ISSN 1000-3304CN 11-1857/O6
引用本文: 安立佳, 陈尔强, 崔树勋, 董侠, 傅强, 韩艳春, 何嘉松, 胡文兵, 胡祖明, 江明, 李宝会, 李良彬, 李林, 李卫华, 林嘉平, 吕中元, 门永锋, 沈志豪, 孙平川, 童真, 王笃金, 武培怡, 谢续明, 徐坚, 徐志康, 薛奇, 闫寿科, 杨玉良, 俞炜, 俞燕蕾, 张广照, 张军, 张俐娜, 张平文, 张文科, 赵江, 郑强, 周东山. 中国改革开放以来的高分子物理和表征研究[J]. 高分子学报, 2019, 50(10): 1047-1067. doi: 10.11777/j.issn1000-3304.2019.19118 shu
Citation:  Li-jia An, Er-qiang Chen, Shu-xun Cui, Xia Dong, Qiang Fu, Yan-chun Han, Jia-song He, Wen-bing Hu, Zu-ming Hu, Ming Jiang, Bao-hui Li, Liang-bin Li, Lin Li, Wei-hua Li, Jia-ping Lin, Zhong-yuan Lv, Yong-feng Men, Zhi-hao Shen, Ping-chuan Sun, Zhen Tong, Du-jin Wang, Pei-yi Wu, Xu-ming Xie, Jian Xu, Zhi-kang Xu, Gi Xue, Shou-ke Yan, Yu-liang Yang, Wei Yu, Yan-lei Yu, Guang-zhao Zhang, Jun Zhang, Li-na Zhang, Ping-wen Zhang, Wen-ke Zhang, Jiang Zhao, Qiang Zheng and Dong-shan Zhou. The Development of Polymer Physics and Characterization in Mainland China since Reform and Opening-up[J]. Acta Polymerica Sinica, 2019, 50(10): 1047-1067. doi: 10.11777/j.issn1000-3304.2019.19118 shu

中国改革开放以来的高分子物理和表征研究

    通讯作者: 胡文兵, E-mail: wbhu@nju.edu.cn 王笃金, E-mail: djwang@iccas.ac.cn
摘要: 本综述介绍了改革开放四十多年来中国大陆学者在高分子物理和表征领域所取得的部分成就. 按照时间顺序,分别从概念的突破、理论的发展和技术的创新三个方面选取具有代表性研究成果进行简短的介绍,以期展示当代中国学者在这一基础研究领域所表现出来的拼搏意志和创新精神,激励新一代学者共同努力,勇攀科学高峰,为国民经济和社会发展作出更大的贡献.

English

    1. [1]

      Qian R Y. In: Allen G, Aggarwal S L, Russo S, eds. Comprehensive Polymer Science, Second Supplement. Oxford: Elsevier Science Ltd, 1996. 541 − 556

    2. [2]

      Qian Renyuan(钱人元), Wu Liheng(吴立衡). Progress in Chemistry(化学进展), 1996, (3): 176 − 188

    3. [3]

      Bu H S, Pang Y W, Song D W, Yu T Y, Voll T M, Czornyj G, Wunderlich B. J Polym Sci, Part B: Polym Phys, 1991, 29(2): 139 − 152 doi: 10.1002/polb.1991.090290201

    4. [4]

      Bu H S, Chen E, Xu S, Guo K, Wunderlich B. J Polym Sci, Part B: Polym Phys, 1994, 32(8): 1351 − 1357 doi: 10.1002/polb.1994.090320806

    5. [5]

      Bu H S, Gu F M, Bao L R, Chen M. Macromolecules, 1998, 31(20): 7108 − 7110 doi: 10.1021/ma980713q

    6. [6]

      Qian R Y, Wu L H, Shen D Y, Napper D H, Mann R A, Sangster D F. Macromolecules, 1993, 26(11): 2950 − 2953 doi: 10.1021/ma00063a046

    7. [7]

      Wu C, Zhou S Q. Phys Rev Lett, 1996, 77(14): 3053 − 3055 doi: 10.1103/PhysRevLett.77.3053

    8. [8]

      Wu C, Wang X H. Phys Rev Lett, 1998, 80(18): 4092 − 4094 doi: 10.1103/PhysRevLett.80.4092

    9. [9]

      Ye Xiaodong(叶晓东), Zhou Kejin(周科进), Wu Gi(吴奇). Acta Polymerica Sinica(高分子学报), 2017, (9): 1389 − 1399 doi: 10.11777/j.issn1000-3304.2017.16362

    10. [10]

      Zhang G Z, Winnik F M, Wu C. Phys Rev Lett, 2003, 90(3): 035506 doi: 10.1103/PhysRevLett.90.035506

    11. [11]

      Ye X D, Lu Y J, Shen L, Ding Y W, Liu S L, Zhang G Z, Wu C. Macromolecules, 2007, 40(14): 4750 − 4752 doi: 10.1021/ma070167d

    12. [12]

      Hu W B. J Chem Phys, 1998, 109(9): 3686 − 3690 doi: 10.1063/1.476965

    13. [13]

      Zhu Ziting(朱子霆), Gao Huanhuan(高欢欢), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2017, (9): 1471 − 1478 doi: 10.11777/j.issn1000-3304.2017.17055

    14. [14]

      Yang Y L. Macromol Theory Simul, 1998, 7: 521 − 549 doi: 10.1002/(ISSN)1521-3919

    15. [15]

      Yang Y Z, Qiu F, Zhang H D, Yang Y L. Macromolecules, 2017, 50(10): 4008 − 4022

    16. [16]

      Lu Y Y, Shi T F, An L J, Wang Z G. EPL, 2012, 97(6): 64003 doi: 10.1209/0295-5075/97/64003

    17. [17]

      Lu Y Y, An L J, Wang Z G. Macromolecules, 2013, 46(14): 5731 − 5740 doi: 10.1021/ma400872s

    18. [18]

      Li J, Nie Y J, Ma Y, Hu W B. Chinese J Polym Sci, 2013, 31(11): 1590 − 1598 doi: 10.1007/s10118-013-1354-0

    19. [19]

      Li J, Hu W B. Polym Int, 2015, 64(1): 49 − 53 doi: 10.1002/pi.2015.64.issue-1

    20. [20]

      Li J, Ma Y, Hu W B. Mol Simul, 2015, 42(4): 321 − 327

    21. [21]

      Zhou Q F, Li H M, Feng X D. Macromolecules, 1987, 20(1): 233 − 234 doi: 10.1021/ma00167a042

    22. [22]

      Zhou Q F, Zhu X L, Wen Z Q. Macromolecules, 1989, 22(1): 491 − 493 doi: 10.1021/ma00191a094

    23. [23]

      Chen X F, Shen Z H, Wan X H, Fan X H, Chen E Q, Ma Y, Zhou Q F. Chem Soc Rev, 2010, 39(8): 3072 − 3101 doi: 10.1039/b814540g

    24. [24]

      Hou Pingping(候平平), Zhang Zhenyu(张振宇), Ping Jing(平静), Shen Zhihao(沈志豪), Fan Xinghe(范星河), Zhou Qifeng(周其凤). Acta Polymerica Sinica(高分子学报), 2017, (10): 1591 − 1608 doi: 10.11777/j.issn1000-3304.2017.17116

    25. [25]

      Jiang M, Chen W J, Yu T Y. Polymer, 1991, 32(6): 984 − 989 doi: 10.1016/0032-3861(91)90583-5

    26. [26]

      Jiang M, Qiu X P, Qin W, Fei L. Macromolecules, 1995, 28(3): 730 − 735 doi: 10.1021/ma00107a009

    27. [27]

      Xiang M L, Jiang M, Zhu L, Zhang Y B, Wu C, Feng L X. Macromolecules, 1997, 30(18): 2313 − 2319

    28. [28]

      Zhu L, Jiang M, Liu L. J Macroml Sci Phys, 1998, B37(6): 827 − 839

    29. [29]

      Jiang M, Li M, Xiang ML, Zhou H. Adv Polym Sci, 1999, 146: 121 − 196 doi: 10.1007/3-540-49424-3

    30. [30]

      Fu Q, Wang G H. Polym Eng Sci, 1992, 32(2): 94 − 97 doi: 10.1002/(ISSN)1548-2634

    31. [31]

      Fu Q, Wang G H. Polym Int, 1993, 30(3): 309 − 312 doi: 10.1002/(ISSN)1097-0126

    32. [32]

      Lin J P, Lin S L, Liu P H, Hiejima T, Furuya H, Abe A. Macromolecules, 2003, 36(16): 6267 − 6272 doi: 10.1021/ma030032h

    33. [33]

      Lin J P, Lin S L, Zhang L S, Nose T. J Chem Phys, 2009, 130(9): 094907 doi: 10.1063/1.3078266

    34. [34]

      Cai C H, Li Y L, Lin J P, Wang L Q, Lin S L, Wang X S, Jiang T. Angew Chem Int Ed, 2013, 52(30): 7732 − 7736 doi: 10.1002/anie.v52.30

    35. [35]

      Zhuang Z L, Jiang T, Lin J P, Gao L, Yang C Y, Wang L Q, Cai C H. Angew Chem Int Ed, 2016, 55(40): 12522 − 12527 doi: 10.1002/anie.201607059

    36. [36]

      Yu B, Sun P, Chen T, Jin Q, Ding D, Li B H, Shi A C. Phys Rev Lett, 2006, 96(13): 138306 doi: 10.1103/PhysRevLett.96.138306

    37. [37]

      Yu B, Li B H, Jin Q, Ding D, Shi A C. Macromolecules, 2007, 40(25): 9133 − 9142 doi: 10.1021/ma071624t

    38. [38]

      Shi A C, Li B H. Soft Matter, 2013, 9(5): 1398 − 1413 doi: 10.1039/C2SM27031E

    39. [39]

      Cheng X Y, Lin L, Weinan E, Zhang P W, Shi A C. Phys Rev Lett, 2010, 104(14): 148301 doi: 10.1103/PhysRevLett.104.148301

    40. [40]

      Lin L, Chen X Y, Weinan E, Shi A C, Zhang P W. J Comp Phys, 2010, 229(5): 1797 − 1809 doi: 10.1016/j.jcp.2009.11.009

    41. [41]

      Wang C, Jiang K, Zhang P W, Shi A C. Soft Matter, 2011, 7(22): 10552 − 10555 doi: 10.1039/c1sm06195j

    42. [42]

      Xie N, Liu M J, Deng H L, Li W H, Qiu F, Shi A C. J Am Chem Soc, 2014, 136(8): 2974 − 2977 doi: 10.1021/ja412760k

    43. [43]

      Gao Y, Deng H L, Li W H, Qiu F, Shi A C. Phys Rev Lett, 2016, 116(6): 068304 doi: 10.1103/PhysRevLett.116.068304

    44. [44]

      Wang J, Li H, Liu J, Duan Y, Jiang S, Yan S. J Am Chem Soc, 2003, 125(6): 1496 − 1497 doi: 10.1021/ja029352r

    45. [45]

      Xin R, Zhang J, Sun X, Li H, Qiu Z, Yan S. Adv Polym Sci, 2017, 277: 55 − 94

    46. [46]

      Hu J, Xin R, Hou C, Yan S. Macromol Chem Phys, 2019, 220(5): 1800478 doi: 10.1002/macp.v220.5

    47. [47]

      Su Y L, Liu G M, Xie B Q, Fu D S, Wang D J. Acc Chem Res, 2014, 47(1): 192 − 201 doi: 10.1021/ar400116c

    48. [48]

      Shi H F, Zhao Y, Dong X, Zhou Y, Wang D J. Chem Soc Rev, 2013, 42(5): 2075 − 2099 doi: 10.1039/C2CS35350D

    49. [49]

      Zhao K, Xue L J, Liu J G, Gao X, Wu S P, Han Y C, Geng Y H. Langmuir, 2010, 26(1): 471 − 477 doi: 10.1021/la903381f

    50. [50]

      Chen L, Zhao K F, Cao X X, Liu J G, Yu X H, Han Y C. Polymer, 2018, 149: 23 − 29 doi: 10.1016/j.polymer.2018.06.068

    51. [51]

      Yang H, Zhang R, Wang L, Zhang J D, Yu X H, Liu J G, Xing R B, Geng Y H, Han Y C. Macromolecules, 2015, 48(20): 7557 − 7566 doi: 10.1021/acs.macromol.5b01804

    52. [52]

      Hu Wenbing(胡文兵). Introduction of Polymer Physics(高分子物理导论). Beijing(北京): Science Publisher(科学出版社), 2011

    53. [53]

      Hu W B. Polymer Physics: A Molecular Approach. Wien: Springer Verlag, 2013

    54. [54]

      Ren Y J, Ma A Q, Li J, Jiang X M, Ma Y, Toda A, Hu W B. Eur Phys J E, 2010, 33(3): 189 − 202 doi: 10.1140/epje/i2010-10661-8

    55. [55]

      Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Technology Press(化工出版社), 2013

    56. [56]

      Hu W B. Phys Rep, 2018, 747: 1 − 50 doi: 10.1016/j.physrep.2018.04.004

    57. [57]

      Zha L, Hu W B. Prog Polym Sci, 2016, 54 55: 232 − 258 doi: 10.1016/j.progpolymsci.2015.10.010

    58. [58]

      Hu W B, Mathot V B F, Alamo R G, Gao H H, Chen X J. Adv Polym Sci, 2017, 276: 1 − 43

    59. [59]

      Men Y F, Rieger J, Strobl G. Phys Rev Lett, 2003, 91(9): 095502 doi: 10.1103/PhysRevLett.91.095502

    60. [60]

      Wang Y, Jiang Z, Wu Z, Men Y F. Macromolecules, 2013, 46(2): 518 − 522 doi: 10.1021/ma302389j

    61. [61]

      Lu Y, Men Y F. Chinese J Polym Sci, 2018, 36(10): 1195 − 1199 doi: 10.1007/s10118-018-2123-x

    62. [62]

      Lu Y, Men Y F. Macromol Mater Eng, 2018, 303(11): 1800203 doi: 10.1002/mame.v303.11

    63. [63]

      Lu Y, Wang Y, Chen R, Zhao J, Jiang Z, Men Y F. Macromolecules, 2015, 48(16): 5799 − 5806 doi: 10.1021/acs.macromol.5b00818

    64. [64]

      Yu W, Zhou C X. J Rheol, 2007, 51(2): 179 − 194 doi: 10.1122/1.2437206

    65. [65]

      Yu W, Zhou W, Zhou C X. Polymer, 2010, 51(9): 2091 − 2098 doi: 10.1016/j.polymer.2010.03.005

    66. [66]

      Song Y H, Zheng Q. Prog Mat Sci, 2016, 84: 1 − 58 doi: 10.1016/j.pmatsci.2016.09.002

    67. [67]

      Xue G, Dai Q P, Jiang S G. J Am Chem Soc, 1988, 110(8): 2393 − 2395 doi: 10.1021/ja00216a009

    68. [68]

      Xue G, Zhang J F. Appl Spec, 1991, 45(5): 760 − 764 doi: 10.1366/0003702914336534

    69. [69]

      Xue G, Dong J, Zhang J F. Macromolecules, 1991, 24(14): 4195 − 4198 doi: 10.1021/ma00014a037

    70. [70]

      Zhou D S, Zhang J F, Li L, Xue G. J Am Chem Soc, 2003, 125(39): 11774 − 11775 doi: 10.1021/ja035989e

    71. [71]

      Teng C, Li L, Wang Y, Wang R, Chen W, Wang X, Xue G. J Chem Phys, 2017, 146(20): 203319 doi: 10.1063/1.4978230

    72. [72]

      Cai J, Zhang L N, Liu S L, Liu Y T, Xu X J, Chen X M, Chu B, Guo X L, Xu J, Cheng H, Han C C, Kuga S. Macromolecules, 2008, 41(23): 9345 − 9351 doi: 10.1021/ma801110g

    73. [73]

      Fang Y, Duan B, Lv A, Liu M L, Liu H L, Xu X J, Zhang L N. Biomacromolecules, 2015, 16(4): 1410 − 1417 doi: 10.1021/acs.biomac.5b00195

    74. [74]

      Wang S, Lu A, Zhang L N. Prog Polym Sci, 2016, 53: 169 − 206 doi: 10.1016/j.progpolymsci.2015.07.003

    75. [75]

      Duan B, Huang Y, Lu A, Zhang L N. Prog Polym Sci, 2018, 82: 1 − 33 doi: 10.1016/j.progpolymsci.2018.04.001

    76. [76]

      Zhang G Z. Macromolecules, 2004, 37(17): 6553 − 6557 doi: 10.1021/ma035937+

    77. [77]

      Zhang Guangzhao(张广照), Liu Guangming(刘光明). Quartz Crystal Microbalance: Principles and Applications(石英晶体微天平: 原理与应用), Beijing(北京): Science Publisher(科学出版社), 2015

    78. [78]

      Ding Y W, Ye X D, Zhang G Z. Macromolecules, 2005, 38(3): 904 − 908 doi: 10.1021/ma048460q

    79. [79]

      Ding Y W, Zhang G Z. Macromolecules, 2006, 39(26): 9654 − 9657 doi: 10.1021/ma062269u

    80. [80]

      Cui S X, Albrecht C, Kühner F, Gaub H E. J Am Chem Soc, 2006, 128(20): 6636 − 6639 doi: 10.1021/ja0582298

    81. [81]

      Cui S X, Yu J, Kühner F, Schulten K, Gaub H E. J Am Chem Soc, 2007, 129(47): 14710 − 14716 doi: 10.1021/ja074776c

    82. [82]

      Cui S X. Phys Chem Chem Phys, 2010, 12: 10147 − 10153 doi: 10.1039/c002414g

    83. [83]

      Qian L, Bao Y, Duan W, Cui S X. ACS Macro Lett, 2018, 7(6): 672 − 676 doi: 10.1021/acsmacrolett.8b00375

    84. [84]

      Cai W, Xu D, Qian L, Wei J, Xiao C, Qian L, Lu Z Y, Cui S. J Am Chem Soc, 2019, 141(24): 9500 − 9503 doi: 10.1021/jacs.9b03490

    85. [85]

      Li B, Xu L, Wu Q, Chen T, Sun P C, Jin Q, Ding D, Wang X, Xue G, Shi A C. Macromolecules, 2007, 40(16): 5776 − 5786 doi: 10.1021/ma070485c

    86. [86]

      Wang F, Zhang R, Wu Q, Chen T, Sun P C, Shi A C. ACS Appl Mater Interfaces, 2014, 6(23): 21397 − 21407 doi: 10.1021/am5064052

    87. [87]

      Sun S, Wu P Y. Chinese J Polym Sci, 2017, 35(6): 700 − 712 doi: 10.1007/s10118-017-1938-1

    88. [88]

      Sun B, Lin Y, Wu P Y, Siesler H W. Macromolecules, 2008, 41(4): 1512 − 1520 doi: 10.1021/ma702062h

    89. [89]

      Sun S, Wu P Y. Macromolecules, 2013, 46(1): 236 − 246 doi: 10.1021/ma3022376

    90. [90]

      Hou L, Ma K, An Z, Wu P Y. Macromolecules, 2014, 47(3): 1144 − 1154 doi: 10.1021/ma4021906

    91. [91]

      Lei Z, Wu P Y. ACS Nano, 2018, 12(12): 12860 − 12868 doi: 10.1021/acsnano.8b08062

    92. [92]

      Liu K, Song Y, Feng W, Liu N N, Zhang W K, Zhang X. J Am Chem Soc, 2011, 133(10): 3226 − 3229 doi: 10.1021/ja108022h

    93. [93]

      Song Y, Feng W, Liu K, Yang P, Zhang W K, Zhang X. Langmuir, 2013, 29(12): 3853 − 3859 doi: 10.1021/la305157p

    94. [94]

      Song Y, Ma Z W, Yang P, Zhang X, Lyu X J, Jiang K, Zhang W K. Macromolecules, 2019, 52(3): 1327 − 1333 doi: 10.1021/acs.macromol.8b02702

    95. [95]

      Lyu X J, Song Y, Feng W, Zhang W K. ACS Macro Lett, 2018, 7(6): 762 − 766 doi: 10.1021/acsmacrolett.8b00355

    96. [96]

      Yang P, Song Y, Feng W, Zhang W K. Macromolecules, 2018, 51(18): 7052 − 7060 doi: 10.1021/acs.macromol.8b01544

    97. [97]

      Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J Comput Chem, 2013, 34(25): 2197 − 2211 doi: 10.1002/jcc.23365

    98. [98]

      Zhu Y L, Pan D, Li Z W, Liu H, Qian H J, Zhao Y, Lu Z Y, Sun Z Y. Mol Phys, 2018, 116(78): 1065 − 1077

    99. [99]

      Wei L, Jiang J, Shan M, Chen W, Deng Y, Xue G, Zhou D S. Rev Sci Instrum, 2014, 85: 074901 doi: 10.1063/1.4889882

    100. [100]

      Luo S C, Kui X, Xin E R, Wang X L, Xue G, Schick C, Hu W B, Zhuravlev E, Zhou D S. Macromolecules, 2018, 51(14): 5209 − 5218 doi: 10.1021/acs.macromol.8b00692

    101. [101]

      Lv J, Liu Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016, 537(7619): 179 − 184 doi: 10.1038/nature19344

    102. [102]

      Hong Wei(洪伟), Xu Guozhi(许国智), Sun Weixiang(孙尉翔), Tong Zhen(童真). Acta Polymerica Sinica(高分子学报), 2017, (9): 1488 − 1496 doi: 10.11777/j.issn1000-3304.2017.17071

    103. [103]

      Hong W, Xu G, Ou X, Sun W, Wang T, Tong Z. Soft Matter, 2018, 14(19): 3694 − 3703 doi: 10.1039/C7SM02556D

    104. [104]

      Cui K P, Ma Z, Tian N, Su F M, Liu D, Li L B. Chem Rev, 2018, 118(4): 1840 − 1886 doi: 10.1021/acs.chemrev.7b00500

    1. [1]

      刘国明张秀芹关瑜文韬王笃金 . 介观相分离对烯烃嵌段共聚物结晶动力学的影响. 高分子学报, 2012, (12): 1434-1440. doi: 10.3724/SP.J.1105.2012.12092

    2. [2]

      杨玉良张红东 . 漫谈高分子物理学的源起和发展. 高分子学报, 2020, 51(1): 1-4. doi: 10.11777/j.issn1000-3304.2020.19162

    3. [3]

      李文武邱东张兴华 . 高分子科学中的平均场理论和1/N展开. 高分子学报, 2013, (2): 160-165. doi: 10.3724/SP.J.1105.2013.12177

    4. [4]

      李照磊周东山胡文兵 . 高分子结晶和熔融行为的Flash DSC研究进展. 高分子学报, 2016, (9): 1179-1197. doi: 10.11777/j.issn1000-3304.2016.16058

    5. [5]

      张兴华严大东 . 高分子结晶理论进展. 高分子学报, 2014, (8): 1041-1047. doi: 10.11777/j.issn1000-3304.2014.14130

    6. [6]

      雷小梅罗发亮司朋飞沈志远丁生芳李书蒙 . POM/PBSA合金的分子间作用力与相容性及结晶行为研究. 高分子学报, 2016, (7): 931-937. doi: 10.11777/j.issn1000-3304.2016.15339

    7. [7]

      张运湘宋义虎郑强 . 相分离对聚偏氟乙烯/聚甲基丙烯酸甲酯共混物的力学与耐紫外老化性能的影响. 高分子学报, 2012, (12): 1364-1370. doi: 10.3724/SP.J.1105.2012.12195

    8. [8]

      王新月冯古雨李梦娟葛明桥 . 由分子链构象转变及结构重组引起的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸/聚乙烯醇纤维高性能化. 高分子学报, 2018, 0(5): 648-655. doi: 10.11777/j.issn1000-3004.2017.17208

    9. [9]

      石海峰尹亿平张兴祥王笃金 . 烷基化程度对N-十八烷基化聚乙烯亚胺梳状高分子结构的影响. 高分子学报, 2013, (1): 56-62. doi: 10.3724/SP.J.1105.2013.12136

    10. [10]

      董小芳任合刚刘智博段中余杨敏石艳红侯凯湖刘宾元 . 稀土-成核剂对1-丁烯本体聚合和产物 聚(1-丁烯)结晶性能的影响. 高分子学报, 2014, (10): 1356-1363. doi: 10.11777/j.issn1000-3304.2014.14024

    11. [11]

      彭海炎倪名立毕曙光解孝林 . 乙烯基单体光聚合动力学与光固化流变行为. 高分子学报, 2012, (11): 1218-1224. doi: 10.3724/SP.J.1105.2012.12217

    12. [12]

      倪名立彭海炎毕曙光廖永贵解孝林 . 丙烯酸酯/液晶体系的光聚合反应动力学对PDLC电光性质的影响. 高分子学报, 2014, (8): 1078-1083. doi: 10.11777/j.issn1000-3304.2014.13452

    13. [13]

      徐旻沈洁张红胡杨李凌霄阚成友 . 有机硅-聚氨酯共聚乳液的制备和乳胶膜相结构及其性能研究. 高分子学报, 2016, (12): 1686-1694. doi: 10.11777/j.issn1000-3304.2016.16096

    14. [14]

      沈斌汪称意徐常陈文涛李坚任强 . 一类侧链型磺化聚芳醚砜质子交换膜的合成及表征. 高分子学报, 2016, (10): 1409-1417. doi: 10.11777/j.issn1000-3304.2016.16015

    15. [15]

      张晶谢续明 . 多壁碳纳米管对环氧树脂/聚醚酰亚胺体系相分离的影响. 高分子学报, 2012, (2): 215-222. doi: 10.3724/SP.J.1105.2012.11084

    16. [16]

      王鹏金云皮丕辉文秀芳徐守萍程江 . POSS基杂化含氟丙烯酸酯共聚物涂膜的表面相分离与疏水性研究. 高分子学报, 2017, (4): 700-707. doi: 10.11777/j.issn1000-3304.2017.16189

    17. [17]

      高亚辉王海霞王慧刘伦涛石海峰 . 不同接枝度的十八硫醇化聚氯乙烯梳状聚合物的结构和性能. 高分子学报, 2016, (5): 614-620. doi: 10.11777/j.issn1000-3304.2016.15268

    18. [18]

      侯甲子张万喜孔令薇李莉莉 . 丙烯酸聚氧乙烯酯单体接枝聚乙烯共聚物的制备与表征. 高分子学报, 2015, (9): 1070-1077. doi: 10.11777/j.issn1000-3304.2015.15025

    19. [19]

      王海利周意杨方华高李煜徐佩丁运生王志刚 . 接枝咪唑阳离子对聚乳酸结晶行为影响研究. 高分子学报, 2016, (11): 1606-1614. doi: 10.11777/j.issn1000-3304.2016.16075

    20. [20]

      张书洋陈哲峰吴枫朱洨易刘正英冯建明杨鸣波 . 四臂聚乳酸/线性聚乳酸共混物的结晶行为及机理研究. 高分子学报, 2016, (5): 679-684. doi: 10.11777/j.issn1000-3304.2016.15303

  • Figure 1.  TEM images of single-chain single crystals of isotactic polystyrene (The scale bar at the left-down corner is 20 nm.) (Reprinted with permission from Ref.[4]; Copyright (1994) John Wiley and Sons)

    Figure 2.  Illustration of crumpled coil and molten globule reversibly occurring during the collapse transition from coil to globule states of single polymers in dilute solutions (Reprinted with permission from Ref.[8]; Copyright (1998) American Physical Society)

    Figure 3.  Partially drained model and relationships between specific viscosity and molecular weights (or dendrimer generation) of single polymers with linear, ring, star, hyperbranched and dendrimer topological architectures (Solid dots: experimental results in good solvent; vacancy dots: experimental results in theta solvent; curves: theoretical prediction of the general theory of polymer specific viscosity) (Reprinted with permission from Ref.[17]; Copyright (2013) American Chemical Society)

    Figure 4.  Variation of notched impact strength with the spaces of filled particles (left) (Reprinted with permission from Ref.[30]; Copyright (1992) John Wiley and Sons) and the yielding morphology at the fracture surface (right) (Reprinted with permission from Ref.[31]; Copyright (1993) John Wiley and Sons) of HDPE composites filled with CaCO3 particles

    Figure 5.  (a) Theoretical predictions on the liquid crystalline microphase structures formed by soft-hard block copolymers (Reprinted with permission from Ref.[33]; Copyright (2009) AIP Publishing); (b) Supermolecular helixes formed by soft-hard block copolymers; (c) Molecular modeling revealing the hierarchical liquid crystalline phase structure in supermolecular helixes (Reprinted with permission from Ref.[34]; Copyright (2013) John Wiley and Sons)

    Figure 6.  Variation of some typical columnar structures self-assembled by bulk diblock copolymers under 2D confinement of columnar space with variable length-to-radius ratios (Reprinted with permission from Ref.[38]; Copyright (2013) The Royal Society of Chemistry)

    Figure 7.  Illustration of inverse prediction of self-consistent field theory on the self-assembly structures of diblock copolymers (Reprinted with permission from Ref.[43]; Copyright (2016) American Physical Society)

    Figure 8.  Illustration of interface-controlled crystallization in the preparation of PVDF structured films. “ β ” region formed by the lamellar PVDF β-crystals stacked with zigzag conformation, in the lamellar PVDF α-crystals stacked with helical conformation

    Figure 9.  Illustration of long-chain alkanes confined in spherical space to represent the space-confined polymer systems (Reprinted with permission from Ref.[47]; Copyright (2014) American Chemical Society)

    Figure 10.  Illustration of preferred orientations selected by crystallization of P3HT multi-block copolymers (Reprinted with permission from Ref.[51]; Copyright (2015) American Chemical Society)

    Figure 11.  Instant normal stress versus strain curve of the polyisobutylene/polydimethlesiloxane blend at start-up shearing (5 s−1). The overshooting of apparent normal stress is determined together by different sizes of droplet deformation, as well as by stress overshooting raised by fracture (Reprinted with permission from Ref.[64]; Copyright (2007) AIP Publishing)

    Figure 12.  Linear (a) and non-linear (b) rheology curves and their corresponding integrated curves (c, d) of polymer nanocomposites PNC (Reprinted with permission from Ref.[66]; Copyright (2016) AIP Publishing)

    Figure 13.  Chemical reaction of imidazole at the silver substrate surface to form single-layer film of coordination polymers (Reprinted with permission from Ref.[67]; Copyright (1988) American Chemical Society)

    Figure 14.  Cellulose-based and chitin-based fibers, films, microspheres, sol-gel, gas-gel, bio-plastics, and foam materials prepared via the low-temperature dissolution and physical regeneration method (Reprinted with permission from Ref.[74]; Copyright (2016) Elsevier; Reprinted with permission from Ref.[75]; Copyright (2018) Elsevier)

    Figure 15.  Illustration of π-π interactions of polystyrene single polymer studied by single molecular force spectroscopy (Reprinted with permission from Ref.[84]; Copyright (2019) American Chemical Society)

    Figure 16.  Illustration of multi-scale structure and dynamics of macromolecules characterized by new techniques of solid-state NMR (Reprinted with permission from Ref.[86]; Copyright (2014) American Chemical Society)

    Figure 17.  2D correlation IR spectroscopy applied in the spectral analysis of smart responsive transitions in polymers (Reprinted with permission from Ref.[87]; Copyright (2017) Springer Nature)

    Figure 18.  (a) AFM single molecule force spectroscopy to study (b) polymer chain structures, chain compositions and (c) folding types in their influences to the nano-mechanical properties (Reprinted with permission from Ref.[94]; Copyright (2019) American Chemical Society; Reprinted with permission from Ref.[95]; Copyright (2018) American Chemical Society; Reprinted with permission from Ref.[96]; Copyright (2018) American Chemical Society)

    Figure 19.  GALAMOST (GPU-Accelerated Large-Scale Molecular Simulation Toolkit) including many original methods and algorisms of molecular dynamics simulations, and helping to solve the structure and dynamic problems of phase separation and self-assembly in polymer systems[98] (http://galamost.ciac.jl.cn/)

    Figure 20.  Combination of hot-stage fast-scan calorimetry with microscopic characterization techniques (Reprinted with permission from Ref.[99]; Copyright (2014) AIP Publishing)

    Figure 21.  (a) Chemical structures of liquid crystalline polymers for photo-induced deformation; (b) Layer structure self-assembled by liquid crystalline polymers as revealed by TEM (left) and X-ray diffraction (right); (c) Microtube actuators with different shapes; (d) Deformation of microtube from cylinder to corn under gradient blue light, which drives liquid moving towards the narrow end; (e) Intersectional area increased by the re-orientations of liquid crystalline mesogens in the microtube wall, in alignment with the light propagation under 470 nm shinning (Reprinted with permission from Ref.[101]; Copyright (2016) Springer Nature)

    Figure 22.  Inhomogeneity in the dynamics of colloid particles upon the coupling changes of dynamic correlation lengths with the gelation time tw and the observation time t during the gelation of gelatin (Reprinted with permission from Ref.[103]; Copyright (2018) The Royal Society of Chemistry)

    Figure 23.  (a) Illustration of microfocus installation and experimental approach; (b) Illustration of in situ X-ray scattering experiments; (c) Illustration of 3D image results of X-ray scattering experiments; (d) Photography of the on-the-beamline injection installment for the study of film-blowing

  • 加载中
图(24)
计量
  • PDF下载量:  1056
  • 文章访问数:  3733
  • HTML全文浏览量:  1428
  • 引证文献数: 0
文章相关
  • 通讯作者:  胡文兵, wbhu@nju.edu.cn
    王笃金, djwang@iccas.ac.cn
  • 收稿日期:  2019-06-17
  • 修稿日期:  2019-07-13
  • 网络出版日期:  2019-08-12
  • 刊出日期:  2019-10-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计