ISSN 1000-3304CN 11-1857/O6

两仪聚合——拓扑结构聚合物合成新方法

邱欢 李瑶 白天闻 凌君

引用本文: 高晶, 王伟奇, 于海军. 两仪聚合——拓扑结构聚合物合成新方法[J]. 高分子学报, 2019, (11): 1133-1145. doi: 10.11777/j.issn1000-3304.2019.19150 shu
Citation:  Jing Gao, Wei-qi Wang and Hai-jun Yu. Janus Polymerization: A Novel Approach towards Topology Design[J]. Acta Polymerica Sinica, 2019, (11): 1133-1145. doi: 10.11777/j.issn1000-3304.2019.19150 shu

两仪聚合——拓扑结构聚合物合成新方法

    作者简介: 凌君,男,1975年生. 浙江大学高分子科学与工程学系教授、博士生导师. 2002年毕业于浙江大学高分子科学与工程学系,获得博士学位并留校任教,2004年获得全国优秀博士学位论文提名奖. 2005 ~ 2007年在美国南加州大学化学系Thieo E. Hogen-Esch教授课题组做博士后研究. 2011年获得德国洪堡科研基金,2012和2013年,作为洪堡高级研究学者分别在德国拜罗伊特大学和美因茨大学Axel H. E. Müller教授课题组工作. 自2017年起担任《中国化学快报》青年编委. 主要研究方向为活性/可控聚合方法、功能高分子的合成和分子模拟等;
    通讯作者: 凌君, E-mail: lingjun@zju.edu.cn
摘要: 两仪聚合(Janus polymerization)是在一条聚合增长链两端同时引发阳离子型和阴离子型开环聚合的聚合方法. 两仪聚合可以一步从单体直接合成具有复杂拓扑结构的聚合物,包括两/多嵌段聚合物、超支化聚合物、杂臂星形聚合物和柱状聚合物刷等. 本文总结了近年来本课题组有关两仪聚合方面的研究进展,介绍了两仪聚合特征与机理、两仪聚合在构筑拓扑结构聚合物上的应用、聚合产物独特而优异的性质、两仪聚合新体系等,并对两仪聚合发展作出了展望.

English

    1. [1]

      You L, Ling J. Macromolecules, 2014, 47: 2219 − 2225 doi: 10.1021/ma500173c

    2. [2]

      Yamamoto T, Tezuka Y. Eur Polym J, 2011, 47: 535 − 541 doi: 10.1016/j.eurpolymj.2010.10.020

    3. [3]

      Koda Y, Terashima T, Takenaka M, Sawamoto M. ACS Macro Lett, 2015, 4: 377 − 380 doi: 10.1021/acsmacrolett.5b00127

    4. [4]

      Guo S, Xu P, Yu H, Li X, Cheng Z. Sensor Actuat B-Chem, 2015, 209: 943 − 950 doi: 10.1016/j.snb.2014.12.077

    5. [5]

      Shi Y, Cao X, Gao H. Nanoscale, 2016, 8: 4864 − 4881 doi: 10.1039/C5NR09122E

    6. [6]

      Schmidt B V K J, Kugele D, von Irmer J, Steinkoenig J, Mutlu H, Rüttiger C, Hawker C J, Gallei M, Barner-Kowollik C. Macromolecules, 2017, 50: 2375 − 2386 doi: 10.1021/acs.macromol.7b00165

    7. [7]

      Demirci S, Demirci S K, Jiang S. Chem Commun, 2017, 53: 3713 − 3716 doi: 10.1039/C7CC00193B

    8. [8]

      Wei H, Volpatti L R, Sellers D L, Maris D O, Andrews I W, Hemphill A S, Chan L W, Chu D S H, Horner P J, Pun S H. Angew Chem Int Ed, 2013, 52: 5377 − 5381 doi: 10.1002/anie.201301896

    9. [9]

      Fu C, Xu J, Kokotovic M, Boyer C. ACS Macro Lett, 2016, 5: 444 − 449 doi: 10.1021/acsmacrolett.6b00121

    10. [10]

      de Freitas A G O, Trindade S G, Muraro P I R, Schmidt V, Satti A J, Villar M A, Ciolino A E, Giacomelli C. Macromol Chem Phys, 2013, 214: 2336 − 2344 doi: 10.1002/macp.201300416

    11. [11]

      Shin S J, Yu Y C, Seo J D, Cho S J, Youk J H. J Polym Sci, Part A: Polym Chem, 2014, 52: 1607 − 1613 doi: 10.1002/pola.27160

    12. [12]

      Simal F, Demonceau A, Noels A F. Angew Chem Int Ed, 1999, 38: 538 − 540 doi: 10.1002/(SICI)1521-3773(19990215)38:4<538::AID-ANIE538>3.0.CO;2-W

    13. [13]

      Bielawski C W, Louie J, Grubbs R H. J Am Chem Soc, 2000, 122: 12872 − 12873 doi: 10.1021/ja001698j

    14. [14]

      Sha K, Li D, Li Y, Ai P, Liu X, Wang W, Xu Y, Wang S, Wu M, Zhang B, Wang J. J Polym Sci, Part A: Polym Chem, 2006, 44: 3393 − 3399 doi: 10.1002/pola.21429

    15. [15]

      Szwarc M, Levy M, Milkovich R. J Am Chem Soc, 1956, 78: 2656 − 2657 doi: 10.1021/ja01592a101

    16. [16]

      Zheng J, Wang C-G, Yamaguchi Y, Miyamoto M, Goto A. Angew Chem Int Ed, 2018, 57: 1552 − 1556 doi: 10.1002/anie.201710964

    17. [17]

      Dong H, Zhu Y, Li Z, Xu J, Liu J, Xu S, Wang H, Gao Y, Guo K. Macromolecules, 2017, 50: 9295 − 9306 doi: 10.1021/acs.macromol.7b01784

    18. [18]

      Bernaerts K V, Du Prez F E. Prog Polym Sci, 2006, 31: 671 − 722 doi: 10.1016/j.progpolymsci.2006.08.007

    19. [19]

      Naumann S, Dove A P. Polym Chem, 2015, 6: 3185 − 3200 doi: 10.1039/C5PY00145E

    20. [20]

      Brown H A, Waymouth R M. Accounts Chem Res, 2013, 46: 2585 − 2596 doi: 10.1021/ar400072z

    21. [21]

      Shin E J, Jones A E, Waymouth R M. Macromolecules, 2011, 45: 595 − 598

    22. [22]

      Jeong W, Hedrick J L, Waymouth R M. J Am Chem Soc, 2007, 129: 8414 − 8415 doi: 10.1021/ja072037q

    23. [23]

      Shin E J, Brown H A, Gonzalez S, Jeong W, Hedrick J L, Waymouth R M. Angew Chem Int Ed, 2011, 50: 6388 − 6391 doi: 10.1002/anie.201101853

    24. [24]

      Jeong W, Shin E J, Culkin D A, Hedrick J L, Waymouth R M. J Am Chem Soc, 2009, 131: 4884 − 4891 doi: 10.1021/ja809617v

    25. [25]

      Culkin D A, Jeong W, Csihony S, Gomez E D, Balsara N P, Hedrick J L, Waymouth R M. Angew Chem Int Ed, 2007, 46: 2627 − 2630 doi: 10.1002/anie.200604740

    26. [26]

      Li A, Lu L, Li X, He L, Do C, Garno J C, Zhang D. Macromolecules, 2016, 49: 1163 − 1171 doi: 10.1021/acs.macromol.5b02611

    27. [27]

      Kempe K, Jongh P A J M d, Anastasaki A, Wilson P, Haddleton D M. Chem Commun, 2015, 51: 16213 − 16216 doi: 10.1039/C5CC07247F

    28. [28]

      Chang Y A, Waymouth R M. J Polym Sci, Part A: Polym Chem, 2017, 55: 2892 − 2902 doi: 10.1002/pola.28635

    29. [29]

      Dehnicke K, Greiner A. Angew Chem Int Ed, 2003, 42: 1340 − 1354 doi: 10.1002/anie.200390346

    30. [30]

      Edelmann F T. Chem Soc Rev, 2012, 41: 7657 − 7672 doi: 10.1039/c2cs35180c

    31. [31]

      Qiu H, Yang Z, Köhler M, Ling J, Schacher F H. Macromolecules, 2019, 52: 3359 − 3366 doi: 10.1021/acs.macromol.9b00302

    32. [32]

      Kobayashi S, Sugiura M, Kitagawa H, Lam W W L. Chem Rev, 2002, 102: 2227 − 2302 doi: 10.1021/cr010289i

    33. [33]

      Nomura N, Taira A, Nakase A, Tomioka T, Okada M. Tetrahedron, 2007, 63: 8478 − 8484 doi: 10.1016/j.tet.2007.05.073

    34. [34]

      Ling J, You L, Wang Y, Shen Z. J Appl Polym Sci, 2012, 124: 2537 − 2540 doi: 10.1002/app.34226

    35. [35]

      You L, Hogen-Esch T E, Zhu Y, Ling J, Shen Z. Polymer, 2012, 53: 4112 − 4118 doi: 10.1016/j.polymer.2012.07.047

    36. [36]

      Ling J, Chen W, Shen Z. J Polym Sci, Part A: Polym Chem, 2005, 43: 1787 − 1796 doi: 10.1002/pola.20648

    37. [37]

      Ling J, Zhu W, Shen Z. Macromolecules, 2004, 37: 758 − 763 doi: 10.1021/ma035352f

    38. [38]

      Ling J, Shen J, Hogen-Esch T E. Polymer, 2009, 50: 3575 − 3581 doi: 10.1016/j.polymer.2009.06.006

    39. [39]

      Liu J, Ling J, Li X, Shen Z. J Mol Catal A: Chem, 2009, 300: 59 − 64 doi: 10.1016/j.molcata.2008.10.038

    40. [40]

      Ling J, Shen Z, Huang Q. Macromolecules, 2001, 34: 7613 − 7616 doi: 10.1021/ma0107657

    41. [41]

      You L, Shen Z, Kong J, Ling J. Polymer, 2014, 55: 2404 − 2410 doi: 10.1016/j.polymer.2014.03.032

    42. [42]

      Qiu H, Yang Z, Shah M I, Mao Z, Ling J. Polymer, 2017, 128: 71 − 77 doi: 10.1016/j.polymer.2017.08.040

    43. [43]

      Shah M, Yang Z, Li Y, Jiang L, Ling J. Polymers, 2017, 9: 559 doi: 10.3390/polym9110559

    44. [44]

      Ren J M, McKenzie T G, Fu Q, Wong E H H, Xu J, An Z, Shanmugam S, Davis T P, Boyer C, Qiao G G. Chem Rev, 2016, 116: 6743 − 6836 doi: 10.1021/acs.chemrev.6b00008

    45. [45]

      Sato H, Aoki D, Takata T. ACS Macro Lett, 2016, 5: 699 − 703 doi: 10.1021/acsmacrolett.6b00320

    46. [46]

      Shibuya Y, Nguyen H V T, Johnson J A. ACS Macro Lett, 2017, 6: 963 − 968 doi: 10.1021/acsmacrolett.7b00529

    47. [47]

      Li Y, von der Lühe M, Schacher F H, Ling J. Macromolecules, 2018, 51: 4938 − 4944 doi: 10.1021/acs.macromol.8b00949

    48. [48]

      Zhang M, Muller A H E. J Polym Sci, Part A: Polym Chem, 2005, 43: 3461 − 3481 doi: 10.1002/pola.20900

    49. [49]

      Lee H-i, Pietrasik J, Sheiko S S, Matyjaszewski K. Prog Polym Sci, 2010, 35: 24 − 44 doi: 10.1016/j.progpolymsci.2009.11.002

    50. [50]

      Li Y, Themistou E, Zou J, Das B P, Tsianou M, Cheng C. ACS Macro Lett, 2012, 1: 52 − 56 doi: 10.1021/mz200013e

    51. [51]

      Sheiko S S, Sumerlin B S, Matyjaszewski K. Prog Polym Sci, 2008, 33: 759 − 785 doi: 10.1016/j.progpolymsci.2008.05.001

    52. [52]

      Sheiko S S, Sun F C, Randall A, Shirvanyants D, Rubinstein M, Lee H-i, Matyjaszewski K. Nature, 2006, 440: 191 − 194 doi: 10.1038/nature04576

    53. [53]

      Verduzco R, Li X, Pesek S L, Stein G E. Chem Soc Rev, 2015, 44: 2405 − 2420 doi: 10.1039/C4CS00329B

    54. [54]

      Rzayev J. ACS Macro Lett, 2012, 1146 − 1149

    55. [55]

      Xia Y, Li Y, Burts A O, Ottaviani M F, Tirrell D A, Johnson J A, Turro N J, Grubbs R H. J Am Chem Soc, 2011, 133: 19953 − 19959 doi: 10.1021/ja2085349

    56. [56]

      Li X, Prukop S L, Biswal S L, Verduzco R. Macromolecules, 2012, 45: 7118 − 7127 doi: 10.1021/ma301046n

    57. [57]

      Miyake G M, Piunova V A, Weitekamp R A, Grubbs R H. Angew Chem Int Ed, 2012, 51: 11246 − 11248 doi: 10.1002/anie.201205743

    58. [58]

      Tao X, Deng C, Ling J. Macromol Rapid Commun, 2014, 35: 875 − 881 doi: 10.1002/marc.201400066

    59. [59]

      Tao X, Deng Y, Shen Z, Ling J. Macromolecules, 2014, 47: 6173 − 6180 doi: 10.1021/ma501131t

    60. [60]

      Tao X, Du J, Wang Y, Ling J. Polym Chem, 2015, 6: 3164 − 3174 doi: 10.1039/C5PY00191A

    61. [61]

      Tao X, Zheng B, Bai T, Zhu B, Ling J. Macromolecules, 2017, 50: 3066 − 3077 doi: 10.1021/acs.macromol.7b00309

    62. [62]

      Zhang D, Lahasky S H, Guo L, Lee C-U, Lavan M. Macromolecules, 2012, 45: 5833 − 5841 doi: 10.1021/ma202319g

    63. [63]

      Deming T J. Prog Polym Sci, 2007, 32: 858 − 875 doi: 10.1016/j.progpolymsci.2007.05.010

    64. [64]

      Kricheldorf H R. Angew Chem Int Ed, 2006, 45: 5752 − 5784 doi: 10.1002/anie.200600693

    65. [65]

      Lahasky S H, Lu L, Huberty W A, Cao J, Guo L, Garno J C, Zhang D. Polym Chem, 2014, 5: 1418 − 1426 doi: 10.1039/C3PY01356A

    66. [66]

      Birkeb A, Ling J, Barz M. Prog Polym Sci, 2018, 81: 163 − 208 doi: 10.1016/j.progpolymsci.2018.01.002

    67. [67]

      Morishita H, Sudo A, Endo T. J Polym Sci, Part A: Polym Chem, 2009, 47: 3982 − 3989 doi: 10.1002/pola.23459

    68. [68]

      Vygodskii Y S, Shaplov A S, Lozinskaya E I, Filippov O A, Shubina E S, Bandari R, Buchmeiser M R. Macromolecules, 2006, 39: 7821 − 7830 doi: 10.1021/ma061456p

    69. [69]

      Li Y, Schacher F H, Ling J. Macromol Rapid Commun, 2019, 40: 1800905 doi: 10.1002/marc.201800905

    70. [70]

      Pal S, Brooks W L A, Dobbins D J, Sumerlin B S. Macromolecules, 2016, 49: 9396 − 9405 doi: 10.1021/acs.macromol.6b02079

    71. [71]

      Li Y, Bai T, Li Y, Ling J. Macromol Chem Phys, 2017, 218: 1600450 doi: 10.1002/macp.201600450

    72. [72]

      Ling Jun(凌君), Li Yao(李瑶), Bai Tianwen(白天闻), Li Yifan(李逸凡), Huang Yanxin(黄艳鑫). CN patent, C08G65, 106220840. 2016-12-14

    73. [73]

      Ling Jun(凌君), Qiu Huan(邱欢). CN patent, A01N25, 108174848. 2018-06-19

    74. [74]

      Bai T, Ni X, Ling J, Shen Z. Chinese J Polym Sci, 2019, 37: 990 − 994 doi: 10.1007/s10118-019-2318-9

    75. [75]

      Qiu H, Yang Z N, Ling J. Chin J Polym Sci, 2019, 37: 858 − 865 doi: 10.1007/s10118-019-2242-z

    76. [76]

      Bednarek M. Prog Polym Sci, 2016, 58: 27 − 58 doi: 10.1016/j.progpolymsci.2016.02.002

    77. [77]

      Hajiali F, Tajbakhsh S, Shojaei A. Polym Rev, 2017, 58: 164 − 207

    78. [78]

      Seyednejad H, Ghassemi A H, van Nostrum C F, Vermonden T, Hennink W E. J Control Release, 2011, 152: 168 − 176 doi: 10.1016/j.jconrel.2010.12.016

    1. [1]

      崔冬梅 . 稀土催化极性单体配位均聚及与非极性单体共聚合的研究. 高分子学报, 2020, 51(1): 1-18. doi: 10.11777/j.issn1000-3304.2020.19142

    2. [2]

      朱寒白志欣赵姜维零萍吴一弦 . 稀土催化制备窄分子量分布高顺式聚异戊二烯及聚合反应动力学. 高分子学报, 2012, (5): 571-579. doi: 10.3724/SP.J.1105.2012.11292

    3. [3]

      李海强汪婧怡武莉刘威程瑞华刘柏平 . 氨基甲酰基季铵盐双功能催化剂催化丙交酯开环聚合研究. 高分子学报, 2019, 50(0): 1-8. doi: 10.11777/j.issn1000-3304.2019.19080

    4. [4]

      颜明发王涛黄永凯强娜全大萍 . 苄醇存在下脂肪叔胺催化内酯开环聚合. 高分子学报, 2011, (11): 1231-1236. doi: 10.3724/SP.J.1105.2011.10292

    5. [5]

      王明智杜建忠 . 氨基酸环内酸酐开环聚合制备多肽聚合物及其应用进展. 高分子学报, 2014, (9): 1183-1194. doi: 10.11777/j.issn1000-3304.2014.14125

    6. [6]

      陶友华 . 基于内酰胺开环聚合的氨基酸聚合新方法. 高分子学报, 2016, (9): 1151-1159. doi: 10.11777/j.issn1000-3304.2016.16130

    7. [7]

      郑博拓陶鑫峰凌君 . 伯胺引发NNTA开环聚合对水的耐受性研究. 高分子学报, 2018, (1): 72-79. doi: 10.11777/j.issn1000-3304.2018.17172

    8. [8]

      袁鹏俊洪缪 . “非张力环”γ-丁内酯及其衍生物开环聚合的研究进展. 高分子学报, 2019, 50(4): 327-337. doi: 10.11777/j.issn1000-3304.2018.18232

    9. [9]

      黄兴溢王献红 . 模块化成环法:一种精确合成环形聚合物的新方法. 高分子学报, 2019, 50(8): 761-763. doi: 10.11777/j.issn1000-3304.2019.19123

    10. [10]

      许越超周辉吕小兵α-亚甲基-β-丁内酯的区域选择性聚合:合成线形与环状聚酯. 高分子学报, 2020, 51(1): 1-7. doi: 10.11777/j.issn1000-3304.2020.19145

    11. [11]

      张雪梅林一品邓超凌君 . 具有星形拓扑结构的捕光分子. 高分子学报, 2014, (8): 1056-1061. doi: 10.11777/j.issn1000-3304.2014.13445

    12. [12]

      张冲吕华 . 蛋白质-聚氨基酸偶联物的高效合成与应用. 高分子学报, 2018, (1): 21-31. doi: 10.11777/j.issn1000-3304.2018.17204

    13. [13]

      史正海孟蕊郭方许蔷李婷婷李杨王玉荣 . 单茂钪催化剂(C5 H5 )Sc(CH2 C6 H4 NMe2 -o)2 合成高顺式窄分布聚丁二烯. 高分子学报, 2014, (10): 1420-1427. doi: 10.11777/j.issn1000-3304.2014.14057

    14. [14]

      李连伟金帆何卫东吴奇 . 不同拓扑结构高分子链在拉伸流场下如何穿过柱状纳米小孔?. 高分子学报, 2014, (1): 1-21. doi: 10.3724/SP.J.1105.2014.13390

    15. [15]

      陈平符文鑫 . 巯-炔加成可控修饰的两亲性嵌段共聚肽及其溶液自组装. 高分子学报, 2015, (10): 1223-1230. doi: 10.11777/j.issn1000-3304.2015.15071

    16. [16]

      孙静李志波 . 聚类肽高分子材料及其结构与性能的研究. 高分子学报, 2018, (1): 1-8. doi: 10.11777/j.issn1000-3304.2018.17220

    17. [17]

      孙斌许静张其坤曲文强侯昭升 . 乙交酯、L-丙交酯均聚物及其共聚物的制备和性能研究. 高分子学报, 2014, (9): 1274-1280. doi: 10.11777/j.issn1000-3304.2014.14008

    18. [18]

      戴璐周勤灼李伯耿介素云 . 以高顺式聚丁二烯为软段的三嵌段共聚物的制备. 高分子学报, 2017, (12): 1930-1938. doi: 10.11777/j.issn1000-3304.2017.17052

    19. [19]

      李忠安李振 . 具有枝状结构二阶非线性光学高分子的研究进展. 高分子学报, 2017, (2): 155-177. doi: 10.11777/j.issn1000-3304.2017.16274

    20. [20]

      安泽胜陈昶乐何军坡洪春雁李志波李子臣刘超吕小兵秦安军曲程科唐本忠陶友华宛新华王国伟王佳郑轲邹文凯 . 中国高分子合成化学的研究与发展动态. 高分子学报, 2019, 50(10): 1083-1132. doi: 10.11777/j.issn1000-3304.2019.19136

  • Figure 1.  Janus polymerization of THF with CL catalyzed by Lu(OTf)3 (Reprinted with permission from Ref.[1]; Copyright (2014) American Chemical Society)

    Figure 2.  (a) Temperature-selective polymerization for synthesis of a multi-block copolymer; (b) Janus particles and flower-like particles synthesized and the corresponding TEM image (Reprinted with permission from Ref.[16]; Copyright (2018) John Wiley and Sons)

    Figure 3.  Zwitterionic copolymerization of δ-VL and CL (Reprinted with permission from Ref.[23]; Copyright (2011) John Wiley and Sons)

    Figure 4.  Kinetic plots for Janus polymerization of THF with CL at 25 °C catalyzed by Lu(OTf)3 in the presence of PO in bulk: (▲) CL, (■) THF (Reprinted with permission from Ref.[1]; Copyright (2014) American Chemical Society)

    Figure 5.  Schematic illustration on 3-miktoarm star terpolymer catalyzed by Lu(OTf)3/mPEG-EO and the corresponding TEM images of micelles self-assembled from the copolymers with a hydrophilic fraction of 40.7%, vesicles with a hydrophilic weight fraction of 23.8% in aqueous solution and nanorod aggregations at an interface (Reprinted with permission from Ref.[47]; Copyright (2018) American Chemical Society)

    Figure 6.  Synthesis of cylindrical Janus polymer brush (Reprinted (adapted) with permission from Ref.[69]; Copyright (2019) John Wiley and Sons)

    Figure 7.  Synthesis of bPTHF catalyzed by Lu(OTf)3 and EGDE, stress-strain curves of bPTHF at a uniform strain rate of 10 mm/min at ambient temperature and the corresponding self-healing behaviors by bPTHF swollen by acetone containing nile red, pyran compound and coumarin (Reprinted with permission from Ref.[71]; Copyright (2017) John Wiley and Sons)

    Figure 8.  Stress-strain curves of multiblock copolymers without treatment (a), after annealing at 70 °C (b), and after quenching at 70 °C (c) (Reprinted with permission from Ref.[42]; Copyright (2017) Elsevier)

    Figure 9.  Initiation of Janus polymerization (Reprinted (adapted) with permission from Ref.[74]; Copyright (2019) Springer Nature)

    Figure 10.  Propagation of CL on anionic end in Stage I of Janus polymerization (Reprinted with permission from Ref.[74]; Copyright (2019) Springer Nature)

    Figure 11.  Energy profiles of anionic end in both Stage I (blue) and II (red) from DFT calculations under B3LYP/6-31g (d,p). ΔG (rate determining step): ΔG3OTf = 38.7 kcal/mol (ligand exchange), ΔG2OTf = 27.5 kcal/mol (ring-opening). Tripedal crows are employed to represent structures of 3OTf_TS2 and 2OTf_TS2. In Stage II, an anourous bird (two wings, three claws but without a tail) is shown in the figure, which differs from that bird in Stage I (two wings, three claws with a tail). (Reprinted with permission from Ref.[74]; Copyright (2019) Springer Nature)

    Figure 12.  Propagation of CL on anionic end in Stage II of Janus polymerization (Reprinted with permission from Ref.[74]; Copyright (2019) Springer Nature)

    Figure 13.  Synthesis of block copolymer of CO with CL and the self-assembly behaviors of the hydrophilic modified polymer in aqueous solution and in bulk, respectively (Reprinted with permission from Ref.[75]; Copyright (2019) Springer Nature)

    Table 1.  Polymerization rate and kinetics characteristics of three stages in Janus polymerization

    StageAnionicCationicKinetics
    Stage ICL, slow homopolymerizationCL/THF copolymerizationSimultaneously, controlled chain polymerization
    Stage IICL, fast homopolymerizationDormancyControlled chain polymerization
    Stage IIICL reaches high conversionTHF propagationStep polymerization among polymer chains
    下载: 导出CSV
  • 加载中
图(14)表(1)
计量
  • PDF下载量:  93
  • 文章访问数:  939
  • HTML全文浏览量:  372
  • 引证文献数: 0
文章相关
  • 通讯作者:  凌君, lingjun@zju.edu.cn
  • 收稿日期:  2019-08-10
  • 修稿日期:  2019-08-21
  • 刊出日期:  2019-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计