ISSN 1000-3304CN 11-1857/O6

中国高分子合成化学的研究与发展动态

安泽胜 陈昶乐 何军坡 洪春雁 李志波 李子臣 刘超 吕小兵 秦安军 曲程科 唐本忠 陶友华 宛新华 王国伟 王佳 郑轲 邹文凯

引用本文: 安泽胜, 陈昶乐, 何军坡, 洪春雁, 李志波, 李子臣, 刘超, 吕小兵, 秦安军, 曲程科, 唐本忠, 陶友华, 宛新华, 王国伟, 王佳, 郑轲, 邹文凯. 中国高分子合成化学的研究与发展动态[J]. 高分子学报, 2019, 50(10): 1083-1132. doi: 10.11777/j.issn1000-3304.2019.19136 shu
Citation:  Ze-sheng An, Chang-le Chen, Jun-po He, Chun-yan Hong, Zhi-bo Li, Zi-chen Li, Chao Liu, Xiao-bing Lv, An-jun Qin, Cheng-ke Qu, Ben Zhong Tang, You-hua Tao, Xin-hua Wan, Guo-wei Wang, Jia Wang, Ke Zheng and Wen-kai Zou. Research and Development of Polymer Synthetic Chemistry in China[J]. Acta Polymerica Sinica, 2019, 50(10): 1083-1132. doi: 10.11777/j.issn1000-3304.2019.19136 shu

中国高分子合成化学的研究与发展动态

    通讯作者: 安泽胜, E-mail: anzesheng@jlu.edu.cn 陈昶乐, E-mail: changle@ustc.edu.cn 何军坡, E-mail: jphe@fudan.edu.cn 洪春雁, E-mail: hongcy@ustc.edu.cn 李志波, E-mail: zbli@qust.edu.cn 李子臣, E-mail: zcli@pku.edu.cn 吕小兵, E-mail: lxb-1999@163.com 秦安军, E-mail: msqinaj@scut.edu.cn 唐本忠, E-mail: tangbenz@ust.hk 陶友华, E-mail: youhua.tao@ciac.ac.cn 宛新华, E-mail: xhwan@pku.edu.cn
摘要: 高分子合成化学是主要研究高分子量化合物的分子设计、合成和改性等内容的科学,它为人类社会进步、生活水平提高及国家安全提供了必不可少的物质保障. 中华人民共和国成立70年来,中国学者为推动此领域的发展作出了积极贡献,在设计合成新单体和聚合物、研发高效且环境友好新型催化剂、发展新的聚合反应、探索新的聚合方法、优化合成路径、开发聚合新工艺、发现新的结构与性能等方面取得了一系列重要的创新成果. 本文总结和评述了中国高分子合成化学的研究与动态,并展望了不同聚合反应、高分子拓扑结构控制以及生物质来源单体的设计、合成与聚合等的未来发展.

English

    1. [1]

      Feng Xinde(冯新德). Polymer Synthetic Chemistry(高分子合成化学). Beijng(北京): Science Press(科学出版社), 1981

    2. [2]

      Morawetz H. Polymers-The Origins and Growth of a Science. New York: Wiley-Interscience, 1985

    3. [3]

      Ringsdorf H. Angew Chem Int Ed, 2004, 43: 1064 − 1076 doi: 10.1002/anie.200330071

    4. [4]

      Odian G. Principles of Polymerization, 4th Edition. New York:Wiley-interscience, 2004

    5. [5]

      Stevens M P. Polymer Chemistry. Oxford, New York: 1999

    6. [6]

      Szwarc M. Nature, 1956, 178(4543): 1168 − 1169 doi: 10.1038/1781168a0

    7. [7]

      Otsu T, Yoshida M. Die Makromol Chem Rapid Commun, 1982, 3(2): 127 − 132 doi: 10.1002/marc.1982.030030208

    8. [8]

      Georges M K, Veregin R P N, Kazmaier P M, Hamer G K. Macromolecules, 1993, 26(11): 2987 − 2988 doi: 10.1021/ma00063a054

    9. [9]

      Wang J-S, Matyjaszewski K. J Am Chem Soc, 1995, 117(20): 5614 − 5615 doi: 10.1021/ja00125a035

    10. [10]

      Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31(16): 5559 − 5562 doi: 10.1021/ma9804951

    11. [11]

      Matyjaszewski K, Gaynor S, Wang J S. Macromolecules, 1995, 28(6): 2093 − 2095 doi: 10.1021/ma00110a050

    12. [12]

      Yamago S, Iida K, Yoshida J I. J Am Chem Soc, 2002, 124(12): 2874 − 2875 doi: 10.1021/ja025554b

    13. [13]

      Yamago S, Ray B, Iida K, Yoshida J I, Tada T, Yoshizawa K, Kwak Y, Goto A, Fukuda T. J Am Chem Soc, 2004, 126(43): 13908 − 13909 doi: 10.1021/ja044787v

    14. [14]

      Ouchi M, Sawamoto M. Macromolecules, 2017, 50(7): 2603 − 2614 doi: 10.1021/acs.macromol.6b02711

    15. [15]

      Qin S H, Qiu K Y, Swift G, Westmoreland D G, Wu S G. J Polym Sci, Part A: Polym Chem, 1999, 37(24): 4610 − 4615 doi: 10.1002/(SICI)1099-0518(19991215)37:24<4610::AID-POLA19>3.0.CO;2-O

    16. [16]

      Qin S H, Qiu K Y. J Polym Sci, Part A: Polym Chem, 2000, 38(11): 2115 − 2120 doi: 10.1002/(SICI)1099-0518(20000601)38:11<2115::AID-POLA210>3.0.CO;2-I

    17. [17]

      Chen X P, Qiu K Y. Macromolecules, 1999, 32(26): 8711 − 8715 doi: 10.1021/ma991079z

    18. [18]

      Qin S H, Qin D Q. New J Chem, 2001, 25(7): 893 − 895 doi: 10.1039/b103908n

    19. [19]

      Deng J, Wang L, Liu L, Yang W. Prog Polym Sci, 2009, 34(2): 156 − 193 doi: 10.1016/j.progpolymsci.2008.06.002

    20. [20]

      Yang W, Rånby B. Macromolecules, 1996, 29(9): 3308 − 3310 doi: 10.1021/ma9515543

    21. [21]

      Yang P, Yang M, Zou S, Xie J, Yang W. J Am Chem Soc, 2007, 129(6): 1541 − 1552 doi: 10.1021/ja063716o

    22. [22]

      Lu L, Zhang H, Yang N, Cai Y. Macromolecules, 2006, 39(11): 3770 − 3776 doi: 10.1021/ma060157x

    23. [23]

      Gong H, Zhao Y, Shen X, Lin J, Chen M. Angew Chem Int Ed, 2018, 57(1): 333 − 337 doi: 10.1002/anie.201711053

    24. [24]

      Shen L, Lu Q, Zhu A, Lv X, An Z. ACS Macro Lett, 2017, 6(6): 625 − 631 doi: 10.1021/acsmacrolett.7b00343

    25. [25]

      Ding C, Fan C, Jiang G, Pan X, Zhang Z, Zhu J, Zhu X. Macromol Rapid Commun, 2015, 36(24): 2181 − 2185 doi: 10.1002/marc.201500427

    26. [26]

      Wang J, Rivero M, Muñoz Bonilla A, Sanchez-Marcos J, Xue W, Chen G, Zhang W, Zhu X. ACS Macro Lett, 2016, 5(11): 1278 − 1282 doi: 10.1021/acsmacrolett.6b00818

    27. [27]

      Lv C, He C, Pan X. Angew Chem Int Ed, 2018, 57(30): 9430 − 9433 doi: 10.1002/anie.201805212

    28. [28]

      Jiang J, Ye G, Wang Z, Lu Y, Chen J, Matyjaszewski K. Angew Chem Int Ed, 2018, 57(37): 12037 − 12042 doi: 10.1002/anie.201807385

    29. [29]

      Sang W, Xu M, Yan Q. ACS Macro Lett, 2017, 6(12): 1337 − 1341 doi: 10.1021/acsmacrolett.7b00886

    30. [30]

      Wang Z, Wang Z, Pan X, Fu L, Lathwal S, Olszewski M, Yan J, Enciso A E, Wang Z, Xia H, Matyjaszewski K. ACS Macro Lett, 2018, 7(3): 275 − 280 doi: 10.1021/acsmacrolett.8b00027

    31. [31]

      Zheng X, Yue M, Yang P, Li Q, Yang W. Polym Chem, 2012, 3(8): 1982 − 1986 doi: 10.1039/c2py20117h

    32. [32]

      Zhang B, Wang X, Zhu A, Ma K, Lv Y, Wang X, An Z. Macromolecules, 2015, 48(21): 7792 − 7802 doi: 10.1021/acs.macromol.5b01893

    33. [33]

      Liu Z, Lv Y, An Z. Angew Chem Int Ed, 2017, 56(44): 13852 − 13856 doi: 10.1002/anie.201707993

    34. [34]

      Liu Z, Lv Y, Zhu A, An Z. ACS Macro Lett, 2018, 7(1): 1 − 6 doi: 10.1021/acsmacrolett.7b00950

    35. [35]

      Warren N J, Armes S P. J Am Chem Soc, 2014, 136(29): 10174 − 10185 doi: 10.1021/ja502843f

    36. [36]

      Canning S L, Smith G N, Armes S P. Macromolecules, 2016, 49(6): 1985 − 2001 doi: 10.1021/acs.macromol.5b02602

    37. [37]

      Chen S L, Shi P F, Zhang W Q. Chinese J Polym Sci, 2017, 35(4): 455 − 455 doi: 10.1007/s10118-017-1907-8

    38. [38]

      Derry M J, Fielding L A, Armes S P. Prog Polym Sci, 2016, 52: 1 − 18 doi: 10.1016/j.progpolymsci.2015.10.002

    39. [39]

      Wang X, Shen L, An Z. Prog Polym Sci, 2018, 83: 1 − 27 doi: 10.1016/j.progpolymsci.2018.05.003

    40. [40]

      Wang X, An Z. Macromol Rapid Commun, 2019, 40(2): 1800325 doi: 10.1002/marc.201800325

    41. [41]

      Delaittre G, Dire C, Rieger J, Putaux J L, Charleux B. Chem Commun, 2009, 20: 2887 − 2889

    42. [42]

      Wan W M, Hong C Y, Pan C Y. Chem Commun, 2009, 39: 5883 − 5885

    43. [43]

      Dan M, Huo F, Xiao X, Su Y, Zhang W. Macromolecules, 2014, 47(4): 1360 − 1370 doi: 10.1021/ma402370j

    44. [44]

      Huo F, Li S, Li Q, Qu Y, Zhang W. Macromolecules, 2014, 47(7): 2340 − 2349 doi: 10.1021/ma5002386

    45. [45]

      Li S, He X, Li Q, Shi P, Zhang W. ACS Macro Lett, 2014, 3(9): 916 − 921 doi: 10.1021/mz500466x

    46. [46]

      Yu Q, Ding Y, Cao H, Lu X, Cai Y. ACS Macro Lett, 2015, 4(11): 1293 − 1296 doi: 10.1021/acsmacrolett.5b00699

    47. [47]

      Cai M, Ding Y, Wang L, Huang L, Lu X, Cai Y. ACS Macro Lett, 2018, 7(2): 208 − 212 doi: 10.1021/acsmacrolett.8b00005

    48. [48]

      Ding Y, Cai M, Cui Z, Huang L, Wang L, Lu X, Cai Y. Angew Chem Int Ed, 2018, 57(4): 1053 − 1056 doi: 10.1002/anie.201710811

    49. [49]

      Zhou W, Qu Q, Xu Y, An Z. ACS Macro Lett, 2015, 4(5): 495 − 499 doi: 10.1021/acsmacrolett.5b00225

    50. [50]

      Zhang B, Lv X, An Z. ACS Macro Lett, 2017, 6(3): 224 − 228 doi: 10.1021/acsmacrolett.7b00056

    51. [51]

      Wang X, Man S, Zheng J, An Z. ACS Macro Lett, 2018, 7(12): 1461 − 1467 doi: 10.1021/acsmacrolett.8b00839

    52. [52]

      Liu G, Qiu Q, Shen W, An Z. Macromolecules, 2011, 44(13): 5237 − 5245 doi: 10.1021/ma200984h

    53. [53]

      Shen W, Chang Y, Liu G, Wang H, Cao A, An Z. Macromolecules, 2011, 44(8): 2524 − 2530 doi: 10.1021/ma200074n

    54. [54]

      Qu Q, Liu G, Lv X, Zhang B, An Z. ACS Macro Lett, 2016, 5(3): 316 − 320 doi: 10.1021/acsmacrolett.6b00066

    55. [55]

      Wang X, Zhou J, Lv X, Zhang B, An Z. Macromolecules, 2017, 50(18): 7222 − 7232 doi: 10.1021/acs.macromol.7b01644

    56. [56]

      Zhang L, Lu Q, Lv X, Shen L, Zhang B, An Z. Macromolecules, 2017, 50(5): 2165 − 2174 doi: 10.1021/acs.macromol.6b02651

    57. [57]

      Zhang B, Lv X, Zhu A, Zheng J, Yang Y, An Z. Macromolecules, 2018, 51(8): 2776 − 2784 doi: 10.1021/acs.macromol.8b00246

    58. [58]

      Chen X, Liu L, Huo M, Zeng M, Peng L, Feng A, Wang X, Yuan J. Angew Chem Int Ed, 2017, 56(52): 16541 − 16545 doi: 10.1002/anie.201709129

    59. [59]

      Huo M, Zhang Y, Zeng M, Liu L, Wei Y, Yuan J. Macromolecules, 2017, 50(20): 8192 − 8201 doi: 10.1021/acs.macromol.7b01437

    60. [60]

      Shen L, Guo H, Zheng J, Wang X, Yang Y, An Z. ACS Macro Lett, 2018, 7(3): 287 − 292 doi: 10.1021/acsmacrolett.8b00070

    61. [61]

      Guan S, Zhang C, Wen W, Qu T, Zheng X, Zhao Y, Chen A. ACS Macro Lett, 2018, 7(3): 358 − 363 doi: 10.1021/acsmacrolett.8b00082

    62. [62]

      Jiang Y, Xu N, Han J, Yu Q, Guo L, Gao P, Lu X, Cai Y. Polym Chem, 2015, 6(27): 4955 − 4965 doi: 10.1039/C5PY00656B

    63. [63]

      Tan J, Sun H, Yu M, Sumerlin B S, Zhang L. ACS Macro Lett, 2015, 4(11): 1249 − 1253 doi: 10.1021/acsmacrolett.5b00748

    64. [64]

      Tan J, Liu D, Bai Y, Huang C, Li X, He J, Xu Q, Zhang L. Macromolecules, 2017, 50(15): 5798 − 5806 doi: 10.1021/acs.macromol.7b01219

    65. [65]

      Szwarc M, Levy M, Milkovich R. J Am Chem Soc, 1956, 78(11): 2656 − 2657 doi: 10.1021/ja01592a101

    66. [66]

      Hsieh H L, Quirk R P. Anionic Polymerization-Principles and Practical Applications. New York: Marcel Dekker, Inc., 1996

    67. [67]

      Hadjichristidis N, Hirao A, eds. Anionic Polymerization-Principles, Practice, Strength, Consequences, and Applications. Tokyo: Springer, 2015

    68. [68]

      Ying Shengkang(应圣康), Guo Shaohua(郭少华). Ionic Polymerization(离子型聚合). Beijing(北京): Chemical Industry Press(化学工业出版社), 1988

    69. [69]

      Voong Singtuh(冯新德), Chiu Nanfei(邱南飛), Chiang Tehchang(蒋德彰). Gaofenzi Tongxun(高分子通讯), 1965, 7(1): 48 − 55

    70. [70]

      Voong Singtuh(冯新德), Chiu Nanfei(邱南飛), Chiang Tehchang(蒋德彰). Cinese Science Bulletin(科学通报), 1963, 5: 51 − 52

    71. [71]

      Voong Singtuh(冯新德), Chiang Tehchang(蒋德彰), Lai Yongming (雷永铭). Gaofenzi Tongxun(高分子通讯), 1965, 7(2): 112 − 119

    72. [72]

      Shieh Hongchuan(谢洪泉), Chine Pingshing(金炳兴), Shen Shinchung(单新忠). Gaofenzi Tongxun(高分子通讯), 1964, 6(4): 312 − 316

    73. [73]

      Chen Kantang(陈甘棠). Gaofenzi Tongxun(高分子通讯), 1964, 6(3): 193 − 205

    74. [74]

      Ying Shengkang(应圣康). China Synthetic Rubber Industry(合成橡胶工业), 1979, 2(4): 341 − 355

    75. [75]

      Jin Guantai(金关泰), Yang Dachuan(杨大川), Li Tianhu(李天虎), Fan Liqun(范立群), Yao Wei(姚薇), Ban Xiguang(班锡广), Yang Wantai(杨万泰), Dong Ruxiu(董汝秀), Liu Meizhu(刘美珠), Xu Ruiqing(徐瑞清). Journal of Beijing Institute of Chemical Technology(北京化工学院学报), 1987, 14(3): 102 − 106

    76. [76]

      Jin Guantai(金关泰), Fan Liqun(范立群), Yao Wei(姚薇), Xu Ruiqing(徐瑞清). Journal of Chemical Industry and Engineering (China)(化工学报), 1988, 39(5): 590 − 598

    77. [77]

      Jin Guantai(金关泰), Jing Yizhong(金益中), Hu Yiding(胡一丁). Petrochemical Technology(石油化工), 1988, 17(8): 493 − 499

    78. [78]

      Yang Wantai(杨万泰), Xu Ming(许铭), Jin Guantai(金关泰). China Elastomerics(弹性体), 1992, 2(4): 1 − 5

    79. [79]

      Han Bingyong(韩丙勇), Jin Guantai(金关泰). China Synthetic Rubber Industry(合成橡胶工业), 1999, 22(3): 146 − 149

    80. [80]

      Xia Zhiyu(夏志宇), Jin Guantai(金关泰), Yang Wantai(杨万泰). China Elastomeric(弹性体), 1993, 3(4): 1 − 5

    81. [81]

      Jin Guantai(金关泰), Xia Zhiyu(夏志宇), Yang Wantai(杨万泰). China Elastomerics(弹性体), 1994, 4(1): 11 − 14

    82. [82]

      He Haiyan(何海燕). Tire Industry(轮胎工业), 2016, 36(3): 131 − 135 doi: 10.3969/j.issn.1006-8171.2016.03.001

    83. [83]

      Wang Qifei(王启飞). Petroleum & Petrochemical Today(当代石油石化), 2019, 27(2): 24 − 27 doi: 10.3969/j.issn.1009-6809.2019.02.004

    84. [84]

      Qiu Yingxin(邱迎昕), Liu Chuan(刘川), Xu Lin(徐林). China Synthetic Rubber Industry(合成橡胶工业), 2019, 42(1): 79 − 83 doi: 10.3969/j.issn.1000-1255.2019.01.020

    85. [85]

      Zhang Yunkui(张云奎). Jiangsu Science & Technology Information(江苏科技信息), 2018, 25: 45 − 47 doi: 10.3969/j.issn.1004-7530.2018.13.014

    86. [86]

      Hempenius M A, Michelberger W, Möller M. Macromolecules, 1997, 30(19): 5602 − 5605 doi: 10.1021/ma970280b

    87. [87]

      Quirk R P, Yoo T, Lee Y, Kim J, Lee B. Adv Polym Sci, 2000, 153: 67 − 162

    88. [88]

      Zhang J X, Wang G W. Sci China Chem, 2015, 58(11): 1674 − 1694 doi: 10.1007/s11426-015-5463-1

    89. [89]

      Hirao A, Sakano Y, Takenaka K, Nakahama S. Macromolecules, 1998, 31(26): 9141 − 9145 doi: 10.1021/ma981094o

    90. [90]

      Zhang Y, Li J, Li X, He J. Macromolecules, 2014, 47(18): 6260 − 6269 doi: 10.1021/ma501283b

    91. [91]

      Qu C, Li Z, He J. Polym Chem, 2018, 9(25): 3455 − 3460 doi: 10.1039/C8PY00626A

    92. [92]

      Li J, He J. ACS Macro Lett, 2015, (4): 372 − 376

    93. [93]

      Yu Y, He J. Macromol Chem Phys, 2017, 218(2): 1700080

    94. [94]

      Yang S, He J. Polym Chem, 2016, 7(27): 4506 − 4514 doi: 10.1039/C6PY00810K

    95. [95]

      Qi G, Yu Y, He J. Polym Chem, 2016, 7(7): 1461 − 1467 doi: 10.1039/C5PY01674F

    96. [96]

      Yu Y, He J. Eur Polym J, 2017, 86: 58 − 67 doi: 10.1016/j.eurpolymj.2016.11.020

    97. [97]

      Yu Y, Qu C, He J. J Polym Sci Part A: Polym Chem, 2019, 57(3): 395 − 402 doi: 10.1002/pola.29215

    98. [98]

      Wu Yixian(吴一弦), Zhou Qi(周琦), Du Jie(杜杰), Wang Nan(王楠). Acta Polymerica Sinica(高分子学报), 2017, (7): 1047 − 1057 doi: 10.11777/j.issn1000-3304.2017.17045

    99. [99]

      Yan P F, Guo A R, Liu Q, Wu Y X. J Polym Sci, Part A: Polym Chem, 2012, 50: 3383 − 3392 doi: 10.1002/pola.26126

    100. [100]

      Wu Y X, Wu G Y, Sun Y F, Wang Y, Wang Z, Ma Y H. Des Mon Polym, 1999, 2(2): 165 − 172 doi: 10.1163/156855599X00232

    101. [101]

      Wu Y X, Wu G Y. J Polym Sci, Part A: Polym Chem, 2002, 40: 2209 − 2214 doi: 10.1002/pola.10307

    102. [102]

      Liu Xun(刘迅), Wu Yixian(吴一弦), Zhang Chenglong(张成龙), Zhang Pei(张蓓), Li Yan(李艳), Xu Xu(徐旭), Wu Guanying(武冠英). Acta Polymerica Sinica(高分子学报), 2007, (3): 255 − 261 doi: 10.3321/j.issn:1000-3304.2007.03.009

    103. [103]

      Li Y, Wu Y X, Xu X, Liang L H, Wu G Y. J Polym Sci, Part A: Polym Chem, 2007, 45: 3053 − 3061 doi: 10.1002/pola.22061

    104. [104]

      Li Y, Wu Y X, Liang L H, Li Y, Wu G Y. Chinese J Polym Sci, 2010, 28(1): 55 − 62 doi: 10.1007/s10118-010-8216-9

    105. [105]

      Huang Q, He P, Wang J, Wu Y X. Chinese J Polym Sci, 2013, 31(8): 1139 − 1147 doi: 10.1007/s10118-013-1304-x

    106. [106]

      Wu Yixian(吴一弦), Zou Yutian(邹宇田), Cheng Hong(程虹), Li Beite(李贝特). CN patent, 201110369407.8.2015-12-09

    107. [107]

      Wu Yixian(吴一弦), Huang Qiang(黄强). CN patent, 200910092795.2. 2012-12-12

    108. [108]

      Wu Yixian(吴一弦), Huang Qiang(黄强), Zhou Han(周晗), Jin Ruting(金如婷), He Ping(何平). US patent, 8937138. 2015-01-20

    109. [109]

      Chen Jianfeng(陈建峰), Gao Hua(高花), Wu Yixian(吴一弦), Zou Haikui(邹海魁), Chu Wenguang(初广文),Zhang Lei(张雷). US patent, 7776976. 2010-08-17

    110. [110]

      Chen J F, Gao H, Zou H K, Chu G W, Zhang L, Shao L, Xiang Y, Wu Y X. AIChE J, 2010, 56: 1053 − 1062

    111. [111]

      Hutley T J, Ouederni M. Polyolefin Compounds and Materials. Switzerland: springer International Publishing, 2016. 13 − 50

    112. [112]

      Gladysz J A. Chem Rev, 2000, 100(4): 1167 − 1168 doi: 10.1021/cr000450+

    113. [113]

      Chen C L. Nat Rev Chem, 2018, (2): 6 − 14

    114. [114]

      Mu H L, Pan L, Song D P, Li Y S. Chem Rev, 2015, 115(22): 12091 − 12137 doi: 10.1021/cr500370f

    115. [115]

      Tan C, Chen C L. Angew Chem Int Ed, 2019, 58(22): 7192 − 7200 doi: 10.1002/anie.201814634

    116. [116]

      Redshaw C, Tang Y. Chem Soc Rev, 2012, 41(12): 4484 − 4510 doi: 10.1039/c2cs35028a

    117. [117]

      Guo L H, Dai S Y, Sui X L, Chen C L. ACS Catal, 2016, 6(1): 428 − 441 doi: 10.1021/acscatal.5b02426

    118. [118]

      Yang P, Yang W T. Chem Rev, 2013, 113(7): 5547 − 5594 doi: 10.1021/cr300246p

    119. [119]

      Gladysz J A, Ball Z. T, Bertrand G, Blum S A, Dong V M, Dorta R, Hahn F E, Humphrey M. G, Jones W D, Klosin J, Manners I, Marks T J, Mayer J M, Rieger B, Ritter J C, Sattelberger A P, Schomaker J M, Yam V W W Organometallics, 2012, 31(1): 1 − 18

    120. [120]

      Chen Min(陈敏), Chen Changle(陈昶乐). Acta Polymerica Sinica(高分子学报), 2018, (11): 1372 − 1384 doi: 10.11777/j.issn1000-3304.2018.18155

    121. [121]

      Jian Zhongbao(简忠保). Acta Polymerica Sinica(高分子学报), 2018, (11): 1359 − 1371 doi: 10.11777/j.issn1000-3304.2018.18146

    122. [122]

      Yang X, Liu C, Wang C, Sun X, Guo Y, Wang X, Wang Z, Xie Z, Tang Y. Angew Chem Int Ed, 2009, 48(43): 8099 − 8102 doi: 10.1002/anie.200903334

    123. [123]

      Chen Z, Li J, Tao W, Sun X, Yang X, Tang Y. Macromolecules, 2013, 46(7): 2870 − 2875 doi: 10.1021/ma400283p

    124. [124]

      Wang X Y, Wang Y X, Shi X C, Liu J Y, Chen C L, Li Y S. Macromolecules, 2014, 47(2): 552 − 559 doi: 10.1021/ma4022696

    125. [125]

      Nakamura A, Ito S, Nozaki K. Chem Rev, 2009, 109(11): 5215 − 5244 doi: 10.1021/cr900079r

    126. [126]

      Guo L H, Liu W, Chen C L. Mater Chem Front, 2017, 1(12): 2487 − 2494 doi: 10.1039/C7QM00321H

    127. [127]

      Zhong L, Li G L, Liang G D, Gao H Y, Wu Q. Macromolecules, 2017, 50(7): 2675 − 2682 doi: 10.1021/acs.macromol.7b00121

    128. [128]

      Zhou S X, Chen C L. Sci Bull, 2018, 63(7): 441 − 445 doi: 10.1016/j.scib.2018.02.021

    129. [129]

      Zhang Y P, M u, H L Pan L, Wang X L, Li Y S. ACS Catal, 2018, 8(7): 5963 − 5976 doi: 10.1021/acscatal.8b01088

    130. [130]

      Dai S Y, Sui X L, Chen C L. Angew Chem Int Ed, 2015, 54(34): 9948 − 9953 doi: 10.1002/anie.201503708

    131. [131]

      Dai S Y, Chen C L. Angew Chem Int Ed, 2016, 55(42): 13281 − 13285 doi: 10.1002/anie.201607152

    132. [132]

      Sui X L, Dai S Y, Chen C L. ACS Catal, 2015, 5(10): 5932 − 5937 doi: 10.1021/acscatal.5b01490

    133. [133]

      Liu D T, Yao C, Wang R, Wang M, Wang Z, Wu C, Lin F, Li S, Wan X, Cui D M. Angew Chem Int Ed, 2015, 54(17): 5205 − 5209 doi: 10.1002/anie.201412166

    134. [134]

      Liu D T, Wang M, Wang Z, Wu C, Pan Y, Cui D M. , Angew Chem Int Ed, 2017, 56(10): 2714 − 2719 doi: 10.1002/anie.201611066

    135. [135]

      Liu B, Qiao K N, Fang J, Wang T T, Wang Z C, Liu D T, Xie Z G, Maron L, Cui D M. Angew Chem Int Ed, 2018, 57(45): 14896 − 14901 doi: 10.1002/anie.201808836

    136. [136]

      Li M, Wang X B, Luo Y, Chen C L. Angew Chem Int Ed, 2017, 56(38): 11604 − 11609 doi: 10.1002/anie.201706249

    137. [137]

      Zhang D, Chen C L. Angew Chem Int Ed, 2017, 56(46): 14672 − 14676 doi: 10.1002/anie.201708212

    138. [138]

      Chen M, Yang B P, Chen C L. Angew Chem Int Ed, 2015, 54(51): 15520 − 15524 doi: 10.1002/anie.201507274

    139. [139]

      Zhao M H, Chen C L. ACS Catal, 2017, 7(11): 7490 − 7494 doi: 10.1021/acscatal.7b02564

    140. [140]

      Xiang Y, Song L X, Shiono C T T, Cai Z G. ACS Macro Lett, 2019, 8(3): 299 − 303 doi: 10.1021/acsmacrolett.9b00005

    141. [141]

      Hu X, Ma X, Jian Z B. Polym Chem, 2019, 10(15): 1912 − 1919 doi: 10.1039/C9PY00026G

    142. [142]

      Gao J X, Cai W, Hu Y, Chen C L. Polym Chem, 2019, 10(12): 1416 − 1422 doi: 10.1039/C8PY01772G

    143. [143]

      Na Y N, Dai S Y, Chen C L. Macromolecules, 2018, 51(11): 4040 − 4048 doi: 10.1021/acs.macromol.8b00467

    144. [144]

      Na Y N, Zhang D, Chen C L. Polym Chem, 2017, 8(15): 2405 − 2409 doi: 10.1039/C7PY00127D

    145. [145]

      Kao C I, Camp G A, Combs R B. WO 9736942A1, 1997-10-09

    146. [146]

      Chen Z, Brookhart M. Acc Chem Res, 2018, 51(8): 1831 − 1839 doi: 10.1021/acs.accounts.8b00225

    147. [147]

      Wang F Z, Chen C L. Polym Chem, 2019, 10(19): 2354 − 2369 doi: 10.1039/C9PY00226J

    148. [148]

      Ma Z F, Yang W H, Sun W H. Chinese J Chem, 2017, 35(5): 531 − 540 doi: 10.1002/cjoc.201600720

    149. [149]

      Guo L H, Chen C L. Sci China Chem, 2015, 58(11): 1663 − 1673 doi: 10.1007/s11426-015-5433-7

    150. [150]

      Lian K, Zhu Y, Li W, Dai S Y, Chen C L. Macromolecules, 2017, 50(16): 6074 − 6080 doi: 10.1021/acs.macromol.7b01087

    151. [151]

      Fang J, Sui X L, Li Y G, Chen C L. Polym Chem, 2018, 9(30): 4143 − 4149 doi: 10.1039/C8PY00725J

    152. [152]

      Wang X, Fan L, Ma Y, Guo C Y, Solan G A, Sun Y, Sun W H. Polym Chem, 2017, 8(18): 2785 − 2795 doi: 10.1039/C7PY00434F

    153. [153]

      Guo L H, Zou C, Dai S Y, Chen C L. Polymers, 2017, 9(4): 122 − 131

    154. [154]

      Dai S Y, Chen C L. Macromolecules, 2018, 51(17): 6818 − 6824 doi: 10.1021/acs.macromol.8b01261

    155. [155]

      Stürzel M, Mihan S, Mülhaupt R. Chem Rev, 2016, 116(3): 1398 − 1433 doi: 10.1021/acs.chemrev.5b00310

    156. [156]

      Li M, Zhang P, Chen C L. Macromolecules, 2019, 52(15): 5646 − 5651 doi: 10.1021/acscatal.7b02564

    157. [157]

      Zou C, Dai S Y, Chen C L. Macromolecules, 2018, 51(1): 49 − 56 doi: 10.1021/acs.macromol.7b02156

    158. [158]

      Hong M, Chen E Y. Nat Chem, 2016, 8(1): 42 − 49 doi: 10.1038/nchem.2391

    159. [159]

      Hong M, Chen E YX. Angew Chem Int Ed, 2016, 55(13): 4188 − 4193 doi: 10.1002/anie.201601092

    160. [160]

      Zhang C J, Hu L F, Wu H L, Cao X H, Zhang X H. Macromolecules, 2018, 51(21): 8705 − 8711 doi: 10.1021/acs.macromol.8b01757

    161. [161]

      130 Lin L, Han D, Qin J, Wang S, Xiao M, Sun L. Macromolecules, 2018, 51(22): 9317 − 9322

    162. [162]

      Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed, 2017, 56(42): 12987 − 12990 doi: 10.1002/anie.201707122

    163. [163]

      Shen Y, Zhang J, Zhao N, Liu F, Li Z. Polym. Chem, 2018, 9(21): 2936 − 2941 doi: 10.1039/C8PY00389K

    164. [164]

      Shen Y, Zhang J, Zhao Z, Zhao N, Liu F, Li Z. Biomacromolecules, 2019, 20(1): 141 − 148 doi: 10.1021/acs.biomac.8b01239

    165. [165]

      Shen Y, Zhao Z, Li Y, Liu S, Liu F, Li Z. Polym Chem, 2019, 10(10): 1231 − 1237 doi: 10.1039/C8PY01812J

    166. [166]

      Tang Z, Chen X, Yang Y, Pang X, Sun J, Zhang X, Jing B. J Polym Sci, Part A: Polym Chem, 2004, 42(23): 5974 − 5982 doi: 10.1002/pola.20429

    167. [167]

      Tang Z H, Chen X S, Pang X, Yang Y K, Zhang X F, Jing X B. Biomacromolecules, 2004, 5(3): 965 − 970 doi: 10.1021/bm034467o

    168. [168]

      Wang Q, Zhao W, He J, Zhang Y, Chen E Y X. Macromolecules, 2017, 50(1): 123 − 136 doi: 10.1021/acs.macromol.6b02398

    169. [169]

      Li H, Zhao N, Ren C, Liu S, Li Z. Polym Chem, 2017, 8(47): 7369 − 7374 doi: 10.1039/C7PY01673E

    170. [170]

      Liu S, Li H, Zhao N, Li Z. ACS Macro Lett, 2018, 7(6): 624 − 628 doi: 10.1021/acsmacrolett.8b00353

    171. [171]

      Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y. J Am Chem Soc, 2019, 141(1): 281 − 289 doi: 10.1021/jacs.8b09739

    172. [172]

      Wang B, Pan L, Ma Z, Li Y. Macromolecules, 2018, 51(3): 836 − 845 doi: 10.1021/acs.macromol.7b02378

    173. [173]

      Zhao N, Ren C, Shen Y, Liu S, Li Z. Macromolecules, 2019, 52(3): 1083 − 1091 doi: 10.1021/acs.macromol.8b02690

    174. [174]

      Klok H A. Angew Chem Int Ed, 2002, 41(9): 1509 − 1513 doi: 10.1002/cber.190603901133

    175. [175]

      Dimitrov I, Schlaad H. Chem Commun, 2003, 2944 − 2945

    176. [176]

      Cheng Y, He C, Ding J, Xiao C, Zhuang X, Chen X. Biomaterials, 2013, 34(38): 10338 − 10347 doi: 10.1016/j.biomaterials.2013.09.064

    177. [177]

      Fang H, Guo Z, Lin L, Chen J, Sun P, Wu J, Xu C, Tian H, Chen X. J Am Chem Soc, 2018, 140(38): 11992 − 12000 doi: 10.1021/jacs.8b05341

    178. [178]

      Li J, Wang T, Wu D, Zhang X, Yan J, Du S, Guo Y, Wang J, Zhang A. Biomacromolecules, 2008, 9(10): 2670 − 2676 doi: 10.1021/bm800394p

    179. [179]

      Yan J, Liu K, Zhang X, Wen L, Zhang A. J Polym Sci, Part A: Polym Chem, 2015, 53(1): 33 − 41 doi: 10.1002/pola.27433

    180. [180]

      Chen C, Wang Z, Li Z. Biomacromolecules, 2011, 12(8): 2859 − 2863 doi: 10.1021/bm200849m

    181. [181]

      Shen Y, Fu X, Fu W, Li Z. Chem Soc Rev, 2015, 44(3): 612 − 622 doi: 10.1039/C4CS00271G

    182. [182]

      Yang C, Gao L, Lin J, Wang L, Cai C, Wei Y, Li Z. Angew Chem Int Ed, 2017, 56(20): 5546 − 5550 doi: 10.1002/anie.201701978

    183. [183]

      Yuan J, Zhang Y, Li Z, Wang Y, Lu H. ACS Macro Lett, 2018, 7(8): 892 − 897 doi: 10.1021/acsmacrolett.8b00465

    184. [184]

      Hou Y, Yuan J, Zhou Y, Yu J, Lu H. J Am Chem Soc, 2016, 138(34): 10995 − 11000 doi: 10.1021/jacs.6b05413

    185. [185]

      Hou Y, Zhou Y, Wang H, Wang R, Yuan J, Hu Y, Sheng K, Feng J, Yang S, Lu H. J Am Chem Soc, 2017, 140(3): 1170 − 1178

    186. [186]

      Zhang X, Wang S, Liu J, Xie Z, Luan S, Xiao C, Tao Y, Wang X. ACS Macro Lett., 2016, 5(9): 1049 − 1054 doi: 10.1021/acsmacrolett.6b00530

    187. [187]

      Wu Y, Zhang D, Ma P, Zhou R, Hua L, Liu R. Nat Comm, 2018, 9: 5279 − 5289 doi: 10.1038/s41467-018-07685-x

    188. [188]

      Wan Xinhua(宛新华), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(2): 99 − 101 doi: 10.11777/j.issn1000-3304.2019.19006

    189. [189]

      Tao X, Deng Y, Shen Z, Ling J. Macromolecules, 2014, 47(18): 6173 − 6180 doi: 10.1021/ma501131t

    190. [190]

      Song Tao(宋涛), Xi Yuejing(奚悦静), Du Jianzhong(杜建忠). Acta Polymerica Sinica(高分子学报), 2018, (1): 119 − 128 doi: 10.11777/j.issn1000-3304.2018.17229

    191. [191]

      Wang C, Luo L, Yamamoto H. Acc Chem Res, 2016, 49(2): 193 − 204 doi: 10.1021/acs.accounts.5b00428

    192. [192]

      Tokunaga M, Larrow J F, Kakiuchi F, Jacobsen E N. Science, 1997, 277(5328): 936 − 938 doi: 10.1126/science.277.5328.936

    193. [193]

      Nozaki K, Nakano K, Hiyama T. J Am Chem Soc, 1999, 121(47): 11008 − 11009 doi: 10.1021/ja992433b

    194. [194]

      Nakano K, Nozaki K, Hiyama, T. J Am Chem Soc, 2003, 125(18): 5501 − 5510 doi: 10.1021/ja028666b

    195. [195]

      Cheng M, Darling N A, Lobkovsky E B, Coates G W. Chem Commun, 2000, 20: 2007 − 2008

    196. [196]

      Nishioka K, Goto H, Sugimoto H. Macromolecules, 2012, 45(20): 8172 − 8192 doi: 10.1021/ma301696d

    197. [197]

      Xiao Y, Wang Z, Ding K. Chem Eur J, 2005, 11(12): 3668 − 3678 doi: 10.1002/chem.200401159

    198. [198]

      Hua Y Z, Lu L J, Huang P J, Wei D H, Tang M S, Wang M C, Chang J B. Chem Eur J, 2014, 20(39): 12394 − 12398 doi: 10.1002/chem.201403088

    199. [199]

      Ellis W C, Jung Y, Mulzer M, Di Girolamo R, Lobkovsky E B, Coates G W. Chem Sci, 2014, 5(10): 4004 − 4011 doi: 10.1039/C4SC01686F

    200. [200]

      Shi L, Lu X B, Zhang R, Peng X J, Zhang C Q, Li J F, Peng X M. Macromolecules, 2006, 39(17): 5679 − 5685 doi: 10.1021/ma060290p

    201. [201]

      Wu G P, Ren W M, Luo Y, Li B, Zhang W Z, Lu X B. J Am Chem Soc, 2012, 134(12): 5682 − 5688 doi: 10.1021/ja300667y

    202. [202]

      Wu G P, Jiang S D, Lu X B, Ren W M, Yan S K. Chinese J Polym Sci, 2012, 30(4): 487 − 492 doi: 10.1007/s10118-012-1171-x

    203. [203]

      Liu Y, Ren W M, Liu J, Lu X B. Angew Chem Int Ed, 2013, 52(44): 11594 − 11598 doi: 10.1002/anie.201305154

    204. [204]

      Liu Y, Ren W M, Liu C, Fu S, Wang M, He K K, Li R R, Lu X B. Macromolecules, 2014, 47(22): 7775 − 7788 doi: 10.1021/ma5019186

    205. [205]

      Liu Y, Wang M, Ren W M, He K K, Xu Y C, Liu J, Lu X B. Macromolecules, 2014, 47(4): 1269 − 1276 doi: 10.1021/ma500112c

    206. [206]

      Liu Y, Ren W M, He K K, Lu X B. Nat Commun, 2014, 5: 5687 doi: 10.1038/ncomms6687

    207. [207]

      Liu Y, Ren W M, Wang M, Liu C, Lu X B. Angew Chem Int Ed, 2015, 54(7): 2241 − 2244 doi: 10.1002/anie.201410692

    208. [208]

      Liu Y, He K, Ren W, Li R, Lu X. Sci China Chem, 2016, 59(11): 1415 − 1420 doi: 10.1007/s11426-016-0212-1

    209. [209]

      Zhao Z, Ren P, Liu Y, Zhao K, Lu X B, Zhang W. J Energy Chem, 2018, 27(2): 361 − 366 doi: 10.1016/j.jechem.2017.12.016

    210. [210]

      Liu Y, Ren W M, Zhang W P, Zhao R R, Lu X B. Nat Commun, 2015, 6: 8594 doi: 10.1038/ncomms9594

    211. [211]

      Liu Y, Wang M, Ren W M, Xu Y C, Lu X B. Angew Chem Int Ed, 2015, 54(24): 7042 − 7046 doi: 10.1002/anie.201501417

    212. [212]

      Lv Xiaobing(吕小兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1166 − 1178

    213. [213]

      Luo M, Zhang X H, Du B Y, Wang Q, Fan Z Q. Macromolecules, 2013, 46(15): 5899 − 5904 doi: 10.1021/ma401114m

    214. [214]

      Luo M, Zhang X H, Darensbourg D J. Acc Chem Res, 2016, 49(10): 2209 − 2219 doi: 10.1021/acs.accounts.6b00345

    215. [215]

      Zhang C J, Zhang X H. Chinese J Polym Sci, 2019, 37(10): 1 − 8

    216. [216]

      Yang J L, Wu H L, Li Y, Zhang X H, Darensbourg D J. Angew Chem Int Ed, 2017, 56(21): 5774 − 5779 doi: 10.1002/anie.201701780

    217. [217]

      Zhang C J, Wu H L, Li Y, Yang J L, Zhang X H. Nat Commun, 2018, 9(1): 2137 doi: 10.1038/s41467-018-04554-5

    218. [218]

      Wan Xinhua(宛新华), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2018, (7): 773 − 775 doi: 10.11777/j.issn1000-3304.2018.18139

    219. [219]

      Wu H L, Yang J L, Luo M, Wang R Y, Xu J T, Du B Y, Zhang X H, Darensbourg D J. Macromolecules, 2016, 49(23): 8863 − 8868 doi: 10.1021/acs.macromol.6b02285

    220. [220]

      Zhang C J, Zhu T C, Cao X H, Hong X, Zhang X H. J Am Chem Soc, 2019, 141(13): 5490 − 5496 doi: 10.1021/jacs.9b00544

    221. [221]

      Ren W M, Liu Y, Xin A X, Fu S, Lu X B. Macromolecules, 2015, 48(23): 8445 − 8450 doi: 10.1021/acs.macromol.5b02108

    222. [222]

      Yue T J, Ren W M, Chen L, Gu G G, Liu Y, Lu X B. Angew Chem Int Ed, 2018, 57(39): 12670 − 12674 doi: 10.1002/anie.201805200

    223. [223]

      Longo J M, Sanford M J, Coates G W. Chem Rev, 2016, 116(24): 15167 − 15197 doi: 10.1021/acs.chemrev.6b00553

    224. [224]

      Li J, Liu Y, Ren W M, Lu X B. J Am Chem Soc, 2016, 138(36): 11493 − 11496 doi: 10.1021/jacs.6b07520

    225. [225]

      Li J, Ren B H, Chen S Y, He G H, Liu Y, Ren W M, Zhou H, Lu X B. ACS Catal, 2019, 9(3): 1915 − 1922 doi: 10.1021/acscatal.9b00113

    226. [226]

      Lu X B, Ren W M, Wu G P. Acc Chem Res, 2012, 45(10): 1721 − 1735 doi: 10.1021/ar300035z

    227. [227]

      Lu X B, Wang Y. Angew Chem Int Ed, 2004, 43(27): 3574 − 3577 doi: 10.1002/anie.200453998

    228. [228]

      Lu X B, Shi L, Wang Y M, Zhang R, Zhang Y J, Peng X J, Zhang Z C, Li B. J Am Chem Soc, 2006, 128(5): 1664 − 1674 doi: 10.1021/ja056383o

    229. [229]

      Ren W M, Zhang W Z, Lu X B. Sci China Chem, 2010, 53(8): 1646 − 1652 doi: 10.1007/s11426-010-4049-1

    230. [230]

      Ren W M, Liu Y, Wu G P, Liu J, Lu X B. J Polym Sci, Part A: Polym Chem, 2011, 49(22): 4894 − 4901 doi: 10.1002/pola.24945

    231. [231]

      Wu G P, Wei S H, Ren W M, Lu X B, Li B, Zu Y P, Darensbourg D J. Energy & Environ Sci, 2011, 4(12): 5084 − 5092

    232. [232]

      Ren W M, Liang M W, Xu Y C, Lu X B. Polym Chem, 2013, 4(16): 4425 − 4433 doi: 10.1039/c3py00554b

    233. [233]

      Wu G P, Xu P X, Lu X B, Zu Y P, Wei S H, Ren W M, Darensbourg D J. Macromolecules, 2013, 46(6): 2128 − 2133 doi: 10.1021/ma400252h

    234. [234]

      Ren W M, Yue T J, Zhang X, Gu G G, Liu Y, Lu X B. Macromolecules, 2017, 50(18): 7062 − 7069 doi: 10.1021/acs.macromol.7b01317

    235. [235]

      Li J, Ren B H, Wan Z Q, Chen S Y, Liu Y, Ren W M, Lu X B. J Am Chem Soc, 2019, 141: 8937 − 8942 doi: 10.1021/jacs.9b02722

    236. [236]

      Xu K, Peng H, Sun Q, Dong Y, Salhi F, Luo J, Chen J, Huang Y, Zhang D, Xu Z, Tang B. Macromolecules, 2002, 35(15): 5821 − 5834 doi: 10.1021/ma020365z

    237. [237]

      Dong H, Zheng R, Lam J W Y, Häussler M, Qin A, Tang B. Macromolecules, 2005, 38(15): 6382 − 6391 doi: 10.1021/ma050342v

    238. [238]

      Zhang Y, Zhao E, Deng H, Lam J W Y, Tang B. Polym Chem, 2016, 7(14): 2492 − 2500 doi: 10.1039/C6PY00050A

    239. [239]

      Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. J Am Chem Soc, 2013, 135(23): 8448 − 8451

    240. [240]

      Cheng T, Chen Y, Qin A, Tang B. Macromolecules, 2018, 51(15): 5638 − 5645 doi: 10.1021/acs.macromol.8b01179

    241. [241]

      Kolb H C, Finn M G, Sharpless K B. Angew Chem Int Ed, 2001, 40(11): 2004 − 2021 doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

    242. [242]

      Tang W, Becker M L. Chem Soc Rev, 2014, 43(20): 7013 − 7039 doi: 10.1039/C4CS00139G

    243. [243]

      Meng X, Edgar K J. Prog Polym Sci, 2016, 53: 52 − 85 doi: 10.1016/j.progpolymsci.2015.07.006

    244. [244]

      Wu Y, He B, Wang J, Hu R, Zhao Z, Huang F, Qin A, Tang B. Macromol Rapid Commun, 2017, 38(4): 1600620 doi: 10.1002/marc.201600620

    245. [245]

      Qin A, Lam J W Y, Tang B. Chem Soc Rev, 2010, 39(7): 2522 − 2544 doi: 10.1039/b909064a

    246. [246]

      Yao B, Sun J, Qin A, Tang B. Chin Sci Bull, 2013, 58(22): 2711 − 2718 doi: 10.1007/s11434-013-5892-1

    247. [247]

      Liu Y, Qin A, Tang B. Prog Polym Sci, 2018, 78: 92 − 138 doi: 10.1016/j.progpolymsci.2017.09.004

    248. [248]

      Wang J, Li B, Xin D, Hu R, Zhao Z, Qin A, Tang B. Polym Chem, 2017, 8(17): 2713 − 2722 doi: 10.1039/C7PY00363C

    249. [249]

      Shi Y, Bai T, Bai W, Wang Z, Chen M, Yao B, Sun J, Qin A, Ling J, Tang B. Chem Eur J, 2017, 23(45): 10725 − 10731 doi: 10.1002/chem.201702966

    250. [250]

      Qin A, Lam J W Y, Tang L, Jim C K W, Zhao H, Sun J, Tang B. Macromolecules, 2009, 42(5): 1421 − 1424 doi: 10.1021/ma8024706

    251. [251]

      Wu Y, Qin A, Tang B Z. Chinese J Polym Sci, 2017, 35(2): 141 − 154 doi: 10.1007/s10118-017-1882-0

    252. [252]

      Li Z, Yu G, Hu P, Ye C, Liu Y, Qin J, Li Z. Macromolecules, 2009, 42(5): 1589 − 1596 doi: 10.1021/ma8025223

    253. [253]

      Guo J, Wei Y, Zhou D, Cai P, Jing X, Chen X S, Huang Y. Biomacromolecules, 2011, 12(3): 737 − 746 doi: 10.1021/bm1013662

    254. [254]

      Yang L, Liu X, Tan X, Yang H, Wang Z, Zhang X. Polym Chem, 2014, 5(2): 323 − 326 doi: 10.1039/C3PY01161E

    255. [255]

      Zhao B, Gao Z, Zheng Y, Gao C. J Am Chem Soc, 2019, 141(11): 4541 − 4546 doi: 10.1021/jacs.9b00172

    256. [256]

      Zhang L, Chen X, Xue P, Sun H H Y, Williams I D, Sharpless K B, Fokin V V, Jia G. J Am Chem Soc, 2005, 127(46): 15998 − 15999 doi: 10.1021/ja054114s

    257. [257]

      Qin A, Lam J W Y, Jim C K W, Zhang L, Yan J, Häussler M, Liu J, Dong Y, Liang D, Chen E, Jia G, Tang B. Macromolecules, 2008, 41(11): 3808 − 3822 doi: 10.1021/ma800538m

    258. [258]

      Huang D, Liu Y, Qin A, Tang B. Macromolecules, 2019, 52(5): 1985 − 1992 doi: 10.1021/acs.macromol.8b02671

    259. [259]

      Qin A, Liu Y, Tang B. Macromol Chem Phys, 2015, 216(8): 818 − 828 doi: 10.1002/macp.201400571

    260. [260]

      Qin A, Tang L, Lam J W Y, Jim C K W, Yu Y, Zhao H, Sun J, Tang B. Adv Funct Mater, 2009, 19(12): 1891 − 1900 doi: 10.1002/adfm.200801933

    261. [261]

      Li H, Wang J, Sun J Z, Hu R, Qin A, Tang B. Polym Chem, 2012, 3(4): 1075 − 1083 doi: 10.1039/c2py00586g

    262. [262]

      Wang Q, Li H, Wei Q, Sun J, Wang J, Zhang X A, Qin A, Tang B. Polym Chem, 2013, 4(5): 1396 − 1401 doi: 10.1039/C2PY20797D

    263. [263]

      Wu Y, He B, Quan C, Zheng C, Deng H, Hu R, Zhao Z, Huang F, Qin A, Tang B. Macromol Rapid Commun, 2017, 38(18): 1700070 doi: 10.1002/marc.201700070

    264. [264]

      Liu Y, Wang J, Huang D, Zhang J, Guo S, Hu R, Zhao Z, Qin A, Tang B. Polym Chem, 2015, 6(31): 5545 − 5549 doi: 10.1039/C5PY00186B

    265. [265]

      Liu J, Lam J W Y, Jim C K W, Ng J C Y, Shi J, Su H, Yeung K F, Hong Y, Faisal M, Yu Y, Wong K S, Tang B. Macromolecules, 2011, 44(1): 68 − 79 doi: 10.1021/ma1023473

    266. [266]

      Jim C K W, Qin A, Lam J W Y, Mahtab F, Yu Y, Tang B. Adv Funct Mater, 2010, 20(8): 1319 − 1328 doi: 10.1002/adfm.200901943

    267. [267]

      Huang D, Liu Y, Guo S, Li B, Wang J, Yao B, Qin A, Tang B. Polym Chem, 2019, 10(23): 3088 − 3096 doi: 10.1039/C9PY00161A

    268. [268]

      Han J, Zhao B, Gao Y, Tang A, Gao C. Polym Chem, 2011, 2(10): 2175 − 2178 doi: 10.1039/c1py00235j

    269. [269]

      Yao B, Hu T, Zhang H, Li J, Sun J, Qin A, Tang B. Macromolecules, 2015, 48(21): 7782 − 7791 doi: 10.1021/acs.macromol.5b01868

    270. [270]

      He B, Zhen S, Wu Y, Hu R, Zhao Z, Qin A, Tang B. Polym Chem, 2016, 7(48): 7375 − 7382 doi: 10.1039/C6PY01501H

    271. [271]

      He B, Su H, Bai T, Wu Y, Li S, Gao M, Hu R, Zhao Z, Qin A, Ling J, Tang B. J Am Chem Soc, 2017, 139(15): 5437 − 5443 doi: 10.1021/jacs.7b00929

    272. [272]

      Zhang J, Sun J Z, Qin A, Tang B. Macromolecules, 2019, 52(8): 2949 − 2955 doi: 10.1021/acs.macromol.9b00306

    273. [273]

      Sun Z, Huang H, Li L, Liu L, Chen Y. Macromolecules, 2017, 50(21): 8505 − 8511 doi: 10.1021/acs.macromol.7b01788

    274. [274]

      Sun X L, Liu D M, Tian D, Zhang X Y, Wu W, Wan W M. Nat Commun, 2017, 8(1): 1210 doi: 10.1038/s41467-017-01472-w

    275. [275]

      Ma N, Li Y, Xu H, Wang Z, Zhang X. J Am Chem Soc, 2010, 132(2): 442 − 443 doi: 10.1021/ja908124g

    276. [276]

      Ji S, Cao W, Yu Y, Xu H. Angew Chem Int Ed, 2014, 53(26): 6781 − 6785 doi: 10.1002/anie.201403442

    277. [277]

      Xia J, Li T, Lu C, Xu H. Macromolecules, 2018, 51(19): 7435 − 7455 doi: 10.1021/acs.macromol.8b01597

    278. [278]

      Xu H, Cao W, Zhang X. Acc Chem Res, 2013, 46(7): 1647 − 1658 doi: 10.1021/ar4000339

    279. [279]

      Cao W, Gu Y, Meineck M, Li T, Xu H. J Am Chem Soc, 2014, 136(13): 5132 − 5137 doi: 10.1021/ja500939m

    280. [280]

      Huang W, Su L, Bo Z. J Am Chem Soc, 2009, 131(30): 10348 − 10349 doi: 10.1021/ja9033846

    281. [281]

      Zhang W, Lu P, Wang Z, Ma Y. J Polym Sci, Part A: Polym Chem, 2013, 51(9): 1950 − 1955 doi: 10.1002/pola.26573

    282. [282]

      Li J, Fu H, Hu P, Zhang Z, Li X, Cheng Y. Chem Eur J, 2012, 18(44): 13941 − 13944 doi: 10.1002/chem.201202162

    283. [283]

      Deng H, Han T, Zhao E, Kwok R T K, Lam J W Y, Tang B. Macromolecules, 2016, 49(15): 5475 − 5483 doi: 10.1021/acs.macromol.6b01217

    284. [284]

      Deng H, Zhao E, Li H, Lam J W Y, Tang B Z. Macromolecules, 2015, 48(10): 3180 − 3189 doi: 10.1021/acs.macromol.5b00644

    285. [285]

      Deng H, Han T, Zhao E, Kwok R T K, Lam J W Y, Tang B. Polym Chem, 2016, 7(36): 5646 − 5654 doi: 10.1039/C6PY01337F

    286. [286]

      Han T, Deng H, Qiu Z, Zhao Z, Zhang H, Zou H, Leung N L C, Shan G, Elsegood M R J, Lam J W Y, Tang B. J Am Chem Soc, 2018, 140(16): 5588 − 5598 doi: 10.1021/jacs.8b01991

    287. [287]

      Xu L, Hu R, Tang B Z. Macromolecules, 2017, 50(16): 6043 − 6053 doi: 10.1021/acs.macromol.7b01096

    288. [288]

      Xu L, Zhou F, Liao M, Hu R, Tang B Z. Polym Chem, 2018, 9(13): 1674 − 1683 doi: 10.1039/C7PY01983A

    289. [289]

      Xu L, Zhou T, Liao M, Hu R, Tang B Z. ACS Macro Lett, 2019, 8(2): 101 − 106 doi: 10.1021/acsmacrolett.8b00884

    290. [290]

      Zhang J, Wang W, Liu Y, Sun J Z, Qin A, Tang B Z. Macromolecules, 2017, 50(21): 8554 − 8561 doi: 10.1021/acs.macromol.7b01592

    291. [291]

      Song B, Hu K, Qin A, Tang B Z. Macromolecules, 2018, 51(18): 7013 − 7018 doi: 10.1021/acs.macromol.8b01293

    292. [292]

      Song B, He B, Qin A, Tang B Z. Macromolecules, 2018, 51(1): 42 − 48 doi: 10.1021/acs.macromol.7b02109

    293. [293]

      Li W, Wu X, Zhao Z, Qin A, Hu R, Tang B. Macromolecules, 2015, 48(21): 7747 − 7754 doi: 10.1021/acs.macromol.5b02193

    294. [294]

      Tian T, Hu R, Tang B Z. J Am Chem Soc, 2018, 140(19): 6156 − 6163 doi: 10.1021/jacs.8b02886

    295. [295]

      Deng X X, Li L, Li Z L, Lv A, Du F S, Li Z C. ACS Macro Lett, 2012, 1(11): 1300 − 1303 doi: 10.1021/mz300456p

    296. [296]

      Zhao Y, Yu Y, Zhang Y, Wang X, Yang B, Zhang Y, Zhang Q, Fu C, Wei Y, Tan L. Polym Chem, 2015, 6(27): 4940 − 4945 doi: 10.1039/C5PY00684H

    297. [297]

      Chan C Y K, Tseng N W, Lam J W Y, Liu J, Kwok R T K, Tang B Z. Macromolecules, 2013, 46(9): 3246 − 3256 doi: 10.1021/ma4005346

    298. [298]

      Liu Y, Gao M, Lam J W Y, Hu R, Tang B Z. Macromolecules, 2014, 47(15): 4908 − 4919 doi: 10.1021/ma501477w

    299. [299]

      Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37 − 49 doi: 10.11777/j.issn1000-3304.2017.16262

    300. [300]

      Song C X, Feng X D. Macromolecules, 1984, 17(12): 2764 − 2767 doi: 10.1021/ma00142a057

    301. [301]

      Shen Y Q, Shen Z Q, Zhang Y F, Yao K M. Macromolecules, 1996, 29(26): 8289 − 8295 doi: 10.1021/ma9518060

    302. [302]

      Liu Y, Wang L X, Pan C Y. Macromolecules, 1999, 32(25): 8301 − 8305 doi: 10.1021/ma991093b

    303. [303]

      Lv W, Li N, Li Y L, Li Y, Xia A D. J Am Chem Soc, 2006, 128(31): 10281 − 10287 doi: 10.1021/ja063004y

    304. [304]

      Lu P, Lam J W Y, Liu J, Jim C K W, Yuan W, Chan C Y K, Xie N, Hu Q, Cheuk K K L, Tang B. Macromolecules, 2011, 44(15): 5977 − 5986 doi: 10.1021/ma201203w

    305. [305]

      Liu B, Cui D, Tang T. Angew Chem Int Ed, 2016, 55(39): 11975 − 11978 doi: 10.1002/anie.201605038

    306. [306]

      Lutz J F. Polym Chem, 2010, 1(1): 55 − 62 doi: 10.1021/jacs.9b00172

    307. [307]

      Ji Y, Zhang L, Gu X, Zhang W, Zhou N, Zhang Z, Zhu X. Angew Chem Int Ed, 2017, 56(9): 2328 − 2333 doi: 10.1002/anie.201610305

    308. [308]

      Ji H Y, Wang B, Pan L, Li Y S. Angew Chem Int Ed, 2018, 57(51): 16888 − 16892 doi: 10.1002/anie.201810083

    309. [309]

      Zhang Z, Zeng T Y, Xia L, Hong C Y, Wu D C, You Y Z. Nat Commun, 2018, 9(1): 2577 doi: 10.1038/s41467-018-05000-2

    310. [310]

      Yue T J, Zhang M C, Gu G G, Wang L Y, Ren W M, Lu X B. Angew Chem Int Ed, 2019, 58(2): 618 − 623 doi: 10.1002/anie.201812135

    311. [311]

      Ureta E, Smid J, Szwarc M. J Polym Sci, Part A: Polym Chem, 1966, 4(9PA1): 2219 − 2228

    312. [312]

      Ding J, Li Y, Shen K H, Wang B, Wang Y R. Chinese Chem Lett, 2012, 23(6): 749 − 752 doi: 10.1016/j.cclet.2012.03.012

    313. [313]

      Ma H, Wang Q, Sang W, Li H, Liu P, Chen J, Li Y, Wang Y R. Macromol Rapid Commun, 2015, 36(8): 726 − 732 doi: 10.1002/marc.201400660

    314. [314]

      Huang W, Ma H, Han L, Liu P, Yang L, Shan H, Hao X, Li Y. Macromolecules, 2018, 51(10): 3746 − 3757 doi: 10.1021/acs.macromol.8b00666

    315. [315]

      Ma H, Han L, Li Y. Macromol Chem Phys, 2017, 218(12): 1600420

    316. [316]

      Yang L, Ma H, Han L, Liu P, Shen H, Li C, Li Y. Macromolecules, 2018, 51(15): 5891 − 5903 doi: 10.1021/acs.macromol.8b01491

    317. [317]

      Busson R, van Beylen M. Macromolecules, 1977, 10(6): 1320 − 1326 doi: 10.1021/ma60060a030

    318. [318]

      Liu P, Ma H, Han L, Yang L, Shen H, Li C, Li Y. Polymer, 2018, 147: 157 − 163 doi: 10.1016/j.polymer.2018.06.006

    319. [319]

      Liu P, Ma H, Huang W, Shen H, Wu L, Li Y, Wang Y R. Polymer, 2016, 97: 167 − 173 doi: 10.1016/j.polymer.2016.05.015

    320. [320]

      Liu P, Ma H, Huang W, Han L, Shen H, Bai Y, Li Y. Polym Chem, 2017, 8(11): 1778 − 1789 doi: 10.1039/C6PY02229D

    321. [321]

      Sang W, Ma H, Wang Q, Hao X, Zheng Y, Wang Y, Li Y. Polym Chem, 2016, 7(1): 219 − 234 doi: 10.1039/C5PY01562F

    322. [322]

      Liu P, Ma H, Han L, Shen H, Yang L, Li C, Hao X, Li Y. Angew Chem Int Ed, 2018, 57(50): 16538 − 16543 doi: 10.1002/anie.201809857

    323. [323]

      Yu Z N, Wan X H, Zhang H, Chen X F, Zhou Q F. Chem Commun, 2003, (8): 974 − 975 doi: 10.1039/b212916g

    324. [324]

      Li Xiaofu(李肖夫), Wang Rong(王荣), Chu Yang(褚杨), Zheng Yijun(郑宜君), Zhang Jie(张洁), Wan Xinhua (宛新华). Acta Polymerica Sinica(高分子学报), 2017, (10): 1609 − 1615 doi: 10.11777/j.issn1000-3304.2017.17157

    325. [325]

      Zhi J G, Zhu Z G, Liu A H, Cui J X, Wan X H, Zhou Q F. Macromolecules, 2008, 41: 1594 − 1597 doi: 10.1021/ma8000115

    326. [326]

      Zhang J, Chen X F, Wei H B, Wan X H. Chem Soc Rev, 2013, 42: 9127 − 9154 doi: 10.1039/c3cs60192g

    327. [327]

      Wang S, Feng X Y, Zhang J, Yu P, Guo Z X, Li Z B, Wan X H. Macromolecules, 2017, 50: 3489 − 3499 doi: 10.1021/acs.macromol.7b00615

    328. [328]

      Wang S, Shi G, Guan X Y, Zhang J, Wan X H. Macromolecules, 2018, 51(4): 1251 − 1259 doi: 10.1021/acs.macromol.8b00078

    329. [329]

      Wang S, Chen J X, Feng X Y, Shi G, Zhang J, Wan X H. Macromolecules, 2017, 50: 4610 − 4615 doi: 10.1021/acs.macromol.7b01028

    330. [330]

      Zhou L, Jiang Z Q, Xu L, Liu N, Wu Z Q. Chinese J Polym Sci, 2017, 35: 1447 − 1456 doi: 10.1007/s10118-017-2003-9

    331. [331]

      Zhou L, Shen L, Huang J, Liu N, Zhu Y Y, Wu Z Q. Chinese J Polym Sci, 2018, 36: 163 − 170 doi: 10.1007/s10118-018-2044-8

    332. [332]

      Wan X H. Sci China Chem, 2019, 62(7): 883 − 884 doi: 10.1007/s11426-019-9467-3

    333. [333]

      Zhou L, Chu B F, Xu X Y, Xu L, Liu N, Wu Z Q. ACS Macro Lett, 2017, 6: 824 − 829 doi: 10.1021/acsmacrolett.7b00439

    334. [334]

      Flory P J. J Am Chem Soc, 1952, 74(11): 2718 − 2723 doi: 10.1021/ja01131a008

    335. [335]

      Kim Y, Webster O. Hyperbranched polyphenylenes. ACS Division of Polymer Chemistry Meeting, 1988. 310 − 311

    336. [336]

      Yan D, Gao C. Macromolecules, 2000, 33(21): 7693 − 7699 doi: 10.1021/ma000438j

    337. [337]

      Peng H, Cheng L, Luo J D, Xu K T, Sun Q H, Dong Y P, Salhi F, Lee P P, Chen J W, Tang B Z. Macromolecules, 2002, 35(14): 5349 − 5351 doi: 10.1021/ma020180s

    338. [338]

      Yan D Y, Zhou Y F, Hou J. Science, 2004, 303(5654): 65 − 67 doi: 10.1126/science.1090763

    339. [339]

      Yu X H, Feng J, Zhuo R X. Macromolecules, 2005, 38(15): 6244 − 6247 doi: 10.1021/ma048839c

    340. [340]

      Che P C, He Y N, Wang X G. Macromolecules, 2005, 38(21): 8657 − 8663 doi: 10.1021/ma0511393

    341. [341]

      Jia Z F, Chen H, Zhu X Y, Yan D Y. J Am Chem Soc, 2006, 128(25): 8144 − 8145 doi: 10.1021/ja062314d

    342. [342]

      Tian L F, Shu X, Zhu J. Adv Mater, 2007, 19(24): 4548 − 4551 doi: 10.1002/adma.200701948

    343. [343]

      Hong C Y, You Y Z, Wu D C, Liu Y, Pan C Y. J Am Chem Soc, 2007, 129(17): 5354 − 5355 doi: 10.1021/ja070871+

    344. [344]

      Sun M, Hong C Y, Pan C Y. J Am Chem Soc, 2012, 134(51): 20581 − 20584 doi: 10.1021/ja310236m

    345. [345]

      Li J, Sun M H, Bo Z S. J Polym Sci, Part A: Polym Chem, 2017, 45(6): 1084 − 1092 doi: 10.1021/ja9033846

    346. [346]

      Ding L, Zhang L Y, Han H J, Huang W, Song C M, Xie M R, Zhang Y Q. Macromolecules, 2009, 42(14): 5036 − 5042 doi: 10.1021/ma900412b

    347. [347]

      Dong Z M, Liu X H, Tang XL, Li Y S. Macromolecules, 2009, 42(13): 4596 − 4603 doi: 10.1021/ma9005796

    348. [348]

      Tan Q H, Wang L, Ma L, Yu H J, Liu Q Q, Xiao A G. Macromolecules, 2009, 42(13): 4500 − 4510 doi: 10.1021/ma900094p

    349. [349]

      Zhang C B, Zhou Y, Liu Q, Li S X, Perrier S B, Zhao Y L. Macromolecules, 2011, 44(7): 2034 − 2049 doi: 10.1021/ma1024736

    350. [350]

      Tomalia D A, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Polym J, 1985, 17(1): 117 − 132 doi: 10.1295/polymj.17.117

    351. [351]

      Zhang X, Xu H P, Dong Z Y, Wang Y P, Liu J Q, Shen J C. J Am Chem Soc, 2004, 126(34): 10556 − 10557 doi: 10.1021/ja048890w

    352. [352]

      Li Z A, Wu W B, Li Q Q, Yu G, Xiao L, Liu Y Q, Ye C, Qin J G, Li Z. Angew Chem Int Ed, 2010, 49(15): 2763 − 2767 doi: 10.1002/anie.200906946

    353. [353]

      Zhang X, Zhang Z J, Xu X H, Li Y K, Li Y C, Jian Y T, Gu Z W. Angew Chem Int Ed, 2015, 54(14): 4289 − 4294 doi: 10.1002/anie.201500683

    354. [354]

      Zhang L. Zou B, Dong B, Huo F W, Zhang X, Chi L F, Jiang L. Chem Commun, 2001, (19): 1906 − 1907 doi: 10.1039/b103903m

    355. [355]

      Zhang L, Huo F, Wang Z Q, Wu L X, Zhang X. Langmuir, 2000, 16(8): 3813 − 3817 doi: 10.1021/la990923b

    356. [356]

      Yang M, Wang W, Yuan F, Zhang X W, Li J Y, Liang F X, He B L, Minch B, Wegner G. J Am Chem Soc, 2005, 127(43): 15107 − 15111 doi: 10.1021/ja052713t

    357. [357]

      Zhang X J, Wang Y L, Wang W, Bolisetty S, Lu Y, Ballauff M. Langmuir, 2009, 25(4): 2075 − 2080 doi: 10.1021/la803840a

    358. [358]

      Xiao X, Wu Y G, Sun M H, Zhou J J, Bo Z S, Li L, Chan C M. J Polym Sci, Part A: Polym Chem, 2008, 46(2): 574 − 584 doi: 10.1002/pola.22407

    359. [359]

      Han Y, Zhu B, Chen Y, Bo Z S, Chen Y L. Polym Chem, 2017, 8(33): 4798 − 4804 doi: 10.1039/C7PY01052D

    360. [360]

      Broske A D, Huang T L, Allen R D, Hoover J M, McGrath J E. In Recent Advances in Anionic Polymerization. In: Hogen-Esch T E, Smid J, eds. New York: Elsevier, 1987. 363 – 380

    361. [361]

      Zhang H, He J, Zhang C, Ju Z, Li J, Yang Y. Macromolecules, 2012, 45(2): 828 − 841 doi: 10.1021/ma2024039

    362. [362]

      Wang X, Xia J, He J, Yu F, Li A, Xu J, Lu H, Yang Y. Macromolecules, 2006, 39(20): 6898 − 6904 doi: 10.1021/ma061214p

    363. [363]

      Wang X, He J, Yang Y. J Polym Sci, Part A: Polym Chem, 2007, 45(21): 4818 − 4828 doi: 10.1002/pola.22229

    364. [364]

      Sun W, He J, Wang X, Zhang C, Zhang H, Yang Y. Macromolecules, 2009, 42(19): 7309 − 7317 doi: 10.1021/ma9006768

    365. [365]

      Xie C, Ju Z, Zhang C, Yang Y, He J. Macromolecules, 2013, 46(4): 1437 − 1446 doi: 10.1021/ma3025317

    366. [366]

      Ju Z, He J. Chem Commun, 2014, 50(62): 8480 − 8483 doi: 10.1039/C4CC01377H

    367. [367]

      Fréchet J M J, Henmi M, Gitsov I, Aoshima S, Leduc M R, Grubbs R B. Science, 1995, 269(5227): 1080 − 1083 doi: 10.1126/science.269.5227.1080

    368. [368]

      Zhang H, Zhu J, He J, Qiu F, Zhang H, Yang Y, Lee H, Chang T. Polym Chem, 2013, 4(3): 830 − 839 doi: 10.1039/C2PY20742G

    369. [369]

      Wang Y, Qi G, He J. ACS Macro Lett, 2016, 5(4): 547 − 551 doi: 10.1021/acsmacrolett.6b00198

    370. [370]

      Natalello A, Tonhauser C, Berger-Nicoletti E, Frey H. Macromolecules, 2011, 44(24): 9887 − 9890 doi: 10.1021/ma2023793

    371. [371]

      Yu F, He J, Wang X, Gao G, Yang Y. J Polym Sci, Part A: Polym Chem, 2007, 45(17): 4013 − 4025 doi: 10.1002/pola.22155

    372. [372]

      Sun W, Yu F, He J, Zhang C, Yang Y. J Polym Sci, Part A: Polym Chem, 2008, 46(16): 5518 − 5527 doi: 10.1002/pola.22872

    373. [373]

      Zhang H, Qu C, He J. Polymer, 2015, 64: 240 − 248 doi: 10.1016/j.polymer.2015.02.004

    374. [374]

      Liu C Y, Lv K, Huang B, Hou C L, Wang G W. RSC Adv, 2013, 3(39): 17945 − 17953 doi: 10.1039/c3ra43024c

    375. [375]

      Fu Q, Lin W C, Huang J L. Macromolecules, 2008, 41(7): 2381 − 2387 doi: 10.1021/ma7028117

    376. [376]

      Li P P, Li Z Y, Huang J L. Macromolecules, 2007, 40(3): 491 − 498 doi: 10.1021/ma0621324

    377. [377]

      Li Z Y, Li P P, Huang J L. J Polym Sci, Part A: Polym Chem, 2006, 44(15): 4361 − 4371 doi: 10.1002/pola.21515

    378. [378]

      Jia Z F, Fu Q, Huang J L. J Polym Sci, Part A: Polym Chem, 2006, 44(12): 3836 − 3842 doi: 10.1002/pola.21488

    379. [379]

      Tang T T, Fan X S, Jin Y, Wang G W. Polymer, 2014, 55(16): 3680 − 3687 doi: 10.1016/j.polymer.2014.05.066

    380. [380]

      Jing R K, Wang G W, Huang J L. J Polym Sci, Part A: Polym Chem, 2010, 48(23): 5430 − 5438 doi: 10.1002/pola.24349

    381. [381]

      Luo X L, Wang G W, Pang X. C, Huang J L Macromolecules, 2008, 41(7): 2315 − 2317 doi: 10.1021/ma800117d

    382. [382]

      Ma Y Y, Huang J, Sui K Y, Wang G W. J Polym Sci, Part A: Polym Chem, 2014, 52(16): 2239 − 2247 doi: 10.1002/pola.27239

    383. [383]

      Liang X Y, Liu Y J, Huang J, Wei L H, Wang G W. Polym Chem-UK, 2015, 6(3): 466 − 475 doi: 10.1039/C4PY01225A

    384. [384]

      Zhang J X, Shen H Y, Song W G, Wang G W. Macromolecules, 2017, 50(7): 2683 − 2695 doi: 10.1021/acs.macromol.7b00159

    385. [385]

      Wang G W, Liu C, Pan M G, Huang J L. J Polym Sci, Part A: Polym Chem, 2009, 47(5): 1308 − 1316 doi: 10.1002/pola.23238

    386. [386]

      Liu C, Zhang Y, Huang J L. Macromolecules, 2008, 41(2): 325 − 331 doi: 10.1021/ma071432y

    387. [387]

      Wang G W, Huang J L. Macromol Rapid Commun, 2007, 28(3): 298 − 304 doi: 10.1002/marc.200600740

    388. [388]

      Wang G W, Huang J L. J Polym Sci , Part A: Polym Chem, 2008, 46(3): 1136 − 1150 doi: 10.1002/pola.22455

    389. [389]

      Fu Q, Wang G W, Lin W C, Huang J L. J Polym Sci, Part A: Polym Chem, 2009, 47(3): 986 − 990 doi: 10.1002/pola.23205

    390. [390]

      Wang G W, Luo X L, Liu C, Huang J L. J Polym Sci, Part A: Polym Chem, 2008, 46(6): 2154 − 2166 doi: 10.1002/pola.22550

    391. [391]

      Wang G W, Fan X S, Huang J L. J Polym Sci, Part A: Polym Chem, 2010, 48(23): 5313 − 5321 doi: 10.1002/pola.24331

    392. [392]

      Guo Q Q, Liu C Y, Tang T T, Huang J, Zhang X G, Wang G W. J Polym Sci, Part A: Polym Chem, 2013, 51(21): 4572 − 4583

    393. [393]

      Huang K, Huang J, Pan M G, Wang G W, Huang J L. J Polym Sci, Part A: Polym Chem, 2012, 50(13): 2635 − 2640 doi: 10.1002/pola.26037

    394. [394]

      Luo X L, Wang G W, Huang J L. J Polym Sci, Part A: Polym Chem, 2009, 47(1): 59 − 68 doi: 10.1002/pola.23120

    395. [395]

      Zhang Z N, Wang G W, Huang J L. J Polym Sci, Part A: Polym Chem, 2011, 49(13): 2811 − 2817 doi: 10.1002/pola.24714

    396. [396]

      Chen L D, Huang J, Wang X P, Lu C J, Zhang H D, Wang G W. RSC Adv, 2015, 5(41): 32358 − 32368 doi: 10.1039/C4RA16580B

    397. [397]

      Zhang Y N, Wang G W, Huang J L. J Polym Sci, Part A: Polym Chem, 2010, 48(24): 5974 − 5981 doi: 10.1002/pola.24417

    398. [398]

      Wang G W, Luo X L, Zhang Y N, Huang J L. J Polym Sci, Part A: Polym Chem, 2009, 47(18): 4800 − 4810 doi: 10.1002/pola.23534

    399. [399]

      He T, Zheng G H, Pan C Y. Macromolecules, 2003, 36(16): 5960 − 5966 doi: 10.1021/ma021371y

    400. [400]

      Ge Z S, Zhou Y M, Xu J, Liu H W, Chen D Y, Liu S Y. J Am Chem Soc, 2009, 131(5): 1628 − 1629 doi: 10.1021/ja808772z

    401. [401]

      Zhu X, Zhou N C, Zhang Z B, Sun B Q, Yang Y G, Zhu J, Zhu X L. Angew Chem Int Ed, 2011, 50(29): 6615 − 6618 doi: 10.1002/anie.201101303

    402. [402]

      Tang Q, Wu Y, Sun P, Chen Y, Zhang K. Macromolecules, 2014, 47(12): 3775 − 3781 doi: 10.1021/ma500799w

    403. [403]

      Sun P, Chen J Q, Liu J A, Zhang K. Macromolecules, 2017, 50(4): 1463 − 1472 doi: 10.1021/acs.macromol.6b02614

    404. [404]

      Liu Z, Huang Y P, Zhang X L, Tu X Y, Wang M Q, Ma L W, Wang B Y, He J L, Ni P H, Wei H. Macromolecules, 2018, 51(19): 7672 − 7679 doi: 10.1021/acs.macromol.8b00950

    405. [405]

      Wang S S, Zhang K, Chen Y M, Xi F. Macromolecules, 2014, 47(6): 1993 − 1998 doi: 10.1021/ma402335f

    406. [406]

      Chen J, Li H F, Zhang H C, Liao X J, Han H J, Zhang L D, Sun R Y, Xie M R. Nat Commun, 2018, 9(1): 5310 doi: 10.1038/s41467-018-07754-1

    407. [407]

      Jia Z F, Fu Q, Huang J L. Macromolecules, 2006, 39(16): 5190 − 5193 doi: 10.1021/ma060934t

    408. [408]

      Zhang Y N, Wang G W, Huang J L. Macromolecules, 2010, 43(24): 10343 − 10347 doi: 10.1021/ma102330j

    409. [409]

      Zhang Y N, Wang G W, Huang J L. J Polym Sci, Part A: Polym Chem, 2011, 49(22): 4766 − 4770 doi: 10.1002/pola.24923

    410. [410]

      Pang X C, Jing R K, Huang J L. Polymer, 2008, 49(4): 893 − 900 doi: 10.1016/j.polymer.2007.12.034

    411. [411]

      Wang G W, Fan X S, Hu B, Zhang Y N, Huang J L. Macromol Rapid Commun, 2011, 32(20): 1658 − 1663 doi: 10.1002/marc.201100390

    412. [412]

      Fan X S, Huang B, Wang G W, Huang J L. Macromolecules, 2012, 45(9): 3779 − 3786 doi: 10.1021/ma300487x

    413. [413]

      Fan X S, Huang B, Wang G W, Huang J L. Polymer, 2012, 53(14): 2890 − 2896 doi: 10.1016/j.polymer.2012.04.023

    414. [414]

      Wang G W, Hu B, Fan X S, Zhang Y N, Huang J L. J Polym Sci, Part A: Polym Chem, 2012, 50(11): 2227 − 2235 doi: 10.1002/pola.25996

    415. [415]

      Fan X S, Tang T T, Huang K, Wang G W, Huang J L. J Polym Sci, Part A: Polym Chem, 2012, 50(15): 3095 − 3103 doi: 10.1002/pola.26096

    416. [416]

      Shen H Y, Wang G W. Polym Chem-UK, 2017, 8(36): 5554 − 5560 doi: 10.1039/C7PY01034F

    417. [417]

      Huang J, Wang X P, Wang G W. Polym Int, 2015, 64(9): 1202 − 1208 doi: 10.1002/pi.4891

    418. [418]

      Jing R K, Lin W C, Wang G W, Huang J L. J Polym Sci, Part A: Polym Chem, 2011, 49(12): 2594 − 2600 doi: 10.1002/pola.24691

    419. [419]

      Zhang Y, Pan M G, Liu C, Huang J L. J Polym Sci, Part A: Polymo Chem, 2008, 46(8): 2624 − 2631 doi: 10.1002/pola.22592

    420. [420]

      Chen L D, Zhang J X, Liu Y J, Zhang H D, Wang G W. Polym Chem-UK, 2015, 6(48): 8343 − 8353 doi: 10.1039/C5PY01103E

    421. [421]

      Jia Z F, Xu X W, Fu Q, Huang J L. J Polym Sci, Part A: Polym Chem, 2006, 44(20): 6071 − 6082 doi: 10.1002/pola.21690

    422. [422]

      Tao Youhua(陶友华). Acta Polymerica Sinica(高分子学报), 2016, (9): 1151 − 1159

    423. [423]

      Chen X, Lai H, Xiao C, Tian H, Chen X, Tao Y, Wang X. Polym Chem, 2014, 5: 6495 − 6502 doi: 10.1039/C4PY00930D

    424. [424]

      Yuan J, Xiong W, Zhou X, Zhang Y, Shi D, Li Z, Lu H. J Am Chem Soc, 2019, 141(12): 4928 − 4935 doi: 10.1021/jacs.9b00031

    425. [425]

      Liu B, Li S, Wang M, Cui D. Angew Chem Int Ed, 2017, 56: 4560 − 4564 doi: 10.1002/anie.201700546

    426. [426]

      Liu Y, Mecking S. Angew Chem Int Ed, 2019, 58: 3346 − 3350 doi: 10.1002/anie.201810914

    427. [427]

      Yuan Pengjun(袁鹏俊), Hong Miao(洪缪). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 327 − 337 doi: 10.11777/j.issn1000-3304.2018.18232

    428. [428]

      https://cen.acs.org/articles/93/i32/Spring-2016-ACS-NATIONAL-MEETING.html

    1. [1]

      邱欢李瑶白天闻凌君 . 两仪聚合——拓扑结构聚合物合成新方法. 高分子学报, 2019, 50(11): 1133-1145. doi: 10.11777/j.issn1000-3304.2019.19150

    2. [2]

      方晶张文彬 . 可基因编码的多肽-蛋白质化学反应对. 高分子学报, 2018, (4): 429-444. doi: 10.11777/j.issn1000-3304.2018.18034

    3. [3]

      黄兴溢王献红 . 模块化成环法:一种精确合成环形聚合物的新方法. 高分子学报, 2019, 50(8): 761-763. doi: 10.11777/j.issn1000-3304.2019.19123

    4. [4]

      屠迎锋 . 级联聚合反应. 高分子学报, 2019, 50(11): 1146-1155. doi: 10.11777/j.issn1000-3304.2019.19094

    5. [5]

      王宏鲁剑涛冯品珍 . 新型螺环单体的合成和自由基聚合反应的研究. 高分子学报, 1997, (5): 578-581.

    6. [6]

      冯新德 . 共聚合反应. 高分子学报, 1959, 3(5): 232-250.

    7. [7]

      颜德岳 . 极性单体阴离子型聚合反应产物的分子量分布. 高分子学报, 1982, (1): 1-8.

    8. [8]

      张雪梅林一品邓超凌君 . 具有星形拓扑结构的捕光分子. 高分子学报, 2014, (8): 1056-1061. doi: 10.11777/j.issn1000-3304.2014.13445

    9. [9]

      李连伟金帆何卫东吴奇 . 不同拓扑结构高分子链在拉伸流场下如何穿过柱状纳米小孔?. 高分子学报, 2014, (1): 1-21. doi: 10.3724/SP.J.1105.2014.13390

    10. [10]

      张鸿志曹维孝冯新德 . 环化聚合反应机构的研究. 高分子学报, 1964, 6(1): 61-70.

    11. [11]

      刘有成伍宣池赵长义陈伟姚安亚高慧秀 . 苯乙炔聚合反应的研究. 高分子学报, 1964, 6(1): 71-77.

    12. [12]

      岩倉義男李福綿 . 聚合反应的立体化学. 高分子学报, 1958, 2(4): 215-230.

    13. [13]

      宋正喆徐纪平 . 反丁烯二酸酯类的自由基聚合反应研究. 高分子学报, 1993, (5): 513-520.

    14. [14]

      童伟达杨玉良孙猛于同隐 . 聚合反应中非等活性初级自由基的终止问题. 高分子学报, 1990, (5): 586-592.

    15. [15]

      李梅曹宪一 . 异丁烯的活性阳离子聚合反应. 高分子学报, 1999, (5): 596-599.

    16. [16]

      Г.С.Колесников胡亚东 . 几种乙烯氟代衍生物的合成与聚合反应. 高分子学报, 1959, 3(2): 72-78.

    17. [17]

      赵姜维朱寒吴一弦简睿杨万泰武冠英 . 原位ATR-FTIR法研究丁二烯配位聚合反应动力学. 高分子学报, 2010, (2): 211-216. doi: 10.3724/SP.J.1105.2010.00211

    18. [18]

      颜德岳 . 电子转移引发的阴离子聚合反应产物的分子量分布函数. 高分子学报, 1980, (5): 271-280.

    19. [19]

      丘坤元程世友曹维孝冯新德 . N-丙烯酰基-N'-苯基脲及其衍生物的合成与聚合反应. 高分子学报, 1994, (6): 709-716.

    20. [20]

      曹洪庆崔家喜刘安华宛新华 . 手性乙烯基二联苯单体的合成与螺旋选择性聚合反应. 高分子学报, 2010, (2): 222-230.

  • Figure 1.  Illustration of natural RAFT polymerization: sun-light-photolyzed, opened-to-air and recyclable- catalyst-aided RAFT polymerizations (Reprinted with permission from Ref.[26]; Copyright (2016) American Chemical Society)

    Figure 2.  P2Ox-HRP cascade catalysis for RAFT polymerization with oxygen tolerance (Reprinted with permission from Ref.[33]; Copyright (2017) John Wiley and Sons)

    Figure 3.  PIESA formulation via RAFT aqueous (a) dispersion polymerization employing an oppositely charged PIC template (Reprinted with permission from Ref.[47]; Copyright (2018) John Wiley and Sons) and (b) sequential polymerization of ionic monomers with opposite charges (Reprinted with permission from Ref.[48]; Copyright (2018) American Chemical Society)

    Figure 1.  Mechanism of anionic polymerization of 1,3-butadiene modified by Jin and coworkers[75]

    Figure 4.  Substituted 1,3-butadiene monomers with various side groups[89]

    Figure 2.  Mechanism for ethylene polymerization and copolymerization: (a) Transition-metal-catalyzed coordination-insertion polymerization of ethylene; (b) Transition metal catalyzed coordination-insertion of polar monomers (the polar-monomer problem)

    Figure 5.  Representative examples of high-performance transition metal catalysts

    Figure 3.  (a) Interaction of the metal center with the polar group X; (b) Interaction of the metal center with the ligand secondary coordination group Y; (c) Interaction of the polar group X with the Lewis acidic group on the ligand; (d) Redox controlled olefin polymerization

    Figure 6.  Chiral zinc catalysts for asymmetric copolymerization of CO2 with cyclohexene oxide

    Figure 7.  The structures of mono- and di-nuclear Co(III) complexes for asymmetric copolymerization of CO2 and meso-epoxides

    Figure 8.  Two routes for copolymer chain propagation: intramolecular bimetallic mechanism versus monometallic mechanism during the copolymerization of CO2 and meso-epoxides using dinuclear Co(III) catalyst (Reprinted with permission from Ref.[204]; Copyright (2014) America Chemical Society)

    Figure 9.  Formation of crystalline stereocomplexes by mixing the opposite enantiomers

    Figure 10.  The structures of dinuclear Co(III) complexes for asymmetric copolymerization of COS and meso-epoxides

    Figure 11.  Enantioselective copolymerization of meso-epoxides and cyclic anhydrides

    Figure 12.  The structures of dinuclear Al(III) complexes for asymmetric copolymerization of meso-epoxides and cyclic anhydrides

    Figure 13.  The structures of salenCo(III) complexes with multi chiral centers for kinetic resolution copolymerization of racemic epoxides and CO2

    Figure 14.  Enantioselective resolution copolymerization of racemic epoxides and anhydrides for producing stereoregular polyesters and chiral epoxides

    Figure 15.  Polycyclotrimerization of alkynes (Reprinted with permission from Ref.[236]; Copyright (2002) American Chemical Society)

    Figure 16.  On-surface formation of one-dimensional polyphenylene through Bergman cyclization (Reprinted with permission from Ref.[239]; Copyright (2013) American Society)

    Figure 17.  Single component polymerization of diisocyanoacetates toward polyimidazoles (Reprinted with permission from Ref.[240]; Copyright (2018) American Chemical Society)

    Figure 18.  Synthesis of positively charged sequence-defined polymers (Reprinted with permission from Ref.[255]; Copyright (2019) American Chemical Society)

    Figure 19.  Ligand-controlled regiodivergent Ru(II)-catalyzed azide-alkyne click polymerization (Reprinted with permission from Ref.[258]; Copyright (2019) American Chemical Society)

    Figure 20.  Thiol-yne click polymerization ((a) Reprinted with permission from Ref.[265]; Copyright (2011) American Chemical Society. (b) Reprinted with permission from Ref.[266]; Copyright (2010) WILEY-VCH Verlag GmbH &Co. KGaA. (c) Reprinted with permission from Ref.[267]; Copyright (2019) The Royal Society of Chemistry. (d) Reprinted with permission from Ref.[269]; Copyright (2015) American Chemical Society)

    Figure 21.  Sequential thiol-ene and thiol-yne click polymerization (Reprinted with permission from Ref.[268]; Copyright (2011) The Royal Society of Chemistry)

    Figure 22.  Amine-yne click polymerization ((a) Reprinted with permission from Ref.[270]; Copyright (2016) The Royal Society of Chemistry. (b) Reprinted with permission from Ref.[271]; Copyright (2017) American Chemical Society)

    Figure 23.  Hydroxy-yne click polymerization ((a) Reprinted with permission from Ref.[248]; Copyright (2017) The Royal Society of Chemistry. (b) Reprinted with permission from Ref.[249]; Copyright (2017) WILEY-VCH Verlag GmbH & Co. KGaA. (c) Reprinted with permission from Ref.[272]; Copyright (2019) American Chemical Society)

    Figure 24.  Multi-component click polymerization ((a) Reprinted with permission from Ref.[283]; Copyright (2016) American Chemical Society. (b) Reprinted with permission from Ref.[284]; Copyright (2015) American Chemical Society. (c) Reprinted with permission from Ref.[285]; Copyright (2016) The Royal Society of Chemistry. (d) Reprinted with permission from Ref.[286]; Copyright (2018) American Chemical Society. (e) Reprinted with permission from Ref.[287]; Copyright (2017) American Chemical Society. (f) Reprinted with permission from Ref.[288]; Copyright (2018) The Royal Society of Chemistry. (g) Reprinted with permission from Ref.[289]; Copyright (2019) American Chemical Society)

    Figure 25.  Polymerization of green monomer CO2 ((a) Reprinted with permission from Ref.[290]; Copyright (2017) American Chemical Society. (b) Reprinted with permission from Ref.[292]; Copyright (2018) American Chemical Society)

    Figure 26.  Passerini polymerization (Reprinted with permission from Ref.[295]; Copyright (2012) American Chemical Society)

    Figure 27.  Biginelli polymerization (Reprinted with permission from Ref.[296]; Copyright (2015) The Royal Society of Chemistry)

    Figure 28.  A3 coupling polymerization catalyzed by InCl3 (a) (Reprinted with permission from Ref.[297]; Copyright (2013) American Chemical Society) and CuCl (b) (Reprinted with permission from Ref.[298]; Copyright (2014) American Chemical Society) , respectively.

    Figure 29.  Copolymerization and time sampling apparatus for St and DPE-SiH (Reprinted with permission from Ref.[315]; Copyright (2017) John Wiley & Sons Inc)

    Figure 30.  (a) Locked-unlocked mechanism; (b) DFT simulations of the locked and unlocked forms (Reprinted with permission from Ref.[322]; Copyright (2018) John Wiley & Sons Inc)

    Figure 31.  Synthesis and application of branched polymer (Reprinted with permission from Ref.[338]; Copyright (2004) American Association for the Advancement of Science. Reprinted with permission from Ref.[343]; Copyright (2013) American Chemical Society. Reprinted with permission from Ref.[352]; Copyright (2010) John Wiley and Sons. Reprinted with permission from Ref.[353]; Copyright (2015) John Wiley and Sons)

    Figure 4.  Synthesis of ABC-type miktoarm star copolymer of styrene, isoprene and 1,3-cyclohexadiene through MDDPE route (Reprinted with permisson from Ref.[362]; Copyright (2006) American Chemistry Society)

    Figure 5.  Continuous synthesis of dendrimer-like star living polystyrene in a divergent process (Reproduced with permission from Ref.[361]; Copyright (2012) American Chemical Society)

    Figure 33.  Synthetic strategies for cyclic polymers (Reprinted with permission from Ref.[399]; Copyright (2003) American Chemical Society. Reprinted with permission from Ref.[400]; Copyright (2009) American Chemical Society. Reprinted with permission from Ref.[401]; Copyright (2011) John Wiley and Sons. Reprinted with permission from Ref.[402]; Copyright (2014) American Chemical Society. Reprinted with permission from Ref.[403]; Copyright (2017) American Chemical Society. Reprinted with permission from Ref.[405]; Copyright (2014) American Chemical Society. Reprinted with permission from Ref.[406]; Copyright (2018) Springer Nature)

    Figure 32.  The cyclic polymers synthesized in our group

    Figure 34.  Design and synthesis of biomass-derived monomers and polymers

    Figure 35.  The structure of bifunctional organocatalyst for eliminating epimerization in ring-opening polymerizations of O-carboxyanhydrides

  • 加载中
图(41)
计量
  • PDF下载量:  926
  • 文章访问数:  2948
  • HTML全文浏览量:  1144
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计