Model Type | Stress-strain curves | Constitutive models |
Phenomenological model | Convex curve | MR, NH, GT, VL |
S-shape curve | Warner, VdW, Yeoh, Gent, PS, Beda, Beatty, LP, KA, Ogden, Bechir, HM, MD | |
Statistical mechanics model | Convex curve | Affine, Phantom, CJ, MCC, ET, NT, SlT |
S-shape curve | EV, TC, EC, BC, DG, SpT |

Citation: Fang Ding, Huan Zhang, Ming-ming Ding, Tong-fei Shi, Yun-qi Li and Li-jia An. Theoretical Models for Stress-Strain Curves of Elastomer Materials[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19132

聚合物弹性体材料应力-应变关系的理论研究
English
Theoretical Models for Stress-Strain Curves of Elastomer Materials
-
Key words:
- Constitutive model /
- Stress-strain curve /
- Elastomer /
- Mechanical properties
-
-
[1]
Galant O, Bae S, Silberstein M N, Diesendruck C E. Adv Funct Mater, 2019, 29: 1901806 doi: 10.1002/adfm.201901806
-
[2]
Williams M L, Landel R F, Ferry J D. J Am Chem Soc, 1955, 77(14): 3701 − 3707 doi: 10.1021/ja01619a008
-
[3]
Boyce M C, Arruda E M. Rubber Chem Technol, 2000, 73: 504 − 523 doi: 10.5254/1.3547602
-
[4]
Mooney M. J Appl Phys, 1940, 11: 582 − 592 doi: 10.1063/1.1712836
-
[5]
Rivlin R S. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci, 1948, 241(835): 379 − 397 doi: 10.1098/rsta.1948.0024
-
[6]
Rivlin R S, Saunders D. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci, 1951, 243(865): 251 − 288 doi: 10.1098/rsta.1951.0004
-
[7]
Treloar L R G. Trans Faraday Soc, 1944, 40: 0059 − 0069 doi: 10.1039/tf9444000059
-
[8]
Jr Warner H R. Ind Eng Chem Fundam, 1972, 11(3): 379 − 387 doi: 10.1021/i160043a017
-
[9]
Kilian H G. Polymer, 1981, 22(2): 209 − 217 doi: 10.1016/0032-3861(81)90200-7
-
[10]
Gent A. Rubber Chem Technol, 1996, 69: 59 − 61 doi: 10.5254/1.3538357
-
[11]
Hirayama N, Tsurusaki K. Nihon Reoroji Gakkaishi, 2011, 39: 65 − 73 doi: 10.1678/rheology.39.65
-
[12]
Nishi K, Chijiishi M, Katsumoto Y, Nakao T, Fujii K, Chung U, Noguchi H, Sakai T, Shibayama M. J Chem Phys, 2012, 137(22): 224903 doi: 10.1063/1.4769829
-
[13]
Tsenoglou C. Macromolecules, 1989, 22(1): 284 − 289 doi: 10.1021/ma00191a052
-
[14]
Chasse W, Lang M, Sommer J U, Saalwachter K. Macromolecules, 2012, 45(2): 899 − 912 doi: 10.1021/ma202030z
-
[15]
Kuhn W. J Polym Sci, 1946, 1: 380 − 388 doi: 10.1002/pol.1946.120010505
-
[16]
Wall F T, Flory P J. J Chem Phys, 1951, 19: 1435 − 1439 doi: 10.1063/1.1748098
-
[17]
Flory P J. P Roy Soc A-Math Phy, 1976, 351(1666): 351 − 380 doi: 10.1098/rspa.1976.0146
-
[18]
James H M, Guth E. J Chem Phys, 1943, 11: 455 − 481 doi: 10.1063/1.1723785
-
[19]
James H M. J Chem Phys, 1947, 15: 651 − 668 doi: 10.1063/1.1746624
-
[20]
Flory P J, Jr Rehner J. J Chem Phys, 1943, 11: 521 − 520 doi: 10.1063/1.1723792
-
[21]
Treloar L R G. Trans Faraday Soc, 1946, 42: 77 − 82 doi: 10.1039/tf9464200077
-
[22]
Wang M C, Guth E. J Chem Phys, 1952, 20: 1144 − 1157 doi: 10.1063/1.1700682
-
[23]
Edwards S. Proc Phys Soc, 1967, 92: 9 − 16 doi: 10.1088/0370-1328/92/1/303
-
[24]
Ronca G, Allegra G. J Chem Phys, 1975, 63: 4990 − 4997 doi: 10.1063/1.431245
-
[25]
Edwards S, Vilgis T. Polymer, 1986, 27(4): 483 − 492 doi: 10.1016/0032-3861(86)90231-4
-
[26]
Erman B, Monnerie L. Macromolecules, 1989, 22(8): 3342 − 3348 doi: 10.1021/ma00198a026
-
[27]
Davidson J D, Goulbourne N C. J Mech Phys Solids, 2013, 61(8): 1784 − 1797 doi: 10.1016/j.jmps.2013.03.009
-
[28]
Xiang Y H, Zhong D M, Wang P, Mao G Y, Yu H H, Qu S X. J Mech Phys Solids, 2018, 117: 110 − 122 doi: 10.1016/j.jmps.2018.04.016
-
[29]
Yeoh O H. Rubber Chem Technol, 1993, 66: 754 − 771 doi: 10.5254/1.3538343
-
[30]
Valanis K, Landel R F. J Appl Phys, 1967, 38: 2997 − 3002 doi: 10.1063/1.1710039
-
[31]
Ogden R W. P Roy Soc A-Math Phy, 1972, 326(1567): 565 − 584 doi: 10.1098/rspa.1972.0026
-
[32]
Mansouri M R, Darijani H. Int J Solids Struct, 2014, 51: 4316 − 4326 doi: 10.1016/j.ijsolstr.2014.08.018
-
[33]
Rubinstein M, Panyukov S. Macromolecules, 1997, 30(25): 8036 − 8044 doi: 10.1021/ma970364k
-
[34]
Bechir H, Chevalier L, Idjeri M. Int J Eng Sci, 2010, 48(3): 265 − 274 doi: 10.1016/j.ijengsci.2009.10.004
-
[35]
Kroeger M. J Non-newton Fluid, 2015, 223: 77 − 87 doi: 10.1016/j.jnnfm.2015.05.007
-
[36]
Anderson T W, Darling D A. J Am Stat Assoc, 1954, 49(268): 765 − 769 doi: 10.1080/01621459.1954.10501232
-
[37]
Hung W L, Yang M S. Pattern Recogn Lett, 2004, 25(14): 1603 − 1611 doi: 10.1016/j.patrec.2004.06.006
-
[38]
Alt H, Godau M. Int J Comput Geom Ap, 1995, 5: 75 − 91 doi: 10.1142/S0218195995000064
-
[39]
Müller M. Information Retrieval for Music and Motion. Berlin: Spring-Verlag, 2007. 69 − 84
-
[40]
Eiter T, Mannila H. Computing Discrete Fréchet Distance. Wien: Technical University of Wien, 1994. CD-TR 94/64.
-
[41]
Matin S S, Farahzadi L, Makaremi S, Chelgani S C, Sattari G. Appl Soft Comput, 2018, 70: 980 − 987 doi: 10.1016/j.asoc.2017.06.030
-
[42]
Yan K, Shi C. Constr Build Mater, 2010, 24(8): 1479 − 1485 doi: 10.1016/j.conbuildmat.2010.01.006
-
[43]
Kopal I, Harničárová M, Valíček J, Kušnerová M. Polymers, 2017, 9(10): 519 doi: 10.3390/polym9100519
-
[1]
-
Figure 4. Similarity assessment for constitutive models. Histogram for R2 (a) and δdF (c). Example for the best-fitting between models and their fitting similarity parameters evaluated by R2 (a) and δdF (b). (d) Network correlation graph of the constitutive models: the edge connection of the model is displayed according to δdF < 0.1. The arrow in edge indicates the direction of the model fitting, the size of the vertices is proportional to the number of edges, the color of the edge is negatively correlated with δdF, and red edges show the equivalence of two models. (The online version is colorful.)
Table 1. Classification of different constitutive models that can be used to interpret typical stress-strain curves
-