ISSN 1000-3304CN 11-1857/O6

生态环境高分子的研究进展

陈学思 陈国强 陶友华 王玉忠 吕小兵 张立群 朱锦 张军 王献红

引用本文: 陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展[J]. 高分子学报, 2019, 50(10): 1068-1082. doi: 10.11777/j.issn1000-3304.2019.19124 shu
Citation:  Xue-si Chen, Guo-qiang Chen, You-hua Tao, Yu-zhong Wang, Xiao-bing Lv, Li-qun Zhang, Jin Zhu, Jun Zhang and Xian-hong Wang. Research Progress in Eco-polymers[J]. Acta Polymerica Sinica, 2019, 50(10): 1068-1082. doi: 10.11777/j.issn1000-3304.2019.19124 shu

生态环境高分子的研究进展

    通讯作者: 陈学思, E-mail: xschen@ciac.ac.cn 陈国强, E-mail: chengq@mail.tsinghua.edu.cn 陶友华, E-mail: youhua.tao@ciac.ac.cn 王玉忠, E-mail: polymers@vip.sina.com 吕小兵, E-mail: lxb-1999@163.com 张立群, E-mail: zhanglq@mail.buct.edu.cn 朱锦, E-mail: jzhu@nimte.ac.cn 张军, E-mail: jzhang@iccas.ac.cn 王献红, E-mail: xhwang@ciac.ac.cn
摘要: 生态环境高分子是指全生命周期内低环境负荷甚至没有环境负荷的一类环保高分子. 作为响应自然呼唤的高分子,生态环境高分子诞生于20世纪90年代高分子工业飞速发展的年代,目前已经成为高分子科学的前沿研究方向. 我国学者以可再生资源的单体为核心(但不限于该类单体),从催化剂设计、可控聚合方法、聚合物性能调控、聚合物功能化、物理表征和加工方法等方面取得了一系列重要的创新成果,有力推动了世界范围内该研究领域的发展. 本综述以聚乳酸等8类典型生态环境高分子为例,总结和评述了最近30年我国学者在生态环境高分子领域的基础研究进展,并对其未来发展趋势进行了展望.

English

    1. [1]

      Schneiderman D K, Hillmyer M A. Macromolecules, 2017, 50: 3733 − 3749

    2. [2]

      Pang X, Zhuang X L, Tang Z H, Chen X S. Biotechnol J, 2010, 5: 1125 − 1136 doi: 10.1002/biot.v5.11

    3. [3]

      Thomas C M. Chem Soc Rev, 2010, 39: 165 − 173 doi: 10.1039/B810065A

    4. [4]

      Du H Z, Pang X, Yu H Y, Zhuang X L, Chen X S, Cui D M, Wang X H, Jing X B. Macromolecules, 2007, 40: 1904 − 1913 doi: 10.1021/ma062194u

    5. [5]

      Duan R L, Hu C Y, Li X, Pang X, Sun Z Q, Chen X S, Wang X H. Macromolecules, 2017, 50: 9188 − 9195 doi: 10.1021/acs.macromol.7b01766

    6. [6]

      Hu C Y, Duan R L, Yang S C, Pang X, Chen X S. Macromolecules, 2018, 51: 4699 − 4704 doi: 10.1021/acs.macromol.8b00696

    7. [7]

      Zhou Y C, Hu C Y, Zhang T H, Xu X W, Duan R L, Luo Y, Sun Z Q, Pang X, Chen X S. Macromolecules, 2019, 52: 3462 − 3470 doi: 10.1021/acs.macromol.9b00001

    8. [8]

      Pang X, Duan R L, Li X, Hu C Y, Wang X H, Chen X S. Macromolecules, 2018, 51: 906 − 913 doi: 10.1021/acs.macromol.7b02662

    9. [9]

      Shao J, Sun J R, Bian X C, Cui Y, Zhou Y C, Li G, Chen X S. Macromolecules, 2013, 46: 6963 − 6971 doi: 10.1021/ma400938v

    10. [10]

      Gadgil B S T, Killi N, Rathna G V. Med Chem Comm, 2017, 8(9): 1774 − 1787 doi: 10.1039/C7MD00252A

    11. [11]

      Chen G Q, Jiang X R. Curr Opin Biotechnol, 2018, 50: 94 − 100

    12. [12]

      Tan D, Wu Q, Chen J C, Chen G Q. Metab Eng, 2014, 26: 34 − 47 doi: 10.1016/j.ymben.2014.09.001

    13. [13]

      Zhao H, Zhang H M, Chen X, Li T, Wu Q, Ouyang Q, Chen G Q. Metab Eng, 2017, 39: 128 − 140 doi: 10.1016/j.ymben.2016.11.007

    14. [14]

      Chen G Q, Wang Y. Chinese J Polym Sci, 2013, 31(5): 719 − 736 doi: 10.1007/s10118-013-1280-1

    15. [15]

      Leuchs H. Chem Ber, 1906, 41: 1721 − 1726

    16. [16]

      Curtius T, Sieber W. Ber Dtsch Chem Ges B, 1921, 54: 1430 − 1437 doi: 10.1002/cber.19210540707

    17. [17]

      Li Guangxian(李光宪), Yang Xidong(杨曦东), Yu Tongyin(于同隐). Journal of Functional Polymers(功能高分子学报), 1989, (2): 53 − 58

    18. [18]

      Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报), 2016, (9): 1151 − 1159

    19. [19]

      Tao Y H, Chen X, Fan J, Wang S, Xiao C, Cui F, Li Y, Bian Z, Chen X S, Wang X H. Chem Sci, 2015, 6: 6385 − 6391 doi: 10.1039/C5SC02479J

    20. [20]

      Wu Y, Zhang D, Ma P, Zhou R, Hua L, Liu R. Nat Commun, 2018, 9: 5297 − 6306 doi: 10.1038/s41467-018-07711-y

    21. [21]

      Chen C, Wang Z, Li Z B. Biomacromolecules, 2011, 12: 2859 − 2863 doi: 10.1021/bm200849m

    22. [22]

      Xiao C S, Zhao C, He P, Tang Z H, Chen X S, Jing X B. Macromol Rapid Commun, 2010, 31: 991 − 997 doi: 10.1002/marc.200900821

    23. [23]

      Hou Y, Yuan J, Zhou Y, Yu J, Lu H. J Am Chem Soc, 2016, 138: 10995 − 11000 doi: 10.1021/jacs.6b05413

    24. [24]

      Yang K K, Wang X L, Wang Y Z. J Macromol Sci, Polym Rev, 2002, C42: 373 − 398

    25. [25]

      Li X Y, Zhou Q, Wen Z B, Hui Y, Yang K K, Wang Y Z. Polym Degrad Stab, 2015, 121: 253 − 260 doi: 10.1016/j.polymdegradstab.2015.09.016

    26. [26]

      Dong F X, Xu C, Tong X Z, Wang X L, Song F, Wang Y Z. J Mol Catal B: Enzym, 2013, 96: 40 − 45 doi: 10.1016/j.molcatb.2013.06.004

    27. [27]

      Chen R Y, Zhang Y R, Wang Y Z. J Mol Catal B: Enzym, 2009, 57: 224 − 228 doi: 10.1016/j.molcatb.2008.09.013

    28. [28]

      Liu W, Tian G Q, Yang D D, Wu G, Chen S C, Wang Y Z. Polym Chem, 2019, 10: 1526 − 1536 doi: 10.1039/C9PY00111E

    29. [29]

      Chen Y Y, Wu G, Qiu Z C, Wang X L, Zhang Y, Lu F, Wang Y Z. J Polym Sci, Part A: Polym Chem, 2008, 46: 3207 − 3213 doi: 10.1002/pola.22656

    30. [30]

      Yuan Y, Ding S D, Zhao Y Q, Wang Y Z. Chinese J Polym Sci, 2014, 32: 1678 − 1689 doi: 10.1007/s10118-014-1545-3

    31. [31]

      Inoue S, Koinuma H, Tsuruta T. J Polym Sci B Polym Lett, 1969, 7: 287 − 292 doi: 10.1002/pol.1969.110070408

    32. [32]

      Chen X H, Shen Z Q, Zhang Y F. Macromolecules, 1991, 24(19): 5305 − 5308 doi: 10.1021/ma00019a014

    33. [33]

      Liu B Y, Zhao X J, Wang X H, Wang F S. J Polym Sci, Part A: Polym Chem, 2001, 39(16): 2751 − 2754 doi: 10.1002/(ISSN)1099-0518

    34. [34]

      Zhang X H, Wei R J, Zhang Y Y, D u, B Y, Fan Z Q. Macromolecules, 2015, 48: 536 − 544 doi: 10.1021/ma5023742

    35. [35]

      Lu X B, Wang Y. Angew Chem Int Ed, 2004, 43(27): 3574 − 3577 doi: 10.1002/(ISSN)1521-3773

    36. [36]

      Lu X B, Ren W M, Wu G P. Acc Chem Res, 2012, 45(10): 1721 − 1735 doi: 10.1021/ar300035z

    37. [37]

      Liu Y, Ren W M, Liu J, Lu X B. Angew Chem Int Ed, 2013, 52(44): 11594 − 11598 doi: 10.1002/anie.201305154

    38. [38]

      Liu Y, Ren W M, Liu C, Fu S, Wang M, He K K, Li R R, Lu X B. Macromolecules, 2014, 47(22): 7775 − 7788 doi: 10.1021/ma5019186

    39. [39]

      Liu Y, Ren W M, Wang M, Liu C, Lu X B. Angew Chem Int Ed, 2015, 54(7): 2241 − 2244 doi: 10.1002/anie.201410692

    40. [40]

      Liu Y, Wang M, Ren W M, Xu Y C, Lu X B. Angew Chem Int Ed, 2015, 54(24): 7042 − 7046 doi: 10.1002/anie.201501417

    41. [41]

      Lv Xiaobing(吕小兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1166 − 1178 doi: 10.11777/j.issn1000-3304.2016.16151

    42. [42]

      Sheng X F, Wu W, Qin Y S, Wang X H, Wang F S. Polym Chem, 2015, 6(26): 4719 − 4724 doi: 10.1039/C5PY00335K

    43. [43]

      Wei T, Lei L J, Kang H L, Qiao B, Wang Z, Zhang L Q, Coates P, Hua K C, Kulig J. Adv Eng Mater, 2011, 14: 112 − 118

    44. [44]

      Wang R G, Ma J, Zhou X X, Wang Z, Kang H L, Zhang L Q, Hua K C, Kulig J. Macromolecules, 2012, 45(17): 6830 − 6839 doi: 10.1021/ma301183k

    45. [45]

      Lei W W, Russell T P, Hu L, Zhou X X, Qiao H, Wang W C, Wang R G, Zhang L Q. ACS Sustain Chem Eng, 2017, 5: 5214 − 5223 doi: 10.1021/acssuschemeng.7b00574

    46. [46]

      Qiao H, Wang R G, Yao H, Zhou X X, Lei W W, Hu X R, Zhang L Q. Polym Chem, 2015, 6(34): 6140 − 6151 doi: 10.1039/C5PY00720H

    47. [47]

      Wang J G, Liu X Q, Zhang Y J, Liu F, Zhu J. Polymer, 2016, 103: 1 − 8 doi: 10.1016/j.polymer.2016.09.030

    48. [48]

      Wang J G, Liu X Q, Liu F, Zhang X Q, Zhu J. J Polym Sci, Part A: Polym Chem, 2017, 55: 3298 − 3307 doi: 10.1002/adma.200601521

    49. [49]

      Hu H, Zhang R Y, Wang J G, Ying W B, Zhu J. ACS Sustain Chem Eng, 2018, 6(6): 7488 − 7498 doi: 10.1021/acssuschemeng.8b00174

    50. [50]

      Cai J, Zhang L N. Macromol Biosci, 2005, 5(6): 539 − 548 doi: 10.1002/(ISSN)1616-5195

    51. [51]

      Cai J, Zhang L N, Liu S L, Liu Y T, Xu X J, Chen X M, Chu B, Guo X L, Xu J, Cheng H, Han C C, Kuga S. Macromolecules, 2008, 41(23): 9345 − 9351 doi: 10.1021/ma801110g

    52. [52]

      Cai J, Zhang L N. Biomacromolecules, 2006, 7(1): 183 − 189 doi: 10.1021/bm0505585

    53. [53]

      Wang S, Lu A, Zhang L N. Prog Polym Sci, 2016, 53: 169 − 206 doi: 10.1016/j.progpolymsci.2015.07.003

    54. [54]

      Cai J, Zhang L N, Zhou J P, Qi H S, Chen H, Kondo T, Chen X M, Chu B. Adv Mater, 2007, 19(6): 821 − 825 doi: 10.1002/(ISSN)1521-4095

    55. [55]

      Xu DF, Chen C J, Xie J, Zhang B, Miao L, Cai J, Huang Y H, Zhang L N. Adv Energy Mater, 2016, 6(6): 1501929 doi: 10.1002/aenm.201501929

    56. [56]

      Yang X F, Liu G Q, Peng L, Guo J H, Tao L, Yuan J Y, Chang C Y, Wei Y, Zhang L N. Adv Funct Mater, 2017, 27(40): 1703174 doi: 10.1002/adfm.v27.40

    57. [57]

      Zhao D, Huang J C, Zhong Y, Li K, Zhang L N, Cai J. Adv Funct Mater, 2016, 26(34): 6279 − 6287 doi: 10.1002/adfm.v26.34

    58. [58]

      Cai J, Liu SL, Feng J, Kimura S, Wada M, Kuga S, Zhang L N. Angew Chem Int Ed, 2012, 51(9): 2076 − 2079 doi: 10.1002/anie.201105730

    59. [59]

      Dong Y, Jia B Q, Fu F Y, Zhang H Y, Zhang L N, Zhou J P. Angew Chem Int Ed, 2016, 55(43): 13504 − 13508 doi: 10.1002/anie.201607455

    60. [60]

      Shi Z Q, Gao H C, Feng J, Ding B B, Cao X D, Kuga S, Wang Y J, Zhang L N, Cai J. Angew Chem Int Ed, 2014, 53(21): 5380 − 5384 doi: 10.1002/anie.v53.21

    61. [61]

      Ren Qiang(任强), Wu Jin(武进), Zhang Jun(张军), He Jiasong(何嘉松), Guo Meili(过梅丽). Acta Polymerica Sinica(高分子学报), 2003, (3): 448 − 451 doi: 10.3321/j.issn:1000-3304.2003.03.025

    62. [62]

      Zhang H, Wu J, Zhang J, He J S. Macromolecules, 2005, 38: 8272 − 8277 doi: 10.1021/ma0505676

    63. [63]

      Zhang J M, Zhang H, Wu J, Zhang J, He J S, Xiang J F. Phys Chem Chem Phys, 2010, 12: 1941 − 1947 doi: 10.1039/b920446f

    64. [64]

      Zhang H, Wang Z G, Zhang Z N, Wu J, Zhang J, He J S. Adv Mater, 2007, 19: 698 − 704 doi: 10.1002/adma.200600442

    65. [65]

      Zhang J M, Wu J, Yu J, Zhang X Y, He J S, Zhang J. Mater Chem Front, 2017, 1: 1273 − 1290 doi: 10.1039/C6QM00348F

    66. [66]

      Fu F Y, Zhou J P, Zhou X M, Zhang L N, Li D X, Kondo T. ACS Sustain Chem Eng, 2014, 2(10): 2363 − 2370 doi: 10.1021/sc5003787

    67. [67]

      Fu F Y, Li L Y, Liu L J, Cai J, Zhang Y P, Zhou J P, Zhang L N. ACS Appl Mater Interfaces, 2015, 7(4): 2597 − 2606 doi: 10.1021/am507639b

    68. [68]

      Song Y B, Sun Y X, Zhang X Z, Zhou J P, Zhang L N. Biomacromolecules, 2008, 9(8): 2259 − 2264 doi: 10.1021/bm800429a

    69. [69]

      You J, Xie S Y, Cao J F, Ge H, Xu M, Zhou J P, Zhang L N. Macromolecules, 2016, 49(3): 1049 − 1059 doi: 10.1021/acs.macromol.5b02231

    70. [70]

      Wu J, Zhang J, Zhang H, He J S, Ren Q, Guo M L. Biomacromolecules, 2004, 5(2): 266 − 268 doi: 10.1021/bm034398d

    71. [71]

      Cao Y, Wu J, Meng T, Zhang J, He J S, Li H Q, Zhang Y. Carbohyd Polym, 2007, 69(4): 665 − 672 doi: 10.1016/j.carbpol.2007.02.001

    72. [72]

      Luan Y H, Zhang J M, Zhan M S, Wu J, Zhang J, He J S. Carbohyd Polym, 2013, 92(1): 307 − 311 doi: 10.1016/j.carbpol.2012.08.111

    73. [73]

      Zhang J M, Wu J, Cao Y, Sang S M, Zhang J, He J S. Cellulose, 2009, 16(2): 299 − 308 doi: 10.1007/s10570-008-9260-2

    74. [74]

      Yan C H, Zhang J M, Lv Y X, Yu J, Wu J, Zhang J, He J S. Biomacromolecules, 2009, 10(8): 2013 − 2018 doi: 10.1021/bm900447u

    75. [75]

      Tian W G, Zhang J M, Yu J, Wu J, Nawaz H, Zhang J, He J S, Wang F S. Adv Optical Mater, 2016, 4(12): 2044 − 2050 doi: 10.1002/adom.v4.12

    76. [76]

      Tian W G, Zhang J M, Yu J, Wu J, Zhang J, He J S, Wang F S. Adv Funct Mater, 2018, 28(9): 1703548 doi: 10.1002/adfm.v28.9

    77. [77]

      Jia R N, Tian W G, Bai H T, Zhang J M, Wang S, Zhang J. Nat Commun, 2019, 10: 795 doi: 10.1038/s41467-019-08675-3

    78. [78]

      Chen Wenshuai(陈文帅), Yu Haipeng(于海鹏), Liu Yixing(刘一星), Jiang Naixiang(蒋乃翔), Chen Peng(陈鹏). Acta Polymerica Sinica(高分子学报), 2010, (11): 1320 − 1326 doi: 10.3724/SP.J.1105.2010.09438

    79. [79]

      Chen W S, Yu H P, Liu Y X, Chen P. Carbohyd Polym, 2011, 83(4): 1804 − 1811 doi: 10.1016/j.carbpol.2010.10.040

    80. [80]

      Li Y N, Liu Y Z, Chen W S, Wang Q W, Liu Y X, Li J, Yu H P. Green Chem, 2016, 18(4): 1010 − 1018 doi: 10.1039/C5GC02576A

    81. [81]

      Liu Y Z, Chen W S, Xia Q Q, Guo B T, Wang Q W, Liu S X, Liu Y X, Li J, Yu H P. ChemSusChem, 2017, 10(8): 1692 − 1700 doi: 10.1002/cssc.201601795

    82. [82]

      Chen W S, Yu H P, Lee S Y, Wei T, Li J, Fan Z J. Chem Soc Rev, 2018, 47(8): 2837 − 2872 doi: 10.1039/C7CS00790F

    83. [83]

      Rao X M, Kuga S, Wu M, Huang Y. Cellulose, 2015, 22: 2341 − 2348 doi: 10.1007/s10570-015-0659-2

    84. [84]

      Zhao M M, Kuga S, Jiang S D, Wu M, Huang Y. Cellulose, 2016, 23(5): 2809 − 2818 doi: 10.1007/s10570-016-1033-8

    85. [85]

      Zhao M M, Kuga S, Wu M, Huang Y. Green Chem, 2016, 18(10): 3006 − 3012 doi: 10.1039/C6GC00660D

    86. [86]

      Li Y, Jiang K, Feng J, Liu J Z, Huang R, Chen Z J, Yang J C, Dai Z H, Chen Y, Wang N X, Zhang W J, Zheng W F, Yang G, Jiang X Y. Adv Healthc Mater, 2017, 6(11): 1601343 doi: 10.1002/adhm.v6.11

    87. [87]

      Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Yan S. Adv Energy Mater, 2014, 4(10): 1301655 doi: 10.1002/aenm.201301655

    88. [88]

      Gao M H; Li J, Bao Z X, Hu M D, Nian R, Feng D X, An D, Li X, Xian M, Zhang H B. Nat Commun, 2019, 10: 437 doi: 10.1038/s41467-018-07879-3

    89. [89]

      Hong M, Chen E Y. Nat Chem, 2016, 8(1): 42 − 49 doi: 10.1038/nchem.2391

    90. [90]

      Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed, 2017, 56(42): 12987 − 12990 doi: 10.1002/anie.201707122

    91. [91]

      Shen Y, Zhao Z, Li Y, Liu S, Liu F, Li Z. Polym Chem, 2019, 10(10): 1231 − 1237 doi: 10.1039/C8PY01812J

    92. [92]

      Zhang C J, Hu L F, Wu H L, Cao X H, Zhang X H. Macromolecules, 2018, 51(21): 8705 − 8711 doi: 10.1021/acs.macromol.8b01757

    1. [1]

      楼小洁陈思翀卿鑫王玉忠 . 聚乙烯亚胺接枝聚对二氧环己酮的合成与表征. 高分子学报, 2014, (8): 1153-1160. doi: 10.11777/j.issn1000-3304.2014.14045

    2. [2]

      吴伟秦玉升王献红王佛松 . 双官能卟啉铝配合物催化二氧化碳与环氧化合物的共聚合. 高分子学报, 2014, (7): 1017-1022. doi: 10.11777/j.issn1000-3304.2014.14080

    3. [3]

      张通龙丽娟何文涛何敏秦舒浩于杰 . 9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物衍生物阻燃聚乳酸的性能研究. 高分子学报, 2019, 50(1): 71-81. doi: 10.11777/j.issn1000-3304.2018.18148

    4. [4]

      华笋陈风王捍卿刘正英杨伟杨鸣波 . 纤维素接枝共聚物对聚乳酸结晶性能和拉伸流变性能的影响. 高分子学报, 2016, (8): 1136-1144. doi: 10.11777/j.issn1000-3304.2016.15376

    5. [5]

      王晓霞李林玲卫来薛奇周东山 . 低分子量聚乳酸受限于纳米孔道中的结晶行为研究. 高分子学报, 2019, 50(8): 841-849. doi: 10.11777/j.issn1000-3304.2019.19024

    6. [6]

      肖雅曲明史新妍 . 聚降冰片烯/聚乳酸共混物形状记忆效应的研究. 高分子学报, 2018, (3): 402-409. doi: 10.11777/j.issn1000-3304.2017.17085

    7. [7]

      李海强汪婧怡武莉刘威程瑞华刘柏平 . 氨基甲酰基季铵盐双功能催化剂催化丙交酯开环聚合研究. 高分子学报, 2019, 50(0): 1-8. doi: 10.11777/j.issn1000-3304.2019.19080

    8. [8]

      贾琳张文超佟斌杨荣杰李定华 . 笼型八苯基硅倍半氧烷与聚磷酸铵对聚乳酸的协同阻燃研究. 高分子学报, 2019, 50(7): 740-751. doi: 10.11777/j.issn1000-3304.2018.18257

    9. [9]

      白威陈栋梁李 庆张志萍熊左春陈和春熊成东 . 高分子量聚对二氧环己酮体外降解研究. 高分子学报, 2009, (1): 78-83. doi: 10.3724/SP.J.1105.2009.00078

    10. [10]

      柏栋予王柯白红伟张琴傅强 . 不断向自然与金属冶金学习的高分子加工. 高分子学报, 2016, (7): 843-849. doi: 10.11777/j.issn1000-3304.2016.16048

    11. [11]

      刘瑞来刘俊劭刘海清 . 聚乳酸/醋酸纤维素复合多孔超细纤维的制备. 高分子学报, 2013, (10): 1312-1318. doi: 10.3724/SP.J.1105.2013.13051

    12. [12]

      李武丹姚军燕张世杰陈晓 . 聚乳酸/聚苯胺/富勒烯静电纺丝纤维的制备与表征. 高分子学报, 2016, (6): 715-721. doi: 10.11777/j.issn1000-3304.2016.15297

    13. [13]

      兰小蓉吴枫季得运冯建民刘正英杨鸣波 . 成核剂及其完善剂对聚乳酸结晶行为的影响. 高分子学报, 2013, (8): 949-955. doi: 10.3724/SP.J.1105.2013.13112

    14. [14]

      王海利周意杨方华高李煜徐佩丁运生王志刚 . 接枝咪唑阳离子对聚乳酸结晶行为影响研究. 高分子学报, 2016, (11): 1606-1614. doi: 10.11777/j.issn1000-3304.2016.16075

    15. [15]

      王利平侯家瑞段咏欣张建明 . 界面增容剂对丁腈橡胶增韧聚乳酸体系性能的影响. 高分子学报, 2014, (7): 914-921. doi: 10.11777/j.issn1000-3304.2014.13401

    16. [16]

      贺虎宋鹏飞吴静姝肖敏王拴紧孟跃中 . 高分子量二氧化碳-环氧丙烷共聚物的合成条件研究. 高分子学报, 2010, (9): 1148-1151. doi: 10.3724/SP.J.1105.2010.09506

    17. [17]

      李进甄卫军 . 聚乳酸/氧化锌柱撑皂石纳米复合材料制备与性能及结构表征. 高分子学报, 2013, (4): 534-541. doi: 10.3724/SP.J.1105.2013.12276

    18. [18]

      刘春艳周持兴俞炜 . 流场中聚乳酸/聚碳酸酯共混体系的酯交换反应及其形态结构研究. 高分子学报, 2012, (11): 1225-1233. doi: 10.3724/SP.J.1105.2012.12145

    19. [19]

      付惠陈思翀王玉忠 . 偶氮苯功能化两亲性共聚物的合成与其纳米聚集体光响应行为的研究. 高分子学报, 2013, (6): 788-793. doi: 10.3724/SP.J.1105.2013.13012

    20. [20]

      卢凌彬黄可龙 . 二氧化碳/环氧丙烷/γ-丁内酯三元共聚物结构与载药性能的分子模拟. 高分子学报, 2007, (9): 802-809.

  • Figure 1.  The crystalline structure of trinuclear Aluminum-Shiff base catalyst and its synergetic effect on chiral ring-opening polymerization of lactide (LA) (Reproduced with permission from Ref.[8]; Copyright (2018) American Chemical Society)

    Figure 2.  Production of PHA based on next generation industrial biotechnology (NGIB), modification and application of PHA (Reproduced with permission from Ref.[14]; Copyright (2013) Chinese Chemical Society; Institute of Chemistry, Chinese Academy of Sciences; Springer Verlag Berlin Heidelberg)

    Figure 3.  Synthesis of (a) poly(ε-lysine) and (b) side-chain modified poly(amino acid)s

    Figure 4.  Synthesis, degradation and recyclability of PPDO

    Figure 5.  Regio- and stereo-selective copolymerization of CO2 and various epoxides to afford stereoregular polycarbonates (Reproduced with permission from Ref.[36]; Copyright (2012) American Chemical Society)

    Figure 6.  Enantioselective copolymerization of CO2 and various meso-epoxides to afford enantiopure isotactic polycarbonates, and further formation of crystalline stereocomplexes by mixing the opposite configuration polymers (Reproduced with permission from Ref.[40]; Copyright (2015) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

    Figure 7.  Bifunctional aluminium porphyrin complex for copolymerization CO2 and propylene oxide

    Figure 8.  Biobased ester elastomer (BEE) and corresponding nanocomposites (Reproduced with permission from Ref.[43]; Copyright (2012) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

    Figure 9.  Mechanical performances of various FDCA based polyester, traditional aromatic polyesters like PET, PBT, PPT, PCT used as references

    Figure 10.  Cellulose derivatives using ionic liquid as reaction media (Reproduced with permission from Ref.[74]; Copyright (2009) American Chemical Society)

  • 加载中
图(11)
计量
  • PDF下载量:  725
  • 文章访问数:  2626
  • HTML全文浏览量:  1060
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计