the fiber supercapacitor by repeated charging/discharging at a current density of 11 A/cm3 for 10000 cycles; (g) Flexibility test of the fiber supercapacitor at various radii of curvature. (Reprinted with permission from Ref.[92]; Copyright (2017) John Wiley & Sons, Inc.)

    Figure 11.  Molecular structures of representative blue light-emitting polymers

    Figure 12.  Molecular structures of representative green and red light-emitting polymers

    Figure 13.  Molecular structures of representative white light-emitting polymers

    Figure 14.  Molecular structures of PFN and PFN-Br

    Figure 15.  Illustration of the display structure (a, b) and photographs of monochrome and full-colour PLED displays (c – f) (Reprinted with permission from Ref.[122]; Copyright (2013) Springer Nature)

    Figure 16.  (a) Illustration of LEC device structure; (b) Photographs of four LEC devices based on different bandgap organic semiconductors; (c) Molecular structures of three luminescent materials and three electrolyte compounds

    Figure 17.  Molecular structures of representative electron-donating polymers in fullerene organic solar cells

    Figure 18.  Molecular structures of representative electron-donating small molecules in fullerene organic solar cells

    Figure 19.  Molecular structures of representative fullerene acceptors

    Figure 20.  Molecular structures of representative small molecule acceptors

    Figure 21.  Molecular structures of representative electron-donating polymers in non-fullerene organic solar cells

    Figure 22.  Molecular structures of representative polymer acceptors

    Figure 23.  Molecular structures of representative interfacial modification layer materials in organic solar cells

    Figure 24.  Molecular structures of representative polymers in organic photodetectors

    Figure 25.  Molecular structures of representative semiconducting polymers

    Figure 26.  Strategies for controlling conjugated polymer thin film aggregation: (a) Molecular design strategy to realize ideal molecular packing model, high crystallinity and reduced π-π stacking distance; (b) External force inducing crystallization strategy to realize the uniaxially aligned conjugated polymer thin films for efficient charge transport along the direction of polymer chains; (c) Supramolecular assembly strategy for obtaining conjugated polymer-assembled thin film morphology

    Figure 27.  (a) Schematic process of solvent annealing process for the crystallization of conjugated polymers; (b) A cartoon schematic of single-crystals-to-single-crystal transformation to obtain polymer crystals; (c) Schematic of transistor structure with four crossed electrodes; (d) Schematic transfer curves of individual poly-PCDA crystal device with conducting channel parallel to ($\parallel $) and perpendicular to ($ \bot $) the polymer chains, demonstrating significantly efficient charge transport property along the polymer chains; (e) The saturation mobilities distribution of 50 OFETs with conducting channel along the polymer chains (Reprinted with permission from Ref.[275]; Copyright (2017) John Wiley & Sons, Inc.)

    Figure 28.  The molecular wire effect of conjugated polymers and the schematic illustration of fluorescence resonance energy transfer

    Figure 29.  Schematic illustration of the CCP-based FRET technique for DNA methylation detection (Reprinted with permission from Ref.[291]; Copyright (2012) Springer Nature)

    Figure 30.  (a) PBdot functionalization and CTX conjugation. A light-harvesting polymer PFBT, a red-emitting polymer PF-DBT5, and a functional polymer PSMA were cocondensed to form highly fluorescent PBdots with surface carboxyl groups. The carboxyl groups enabled further surface conjugation to a tumor-specific peptide ligand CTX (depicted as red-green-yellow string). (b) Absorption and emission spectra of PBdot. Inset: photographs of an aqueous PBdot solution under illumination with ambient light (left) and UV light (right). (c) Fluorescence imaging of healthy brains in wild-type mice (left) and medulloblastoma tumors in ND2:SmoA1 mice (right). Each mouse was injected with either nontargeting PBdot-PEG (top), or targeting PBdot-CTX (middle); control: no injection (bottom). (Reprinted with permission from Ref.[299]; Copyright (2011) John Wiley & Sons, Inc.)

    Figure 31.  Schematic illustration of the BRET system for photodynamic therapy (Reprinted with permission from Ref.[303]; Copyright (2012) American Chemical Society)

    Figure 32.  Supramolecular assembly of PPV with CB[7] and disassembly of PPV with CB[7] mediated by AD molecule for reversible control of antibacterial activity of PPV (Reprinted with permission from Ref.[304]; Copyright (2015) John Wiley & Sons, Inc.)

    Figure 33.  Development of polymer thermoelectric materials

    Figure 34.  Molecular structure of PEDOT

    Figure 35.  Molecular structure of Poly[Ax(M-ett)]

    Figure 36.  Molecular structures of (a) BDPPV, (b) FBDPPV and (c) ClBDPPV

    Figure 37.  Molecular structures of (a) PDPH and (b) PDPF

    Figure 38.  Molecular structure of DPDHP

    Figure 39.  Molecular structure of nonlinear optical polymers NL-P1 ― NL-P8

    Figure 40.  Synthetic route to AB2-type dendrimers G1G5

    Figure 41.  Molecular structure of dendrimers GGQ1, X2 and YL3

    Figure 42.  (a) The chemical structures of dendronized hyperbranched polymer HP1-2; (b) Schematic model of dendronized hyperbranched polymer

    Figure 43.  Molecular structures of conjugated polymers in photocatalytic hydrogen evolution

    Figure 44.  Five localized vibrational modes from the SSH model (Reprinted with permission from Ref.[373]; Copyright (1985) Elsevier)

    Figure 45.  The dependence of u on U for different β (Reprinted with permission from Ref.[375]; Copyright (1987) American Physical Society)

    Figure 46.  IE results for AIEgens and non-AIEgens (Reprinted with permission from Ref.[379]; Copyright (2016) The Royal Society of Chemistry)

    Figure 47.  The mobility (μ) as a function of temperature in pentacene obtained from the present quantum theory and Marcus theory. The inset shows the mobility was enhanced in extreme disorder.

    Figure 48.  The isotope effect obtained by replacing the spin-$\dfrac{1}{2}$ proton by the spin-1 deuteron as the LES. The behavior at small magnetic field is shown in the inset. Compared with the nuclear s spin-$\dfrac{1}{2}$ case, the small-field component for the nuclear spin-1 case becomes almost flat. (Reprinted with permission from Ref.[397]; Copyright (2014) Elsevier)

    Table 1.  Polymerization methods for preparing conjugated polymers

    Polymerization methods Synthetic routes
    Suzuki
    Heck
    Sonogashira
    Wessling
    FeCl3-activated oxidation
    下载: 导出CSV

    Table 2.  The theoretical mobility (μ) along axes (a, b, or c direction) obtained from the Marcus model, the quantum nuclear tunnelling model, and the TDWPD method, as well as deformation potential (DP) theory*

    μ (cm2/V/s) Marcus Quantum TDWPD DP Exp.
    Pentacene a: 9.4, b: 9.3 a: 16.9, b: 16.7 a: 21.8, b: 21.1 a: 58.0, b: 44.0 15 − 40
    Rubrene b: 13.8, c: 0.8 b: 48.9, c: 2.8 b: 49.0, c: 3.2 b: 242.6, c: 72.7 15 − 17
    DATT a: 21.2, b: 11.6 a: 41.3, b: 23.0 a: 48.3, b: 29.6 a: 322.6, b: 19.1 16
    DNTT a: 9.5, b: 5.8 a: 20.2, b: 12.2 a: 30.7, b: 19.0 a: 137.7, b: 76.4 6.8 − 75
    PDIF-CN2 a: 2.3, b: 1.5 a: 12.1, b: 8.0 a: 25.9, b: 17.4 a: 132.8, b: 91.2 1 − 6
    *The experimental results are also given for comparison. (Reprinted with permission from Ref.[393]; Copyright (2016) The Royal Society of Chemistry)
    下载: 导出CSV
  • 加载中
图(49)表(2)
计量
  • PDF下载量:  1203
  • 文章访问数:  11933
  • HTML全文浏览量:  1761
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计