ISSN 1000-3304CN 11-1857/O6

Citation: Ling-pan Lu, Kai-ti Wang, Yi Liu and Jia-jun Wu. Systheisis of Vanadium Complexes Bearing Tridentate β-Ketoimine Ligands and Their Catalytic Capabilities towards Ethylene (Co)polymerization[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19128 shu

Systheisis of Vanadium Complexes Bearing Tridentate β-Ketoimine Ligands and Their Catalytic Capabilities towards Ethylene (Co)polymerization

Figures(7) / Tables(3)

  • Vanadium catalysts always show outstanding catalytic properties towards ethylene (co)polymeriztaion, while the high-valent vanadium species would be deactivated because of the generation of inactive or less active low-valent species at elevated temperature and/or in prolonged time. As proved, introducing of bulky groups into the ligands is benefit to improving the catalytic properties of vanadium complexes. Herein, in order to well control the oxidation state of vanadium species, a series of tridentate β-ketoimine type vanadium(III) complexes bearing cyclic skeleton {[(R)X(C6H4)N=CH(C6H5)C10H7O]VCl2(THF): 2a , R = CH3, X = S; 2b , R = CF3, X = S; 2c , R = Ph, X = S; 2d , R = tBu, X = S; 2e , R = Ph2, X = P; 2f , R = Ph, X = O}, were synthesized and characterized. Because of the constrained effects of the cyclic skeleton and the stabilizing effects of the bi-chelating ring, these synthesized catalysts showed high activities and improved stabilities in ethylene (co)polymerization. In the presences of Et2AlCl and ethyl trichloroacetate, catalysts 2a2f showed 8.16 − 19.9 kgpolymer/(mmolV·h), 7.68 − 26.9 kgpolymer/(mmolV·h) and 4.80 − 42.2 kgpolymer/(mmolV·h) of catalytic activities towards ethylene polymerization, ethylene/norbornene (NBE) copolymerization and ethylene/exo-1,4,4a,9,9a,10-hexahy-dro-9,10(1′,2′)-benzeno-1,4-methanoanthracene (HBM) copolymerization, respectively. All of the resultant polymers exhibited a unimodal distribution, indicating that these vanadium catalysts showed single-site catalytic behaviour, even at elevated temperatures (50 − 70 °C). Catalysts 2b , 2d , 2e and 2f showed "positive" comonomer effects in both ethylene/NBE copolymerization and ethylene/HBM copolymerization. Besides, 2a and 2c also exhibited positive comonomer effects in ethylene/HBM copolymerization. Cyclic olefin copolymers possessing high molecular weights (NBE: 43.1 − 66.4 kg/mol; HBM: 90.2 − 138 kg/mol) and high comonomer incorporations (NBE: 30.9 mol% − 42.1 mol%; HBM: 14.7 mol% − 25.0 mol%) were obtained facilely via direct copolymerization. The glass transition temperature is dominantly affected by the cyclic olefin incorporations and the steric hindrance of the cyclic olefin. Compared with the ethylene/NBE copolymers, the obtained ethylene/HBM copolymers showed much higher glass transition temperatures (NBE: 84 − 105 °C versus HBM: 173 − 188 °C).
  • 加载中
    1. [1]

      Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ChemCatChem, 2019, 11: 2329 − 2340 doi: 10.1002/cctc.v11.9

    2. [2]

      Zhang Y P, Mu H L, Pan L, Wang X L, Li Y S. ACS Catal, 2018, 8: 5963 − 5976 doi: 10.1021/acscatal.8b01088

    3. [3]

      Fang J, Sui X L, Li Y G, Chen C L. Polym Chem, 2018, 9: 4143 − 4149 doi: 10.1039/C8PY00725J

    4. [4]

      Zhang Y R, Yang J X, Pan L, Li Y S. Chinese J Polym Sci, 2018, 36: 214 − 221

    5. [5]

      Guo L, Zhang Y P, Mu H L, Pan L, Wang K T, Gao H, Wang B, Ma Z, Li Y S. Chinese J Polym Sci, 2019, 37: 1 − 9 doi: 10.1007/s10118-019-2189-0

    6. [6]

      Hagen H, Boersma J, Koten G V. Chem Soc Rev, 2002, 31: 357 − 364 doi: 10.1039/B205238E

    7. [7]

      Gambarotta S. Coord Chem Rev, 2003, 237: 229 − 243 doi: 10.1016/S0010-8545(02)00298-9

    8. [8]

      Redshaw C. Dalton Trans, 2010, 39: 5595 − 5604 doi: 10.1039/b924088h

    9. [9]

      Nomura K, Zhang S. Chem Rev, 2011, 111: 2342 − 2362 doi: 10.1021/cr100207h

    10. [10]

      Wu J Q, Li Y S. Coord Chem Rev, 2011, 255: 2303 doi: 10.1016/j.ccr.2011.01.048

    11. [11]

      Christman D L, Keim G I. Macromolecules, 1968, 1: 358 doi: 10.1021/ma60004a017

    12. [12]

      Ma Y L, Reardon D, Gambarotta S, Yap G, Zahalka H, Lemay C. Organometallics, 1999, 18: 2773 − 2781 doi: 10.1021/om9808763

    13. [13]

      Zhang S, Zhang W C, Shang D D, Zhang Z Q, Wu Y X. Dalton Trans, 2015, 44: 15264 − 15270 doi: 10.1039/C5DT00675A

    14. [14]

      Hao X F, Zhang C d, Li L, Zhang H X, Hu Y M, Hao D F, Zhang X Q. Polymers, 2017, 9: 325 doi: 10.3390/polym9080325

    15. [15]

      Zhang S, Zhang W C, Shang D D, Wu Y X. J Polym Sci, Part A: Polym Chem, 2019, 57: 553 − 561 doi: 10.1002/pola.v57.4

    16. [16]

      Adisson E, Deffieux A, Fontanille M. J Polym Sci, Part A: Polym Chem, 1993, 31: 831 − 839

    17. [17]

      Wu J Q, Pan L, Li Y G, Liu S R, Li Y S. Organometallics, 2009, 28: 1817 − 1825 doi: 10.1021/om801028g

    18. [18]

      Lu L P, Wang J B, Liu J Y, Li Y S. J Polym Sci, Part A: Polym Chem, 2014, 52: 2633 − 2642 doi: 10.1002/pola.v52.18

    19. [19]

      Wang J B, Lu L P, Liu J Y, Li Y S. Dalton Trans, 2014, 43: 12926 − 12934 doi: 10.1039/C4DT01166J

    20. [20]

      Wang K T, Wang Y X, Wang B, Li Y G, Li Y S. Chinese J Polym Sci, 2017, 35: 1110 − 1121 doi: 10.1007/s10118-017-1956-z

    21. [21]

      Redshaw C, Warford L, Dale S H, Elsegood M R. Chem Commun, 2004. 1954 − 1955

    22. [22]

      Lorber C, Despagnet-Ayoub E, Vendier L, Arbaoui A, Redshaw C. Catal Sci Technol, 2011, 1: 489 − 494 doi: 10.1039/c1cy00089f

    23. [23]

      Redshaw C, Walton M J, Lee D S, Jiang C, Elsegood M R, Michiue K. Chem Eur J, 2015, 21: 5199 − 5210 doi: 10.1002/chem.201406084

    24. [24]

      Redshaw C, Walton M, Michiue K, Chao Y, Walton A, Elo P, Sumerin V, Jiang C, Elsegood M R. Dalton Trans, 2015, 44: 12292 − 12303 doi: 10.1039/C5DT00376H

    25. [25]

      Zhang S, Nomura K. J Am Chem Soc, 2010, 132: 4960 − 4965 doi: 10.1021/ja100573d

    26. [26]

      Igarashi A, Zhang S, Nomura K. Organometallics, 2012, 31: 3575 − 3581 doi: 10.1021/om3000532

    27. [27]

      Tang X Y, Igarashi A, Sun W H, Inagaki A, Liu J Y, Zhang W J, Li Y S, Nomura K. Organometallics, 2014, 33: 1053 − 1060 doi: 10.1021/om401119y

    28. [28]

      Liu Y, Xiang H X, Wang K T, Wu G, Li Y B. Macromol Chem Phys, 2019, 220: 1900008 doi: 10.1002/macp.v220.9

    29. [29]

      Kakiuchi F, Matsuura Y, Kan S, Chatani N. J Am Chem Soc, 2005, 127: 5936 − 5945 doi: 10.1021/ja043334n

    30. [30]

      Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N, Murai S. Bull Chem Soc Jpn, 1995, 68: 62 − 83 doi: 10.1246/bcsj.68.62

    31. [31]

      Dai X D, Wong A, Virgil S C. J Org Chem, 1998, 63: 2597 − 2600 doi: 10.1021/jo972105z

    32. [32]

      Hong M, Cui L, Liu S R, Li Y S. Macromolecules, 2012, 45: 5397 − 5402 doi: 10.1021/ma300730y

    33. [33]

      Lu L P, Suo F Z, Feng Y L, Song L L, Li Y, Li Y J, Wang K T. Eur J Med Chem, 2019, 176: 1 − 10 doi: 10.1016/j.ejmech.2019.04.073

    34. [34]

      Tang X Y, Wang Y X, Li B X, Liu J Y, Li Y S. J Polym Sci, Part A: Polym Chem, 2013, 51: 1585 − 1594 doi: 10.1002/pola.26528

  • 加载中
    1. [1]

      Zhi-xian XuBo-geng LiSu-yun Jie . Preparation of Polyethylene-Based Random and Block Graft Copolymers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2017.16259

    2. [2]

      Jia-zi HouWan-xi ZhangLing-wei KongLi-li Li . Preparation and Characterization of PEs Grafted with Acrylic-based Monomers. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2015.15025

    3. [3]

      Jie ZhangJie RuanShou-ke Yan . Epitaxy of PLLA/PCL Blends on Highly Oriented Polyethylene Substrate. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2017.17109

    4. [4]

      HU Hai-BinGAO Hai-YangWU Qing . RECENT PROGRESS IN LATE TRANSITION METAL CATALYSTS FOR CONTROLLED/LIVING OLEFIN POLYMERIZATION. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2011.11085

    5. [5]

      Tang Yong . Efficient and Selective Degradation of Polyethylenes into Liquid Fuels and Waxes under Mild Conditions. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3004.2017.16329

    6. [6]

      Yue-wen LiXing-hua ChenJie OuyangChen Xiong . DIRECT REACTIVE COMPATIBILIZATION OF PE/WOOD-FLOUR COMPOSITES BY USING GLYCIDYL METHACRYLATE AND COMONOMER. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2012.11311

    7. [7]

      Mei-zhou QiZhi-sheng FuZhi-qiang Fan . Preparation of Regular Polyethylene Hollow Spheres with Supported Z-N Catalysts. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2016.15320

    8. [8]

      Ye-ping LinMeng-yun ZhangYan-fang GaoLin-yu MeiYi-zheng FuYa-qing Liu . Effect of Stretching on the Thermal Conductivity of Single Polyethylene Chains by Molecular Dynamics Simulations. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2014.13365

    9. [9]

      Sheng-hui ChenQiang LvJi-cheng GuoZhi-kun WangShuang-qing SunSong-qing Hu . Molecular Dynamics Simulations of Graphene/Polyethylene and Its Tensile Properties. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2017.16201

    10. [10]

      Yan-hu XueShu-qin BoXiang-ling Ji . Parameters Optimization of Successive Self-nucleation/Annealing Thermal Fractionation Experiments for Polyethylene Resin and Comparison with Step Crystallization. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2015.14281

    11. [11]

      Xiao KuangGuo-ming LiuTao WenXiu-qin ZhangXia DongDu-jin Wang . TAILORING THE TENSILE PROPERTIES OF OLEFIN BLOCK COPOLYMER ELASTOMER BY HIGH DENSITY POLYETHYLENE. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2013.12423

    12. [12]

      SUN XinghuaLIU ChenyangYU JianLI GangHE Jiasong . PREPARATION AND CHARACTERIZATION OF MICROCELLULAR CYCLIC OLEFIN COPOLYMER BLENDS USING SUPERCRITICAL CO2. Acta Polymerica Sinica,

    13. [13]

      LI San-xiMO Zhi-shenZHANG Hong-fangPANG De-renHUANG Bao-tong . STUDIES ON CRYSTALLINITY AND CRITICAL CRYSTALLINE SEQUENCE LENGTH OF ETHYLENE/a-OLEFIN COPOLYMERS. Acta Polymerica Sinica,

    14. [14]

      XIANG Mao-liangFENG Lin-xianWANG QiFAN Zhi-qiangYANG Shi-lin . INVESTIGATIONS ON COORDINATION COPOLYMERIZATION OF OXYGEN-CONTAINING MONOMER WITH 1-OLEFIN AND CHARACTERIZATION OF THE COPOLYMER. Acta Polymerica Sinica,

    15. [15]

      DANG JingyaCHEN FengxiangHAN HuijingHE XiaohuaZHANG YiqunXIE Meiran . Synthesis of Ionic Liquid-Supported Ruthenium Complex and Ring-Opening Metathesis Polymerization of Cycloolefin. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2008.00343

    16. [16]

      LI Feng-fuJIN Ying-taiPEI Feng-kuiWANG Fo-song . SYNTHESES AND CHARACTERIZATION OF THE π-ALLYL-RARE EARTH COMPLEXES AND STUDIES ON THE MECHENISM OF OLEFIN POLYMERIZATION Ⅲ.STUDIES ON THE POLYMERIZATION OF ISOPRENE AND STYRENE WITH LiLn (π-C3H5)4·nD COMPLEXES. Acta Polymerica Sinica,

    17. [17]

      Zi-chuan WangDong-tao LiuDong-mei Cui . Highly Selective Polymerization of 1,3 -Conjugated Dienes by Rare Earth Organometallic Complexes. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2015.15056

    18. [18]

      LU YingyingCHEN ShangtaoHU YouliangCHUNG T.C.(Mike) . SYNTHESIS OF GRAFT COPOLYMER PE-g-PEO BY A NEW ANIONIC GRAFT-FROM POLYMERIZATION. Acta Polymerica Sinica,

    19. [19]

      JIN Ying-taiLI GangLI XueWANG Pei-xinZHANG Xi-tianPEI Feng-kui . COPOLYMERIZATION OF STYRENE AND DIENES CATALYZED BY 4f METAL COMPOUNDS——Some Features of Copolymerization and Characterizations of the Polymers. Acta Polymerica Sinica,

    20. [20]

      WANG Pi-kinJIN king-taiPEI Feng-kuiJING Feng-yingSUN Yu-fang . COPOLYMERIZATION OF STYRENE AND DIENES CATALYZED BY 4f METAL COMPOUNDS Ⅱ. STUDIES ON COPOLYMERIZATION OF STYRENE AND BUTADINE. Acta Polymerica Sinica,

Metrics
  • PDF Downloads(32)
  • Abstract views(760)
  • HTML views(405)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Supported byBeijing Renhe Information Technology Co. Ltd Technical support: info@rhhz.net 百度统计

/

DownLoad:  Full-Size Img  PowerPoint
Return