ISSN 1000-3304CN 11-1857/O6

三齿β-酮亚胺钒(III)配合物的合成及其催化乙烯(共)聚合行为研究

卢令攀 王凯悌 刘翼 吴佳骏

引用本文: 卢令攀, 王凯悌, 刘翼, 吴佳骏. 三齿β-酮亚胺钒(III)配合物的合成及其催化乙烯(共)聚合行为研究[J]. 高分子学报. doi: 10.11777/j.issn1000-3304.2019.19128 shu
Citation:  Ling-pan Lu, Kai-ti Wang, Yi Liu and Jia-jun Wu. Systheisis of Vanadium Complexes Bearing Tridentate β-Ketoimine Ligands and Their Catalytic Capabilities towards Ethylene (Co)polymerization[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19128 shu

三齿β-酮亚胺钒(III)配合物的合成及其催化乙烯(共)聚合行为研究

    通讯作者: 王凯悌, E-mail: ktwang@cqut.edu.cn
摘要: 合成了6种三齿β-酮亚胺钒(III)配合物{[(R)X(C6H4)N=CH(C6H5)C10H7O]VCl2(THF): 2a , R = CH3, X = S; 2b , R = CF3, X = S; 2c , R = Ph, X = S; 2d , R = tBu, X = S; 2e , R = Ph2, X = P; 2f , R = Ph, X = O},并对其结构进行了表征和证明. 2a ~ 2f 在催化乙烯均聚及其与环烯烃共聚时表现出了较高的催化活性和较为优异的稳定性,所得聚合物的分子量均呈单峰分布. 在催化乙烯与降冰片烯(NBE)共聚以及乙烯与外型-1,4,4a,9,9a,10-六氢-9,10(1 ′,2′)-桥苯亚基-1,4-桥亚甲基蒽(HBM)共聚时,部分催化剂表现出了“正共单体效应”. 催化所得乙烯/NBE共聚物的分子量为43.1 ~ 66.4 kg/mol,NBE单元含量为30.9 mol% ~ 42.1 mol%,玻璃化转变温度为84 ~ 105 °C;乙烯/HBM共聚物的分子量为90.2 ~ 138 kg/mol,HBM单元含量为14.7 mol% ~ 25.0 mol%,玻璃化转变温度为173 ~ 188 °C.

English

    1. [1]

      Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ChemCatChem, 2019, 11: 2329 − 2340 doi: 10.1002/cctc.v11.9

    2. [2]

      Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ACS Catal, 2018, 8: 5963 − 5976 doi: 10.1021/acscatal.8b01088

    3. [3]

      Fang J, Sui X L, Li Y G, Chen C L. Polym Chem, 2018, 9: 4143 − 4149 doi: 10.1039/C8PY00725J

    4. [4]

      Zhang Y R, Yang J X, Pan L, Li Y S. Chinese J Polym Sci, 2018, 36: 214 − 221

    5. [5]

      Guo L, Zhang Y P, Mu H L, Pan L, Wang K T, Gao H, Wang B, Ma Z, Li Y S. Chinese J Polym Sci, 2019, 37: 1 − 9 doi: 10.1007/s10118-019-2189-0

    6. [6]

      Hagen H, Boersma J, Koten G V. Chem Soc Rev, 2002, 31: 357 − 364 doi: 10.1039/B205238E

    7. [7]

      Gambarotta S. Coord Chem Rev, 2003, 237: 229 − 243 doi: 10.1016/S0010-8545(02)00298-9

    8. [8]

      Redshaw C. Dalton Trans, 2010, 39: 5595 − 5604 doi: 10.1039/b924088h

    9. [9]

      Nomura K, Zhang S. Chem Rev, 2011, 111: 2342 − 2362 doi: 10.1021/cr100207h

    10. [10]

      Wu J Q, Li Y S. Coord Chem Rev, 2011, 255: 2303 doi: 10.1016/j.ccr.2011.01.048

    11. [11]

      Christman D L, Keim G I. Macromolecules, 1968, 1: 358 doi: 10.1021/ma60004a017

    12. [12]

      Ma Y L, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C. Organometallics, 1999, 18: 2773 − 2781 doi: 10.1021/om9808763

    13. [13]

      Zhang S, Zhang W C, Shang D D, Zhang Z Q, Wu Y X. Dalton Trans, 2015, 44: 15264 − 15270 doi: 10.1039/C5DT00675A

    14. [14]

      Hao X F, Zhang C d, Li L, Zhang H X, Hu Y M, Hao D F, Zhang X Q. Polymers, 2017, 9: 325 doi: 10.3390/polym9080325

    15. [15]

      Zhang S, Zhang W C, Shang D D, Wu Y X. J Polym Sci, Part A: Polym Chem, 2019, 57: 553 − 561 doi: 10.1002/pola.v57.4

    16. [16]

      Adisson E, Deffieux A, Fontanille M. J Polym Sci, Part A: Polym Chem, 1993, 31: 831 − 839

    17. [17]

      Wu J Q, Pan L, Li Y G, Liu S R, Li Y S. Organometallics, 2009, 28: 1817 − 1825 doi: 10.1021/om801028g

    18. [18]

      Lu L P, Wang J B, Liu J Y, Li Y S. J Polym Sci, Part A: Polym Chem, 2014, 52: 2633 − 2642 doi: 10.1002/pola.v52.18

    19. [19]

      Wang J B, Lu L P, Liu J Y, Li Y S. Dalton Trans, 2014, 43: 12926 − 12934 doi: 10.1039/C4DT01166J

    20. [20]

      Wang K T, Wang Y X, Wang B, Li Y G, Li Y S. Chinese J Polym Sci, 2017, 35: 1110 − 1121 doi: 10.1007/s10118-017-1956-z

    21. [21]

      Redshaw C, Warford L, Dale S H, Elsegood M R. Chem Commun, 2004. 1954 − 1955

    22. [22]

      Lorber C, Despagnet-Ayoub E, Vendier L, Arbaoui A, Redshaw C. Catal Sci Technol, 2011, 1: 489 − 494 doi: 10.1039/c1cy00089f

    23. [23]

      Redshaw C, Walton M J, Lee D S, Jiang C, Elsegood M R, Michiue K. Chem Eur J, 2015, 21: 5199 − 5210 doi: 10.1002/chem.201406084

    24. [24]

      Redshaw C, Walton M, Michiue K, Chao Y, Walton A, Elo P, Sumerin V, Jiang C, Elsegood M R. Dalton Trans, 2015, 44: 12292 − 12303 doi: 10.1039/C5DT00376H

    25. [25]

      Zhang S, Nomura K. J Am Chem Soc, 2010, 132: 4960 − 4965 doi: 10.1021/ja100573d

    26. [26]

      Igarashi A, Zhang S, Nomura K. Organometallics, 2012, 31: 3575 − 3581 doi: 10.1021/om3000532

    27. [27]

      Tang X Y, Igarashi A, Sun W H, Inagaki A, Liu J Y, Zhang W J, Li Y S, Nomura K. Organometallics, 2014, 33: 1053 − 1060 doi: 10.1021/om401119y

    28. [28]

      Liu Y, Xiang H X, Wang K T, Wu G, Li Y B. Macromol Chem Phys, 2019, 220: 1900008 doi: 10.1002/macp.v220.9

    29. [29]

      Kakiuchi F, Matsuura Y, Kan S, Chatani N. J Am Chem Soc, 2005, 127: 5936 − 5945 doi: 10.1021/ja043334n

    30. [30]

      Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N, Murai S. Bull Chem Soc Jpn, 1995, 68: 62 − 83 doi: 10.1246/bcsj.68.62

    31. [31]

      Dai X D, Wong A, Virgil S C. J Org Chem, 1998, 63: 2597 − 2600 doi: 10.1021/jo972105z

    32. [32]

      Hong M, Cui L, Liu S R, Li Y S. Macromolecules, 2012, 45: 5397 − 5402 doi: 10.1021/ma300730y

    33. [33]

      Lu L P, Suo F Z, Feng Y L, Song L L, Li Y, Li Y J, Wang K T. Eur J Med Chem, 2019, 176: 1 − 10 doi: 10.1016/j.ejmech.2019.04.073

    34. [34]

      Tang X Y, Wang Y X, Li B X, Liu J Y, Li Y S. J Polym Sci, Part A: Polym Chem, 2013, 51: 1585 − 1594 doi: 10.1002/pola.26528

    1. [1]

      徐志贤李伯耿介素云 . 基于聚乙烯的无规和嵌段接枝共聚物的制备. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.16259

    2. [2]

      侯甲子张万喜孔令薇李莉莉 . 丙烯酸聚氧乙烯酯单体接枝聚乙烯共聚物的制备与表征. 高分子学报, doi: 10.11777/j.issn1000-3304.2015.15025

    3. [3]

      张杰阮杰闫寿科 . 左旋聚乳酸/聚(ε-己内酯)共混物在取向聚乙烯基底上的附生结晶行为. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.17109

    4. [4]

      胡海斌高海洋伍青 . 后过渡金属催化烯烃可控/活性聚合的研究进展. 高分子学报, doi: 10.3724/SP.J.1105.2011.11085

    5. [5]

      唐勇 . 聚乙烯废塑料温和可控降解为燃油和聚乙烯蜡. 高分子学报, doi: 10.11777/j.issn1000-3004.2017.16329

    6. [6]

      李跃文陈兴华欧阳杰熊晨 . GMA和共单体对聚乙烯木塑复合材料的直接反应增容. 高分子学报, doi: 10.3724/SP.J.1105.2012.11311

    7. [7]

      齐美洲傅智盛范志强 . 用负载型Z-N催化剂制备形貌规则的空心球形聚乙烯粒子. 高分子学报, doi: 10.11777/j.issn1000-3304.2016.15320

    8. [8]

      林也平张梦赟高艳芳梅林玉付一政刘亚青 . 拉伸对聚乙烯分子链导热性能影响的分子动力学模拟. 高分子学报, doi: 10.3724/SP.J.1105.2014.13365

    9. [9]

      陈生辉吕强郭继成王志坤孙霜青胡松青 . 石墨烯/聚乙烯复合材料及其拉伸性能的分子动力学模拟. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.16201

    10. [10]

      薛彦虎薄淑琴姬相玲 . 聚乙烯树脂的连续自成核与退火热分级实验参数优化及其与逐步结晶热分级对比. 高分子学报, doi: 10.11777/j.issn1000-3304.2015.14281

    11. [11]

      匡晓刘国明文韬张秀芹董侠王笃金 . 高密度聚乙烯共混调控烯烃嵌段共聚物拉伸性能. 高分子学报, doi: 10.3724/SP.J.1105.2013.12423

    12. [12]

      孙兴华刘琛阳余坚李刚何嘉松 . 用超临界CO2制备环烯烃共聚物共混物微孔材料. 高分子学报,

    13. [13]

      李三喜莫志深张宏放庞德仁黄葆同 . 乙烯-α-烯烃共聚物的结晶性能及其临界序列结晶长度的研究. 高分子学报,

    14. [14]

      项茂良封麟先王齐范志强杨士林 . 含氧单体和1-烯烃配位共聚合研究及共聚物表征. 高分子学报,

    15. [15]

      党靖雅陈凤香韩会景贺小华张以群谢美然 . 离子液体负载钌络合物的合成及其催化环烯烃开环易位聚合. 高分子学报, doi: 10.3724/SP.J.1105.2008.00343

    16. [16]

      李凤富金鹰泰裴奉奎王佛松 . π-烯丙基稀土配合物的合成、结构及其催化烯烃聚合反应机理的研究 Ⅲ.LiLn(π-C3H5)4·nD催化异戊二烯和苯乙烯均聚合反应的研究. 高分子学报,

    17. [17]

      王子川刘东涛崔冬梅 . 稀土金属有机配合物催化共轭双烯烃高选择性聚合. 高分子学报, doi: 10.11777/j.issn1000-3304.2015.15056

    18. [18]

      金鹰泰李刚李学王丕新张喜田裴奉奎 . 4f金属化合物催化苯乙烯和双烯烃的共聚——共聚反应的主要特征和聚合物的表征. 高分子学报,

    19. [19]

      吕英莹陈商涛胡友良ChungT.C.(Mike) . 阴离子聚合制备聚乙烯-g-聚氧化乙烯接枝共聚物. 高分子学报,

    20. [20]

      王丕新金鹰泰裴奉奎景风英孙玉芳 . 4f金属化合物催化苯乙烯和双烯烃的共聚 Ⅱ.苯乙烯和丁二烯共聚合的研究. 高分子学报,

  • Figure 1.  Structures of the vanadium(III) catalysts

    Figure 2.  The synthetic route to the ligands and complexes

    Figure 3.  The GPC curves of the polyethylenes produced by 2e under different temperatures

    Figure 4.  Evaluation of the lifetime of catalyst 2e

    Figure 5.  The influences of Et2AlCl on the ethylene polymerization catalyzed by 2e

    Figure 6.  13C-NMR spectra of ethylene/NBE copolymers produced by 2e (Top, NBE incorporation is 36.9 mol%; Bottom, BE incorporation is 30.9 mol%.)

    Figure 7.  13C-NMR spectra of ethylene/NBE copolymers produced by 2e (Top, NBE incorporation is 23.7 mol%; Bottom, BE incorporation is 14.7 mol%.)

    Table 1.  Typical ethylene polymerization results a

    EntryCat.Temp.
    (°C)
    Yield
    (g)
    Activity
    (kgPE/(mmolV·h))
    Mw b
    (kg/mol)
    PDI bTm/Tc c
    (°C)
    12a500.7518.053.31.7133/119
    22b500.7919.058.21.7133/118
    32c500.7618.259.31.8133/119
    42d500.409.6067.81.8133/119
    52e500.8319.962.21.8133/119
    62f500.5012.058.91.9133/119
    72e300.348.161411.6135/117
    82e700.5413.032.61.4131/120
    a Conditions: The feedstock of vanadium catalyst is 0.5 μmol; Et2AlCl, 2.0 mmol; ETA, 0.15 mmol; solvent, toluene; total volume, 50 mL; polymerization time, 5 min; ethylene pressure, 0.1 MPa; b Determined by HT-GPC at 150 °C; c Measured on DSC
    下载: 导出CSV

    Table 2.  Typical ethylene/NBE copolymerization results a

    EntryCat.NBE
    (mol/L)
    Yield
    (g)
    Activity
    (kgpolymer/(mmolV·h))
    Comonomer incorp. b
    (mol%)
    Mw c
    (kg/mol)
    PDI cTg d
    (°C)
    12a0.50.6615.833.258.11.384
    22a1.00.409.6040.643.11.4103
    32b0.50.8119.434.363.71.389
    42b1.00.5112.242.148.91.3105
    52c0.50.7417.832.164.01.387
    62c1.00.4510.839.649.61.3103
    72d0.50.5813.931.464.51.488
    82d1.00.368.6438.449.61.3102
    92e0.51.1226.930.966.41.386
    102e1.00.7016.836.951.01.499
    112f0.50.5112.234.052.91.484
    122f1.00.327.6840.639.21.4103
    a Conditions: The feedstock of vanadium catalyst is 0.5 μmol; Et2AlCl, 2.0 mmol; ETA, 0.15 mmol; solvent, toluene; total volume, 50 mL; polymerization time, 5 min; ethylene pressure, 0.1 MPa; b Calculated according to the 13C NMR; c Determined by GPC; d Measured by DSC
    下载: 导出CSV

    Table 3.  Typical ethylene/HBM copolymerization results a

    EntryCat.HBM
    (mmol)
    Yield
    (g)
    Activity
    (kgpolymer/(mmolV·h))
    Comonomer incorp.b
    (mol%)
    Mw c
    (kg/mol)
    PDI cTg d
    (°C)
    12a0.20.8420.215.590.21.7135
    22a0.40.6515.623.494.21.6183
    32b0.20.8620.616.999.61.6137
    42b0.41.2730.525.01041.6188
    52c0.21.1327.116.41101.6137
    62c0.40.8520.424.81211.5188
    72d0.20.4310.314.71041.6131
    82d0.40.204.8021.81111.6173
    92e0.20.9322.314.71161.6131
    102e0.41.7642.223.71381.6183
    112f0.20.6014.415.691.61.6133
    122f0.40.8921.324.995.51.5186
    a Conditions: The feedstock of vanadium catalyst is 0.5 μmol; Et2AlCl, 2.0 mmol; ETA, 0.15 mmol; solvent, toluene; total volume, 50 mL; polymerization time, 5 min; ethylene pressure, 0.1 MPa; b Calculated according to the 13C NMR; c Determined by GPC; d Measured by DSC
    下载: 导出CSV
  • 加载中
图(7)表(3)
计量
  • PDF下载量:  30
  • 文章访问数:  550
  • HTML全文浏览量:  275
  • 引证文献数: 0
文章相关
  • 通讯作者:  王凯悌, ktwang@cqut.edu.cn
  • 收稿日期:  2019-07-03
  • 修稿日期:  2019-07-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计