ISSN 1000-3304CN 11-1857/O6

双烯烃橡胶复分解-加氢制备端羧基聚烯烃

王茜茜 戴璐 介素云 李伯耿

引用本文: 王茜茜, 戴璐, 介素云, 李伯耿. 双烯烃橡胶复分解-加氢制备端羧基聚烯烃[J]. 高分子学报. doi: 10.11777/j.issn1000-3304.2019.19171 shu
Citation1:  Xi-xi Wang, Lu Dai, Su-yun Jie and Bo-geng Li. Synthesis of Carboxyl-terminated Polyolefins via Metathesis Degradation-hydrogenation of Diene Rubbers[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19171 shu

双烯烃橡胶复分解-加氢制备端羧基聚烯烃

    通讯作者: 介素云, E-mail: jiesy@zju.edu.cn
摘要: 采用烯烃复分解法,以双烯烃橡胶为原料,在Grubbs II代催化剂和链转移剂(马来酸)的作用下制得相应的端羧基聚二烯烃,通过对甲苯磺酰肼/三正丙胺试剂对其进一步加氢得到端羧基聚烯烃. 主要研究了反应时间、反应温度、橡胶中双键/催化剂摩尔比、橡胶中双键/链转移剂摩尔比等因素对产物分子量及分子量分布的影响. 通过核磁共振氢谱(1H-NMR)和碳谱(13C-NMR)、红外光谱(FTIR)、凝胶渗透色谱仪(GPC)、热重分析(TGA)和示差扫描量热分析(DSC)对产物的结构和性能进行了测试表征. 结果表明,通过调整橡胶中双键/催化剂的摩尔比或橡胶中双键/链转移剂的摩尔比可以调控产物的分子量. 另外,采用该方法制得的端羧基聚丁二烯具有较高的反式1,4-结构含量,与原料相比其顺式1,4-结构含量大幅下降,从而对产物的性能产生一定影响;而以异戊橡胶为原料时并没有观察到该现象. 端羧基聚二烯烃经加氢反应后转变成端羧基聚烯烃,具有更好的热稳定性. 该方法合成步骤简单,产物分子量可控,为功能材料的制备提供了新的可能.

English

    1. [1]

      Sturzel M, Mihan S, Mulhaupt R. Chem Rev, 2016, 116(3): 1398 − 1433 doi: 10.1021/acs.chemrev.5b00310

    2. [2]

      Kaminsky W. Macromol Chem Phys, 2008, 209(5): 459 − 466 doi: 10.1002/macp.200700575

    3. [3]

      Chen Jianzhuang(陈健壮), Cui Kun(崔崑), Zhang Shuyuan(张淑媛), Ma Zhi(马志). Progress in Chemistry(化学进展), 2008, 20(11): 1740 − 1750

    4. [4]

      Wang Huanxin(汪焕心). Guangzhou Chemical Industry(广州化工), 2012, 40(3): 1 − 3 doi: 10.3969/j.issn.1001-9677.2012.03.002

    5. [5]

      Jian Zhongbao(简忠保). Acta Polymerica Sinica(高分子学报), 2018, (11): 1359 − 1371 doi: 10.11777/j.issn1000-3304.2018.18146

    6. [6]

      Zou Tingting(邹婷婷), Jiang Bin(蒋斌), Lin Shaohui(林韶晖), Pan Qinmin(潘勤敏). Acta Polymerica Sinica(高分子学报), 2016, (10): 1374 − 1382

    7. [7]

      Smith R F, Boothroyd S C, Thompson R L, Khosravi E. Green Chem, 2016, 18(11): 3448 − 3455 doi: 10.1039/C5GC03075G

    8. [8]

      Michel X, Fouquay S, Michaud G, Simon F, Brusson J M, Carpentier J F, Guillaume S M. Eur Polym J, 2017, 96: 403 − 413 doi: 10.1016/j.eurpolymj.2017.09.027

    9. [9]

      Saetung N, Campistron I, Pascua S, Pilard J F, Fontaine L. Macromolecules, 2011, 44(4): 784 − 794 doi: 10.1021/ma102406w

    10. [10]

      Chen Min(陈敏), Chen Changle(陈昶乐). Acta Polymerica Sinica(高分子学报), 2018, (11): 1372 − 1384 doi: 10.11777/j.issn1000-3304.2018.18155

    11. [11]

      Dong J Y, Hu Y. Coord Chem Rev, 2006, 250(1-2): 47 − 65 doi: 10.1016/j.ccr.2005.05.008

    12. [12]

      Martinez H, Hillmyer M A. Macromolecules, 2014, 47(2): 479 − 485 doi: 10.1021/ma402397b

    13. [13]

      Xu Z, Jie S, Li B G. J Polym Sci, Part A: Polym Chem, 2014, 52(22): 3205 − 3212 doi: 10.1002/pola.27381

    14. [14]

      Trzaskowski J, Quinzler D, Bahrle C, Mecking S. Macromol Rapid Commun, 2011, 32(17): 1352 − 1356 doi: 10.1002/marc.201100319

    15. [15]

      Vilela C, Silvestre A J D, Meier M A R. Macromol Chem Phys, 2012, 213(21): 2220 − 2227 doi: 10.1002/macp.201200332

    16. [16]

      Stempfle F, Ortmann P, Mecking S. Chem Rev, 2016, 116(7): 4597 − 4641 doi: 10.1021/acs.chemrev.5b00705

    17. [17]

      Shiono T, Yoshida K, Soga K. Makromol Chem Rapid Commun, 1990, 11(4): 169 − 175 doi: 10.1002/marc.1990.030110405

    18. [18]

      Shiono T, Kurosawa H, Soga K. Makromol Chem, 1992, 193(11): 2751 − 2761 doi: 10.1002/macp.1992.021931104

    19. [19]

      Mazzolini J, Boyron O, Monteil V, Gigmes D, Bertin D, D Agosto F, Boisson C. Macromolecules, 2011, 44(9): 3381 − 3387 doi: 10.1021/ma200342y

    20. [20]

      Zhang Yongjie(张勇杰), Li Huayi(李化毅), Dong Jinyong(董金勇), Hu Youliang(胡友良). Progress in Chemistry(化学进展), 2014, 26(1): 110 − 124

    21. [21]

      Tasdelen M A, Kahveci M U, Yagci Y. Prog Polym Sci, 2011, 36(4): 455 − 567 doi: 10.1016/j.progpolymsci.2010.10.002

    22. [22]

      Berenbaum M B, Bulbenko G F, Gobran R H, Hoffman R F. US Patent, 3235589, 1966-02-15

    23. [23]

      Reed S F. J Polym Sci, Part A: Polym Chem, 1971, 9(8): 2147 − 2153 doi: 10.1002/pol.1971.150090804

    24. [24]

      Norsic S, Thomas C, D' Agosto F, Boisson C. Angew Chem Int Ed, 2015, 54(15): 4631 − 4635 doi: 10.1002/anie.201411223

    25. [25]

      Pitet L M, Hillmyer M A. Macromolecules, 2011, 44(7): 2378 − 2381 doi: 10.1021/ma102975r

    26. [26]

      Morita T, Maughon B R, Bielawski C W, Grubbs R H. Macromolecules, 2000, 33(17): 6621 − 6623 doi: 10.1021/ma000013x

    27. [27]

      Dai L, Wang X, Bu Z, Li B-G, Jie S. J Appl Polym Sci, 2019, 136(2): 46934 doi: 10.1002/app.46934

    28. [28]

      Esteruelas M A, Gonzalez F, Herrero J, Lucio P, Olivan M, Ruiz-Labrador B. Polym Bull, 2007, 58(5-6): 923 − 931 doi: 10.1007/s00289-007-0734-4

    29. [29]

      Lichtenheldt M, Wang D R, Vehlow K, Reinhardt I, Kuhnel C, Decker U, Blechert S, Buchmeiser M R. Chem Eur J, 2009, 15(37): 9451 − 9457 doi: 10.1002/chem.200900384

    30. [30]

      Grubbs R H. Handbook of Metathesis. Weinheim: Wiley-VCH, 2003. 1 − 6

    31. [31]

      Harwood H J, Russell D B, Verthe J A, Zymonas J. Makromol Chem, 1973, 163: 1 − 12 doi: 10.1002/macp.1973.021630101

    32. [32]

      Mango L A, Lenz R W. Makromol Chem, 1973, 163: 13 − 36 doi: 10.1002/macp.1973.021630102

    33. [33]

      Hahn F. J Polym Sci, Part A: Polym Chem, 1992, 30(3): 397 − 408 doi: 10.1002/pola.1992.080300307

    34. [34]

      Zhou Q, Wang A, Dai L, Jie S, Li B G. Polymer, 2016, 107: 306 − 315 doi: 10.1016/j.polymer.2016.11.033

    35. [35]

      Song S F, Fu Z S, Xu J T, Fan Z Q. J Appl Polym Sci, 2018, 135(7): 41586

    36. [36]

      Carella J M, Graessley W W, Fetters L J. Macromolecules, 1984, 17(12): 2775 − 2786 doi: 10.1021/ma00142a059

    37. [37]

      Rasid H M, Azhar N H A, Jamaluddin N, Yusoff S F M. Bull Korean Chem Soc, 2016, 37(6): 797 − 801 doi: 10.1002/bkcs.10767

    38. [38]

      Samran J, Phinyocheep P, Daniel P, Kittipoom S. J Appl Polym Sci, 2005, 95(1): 16 − 27 doi: 10.1002/app.20811

    39. [39]

      Mahittikul A, Prasassarakich P, Rempel G L. J Appl Polym Sci, 2007, 103(5): 2885 − 2895 doi: 10.1002/app.25449

    40. [40]

      Azhar N H A, Jamaluddin N, Rasid H M, Yusof M J M, Yusoff S F M. Int J Polym Sci, 2015, 243038

    41. [41]

      Hunig S, Muller H R. Angew Chem Int Ed, 1962, 74(6): 215 − 216

    42. [42]

      Corey E J, Mock W Y, Pasto D J. Tetrahedron Lett, 1961, 2(11): 347 − 352 doi: 10.1016/S0040-4039(01)91637-5

    43. [43]

      Brandrup J, Immergut E H, Grulke E A. Polymer Handbook, 4th ed. New York: Wiley, 1999. 705 − 710

    44. [44]

      Singha N K, De P P, Sivaram S J. J Appl Polym Sci, 1997, 66(9): 1674 − 1652

    1. [1]

      智杰颖王慎平王海庆路洪丽林文俊乔从德胡长旭贾玉玺 . 橡胶在动态载荷下的能量损耗分析. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.16172

    2. [2]

      宋义虎杜淼杨红梅郑强 . 橡胶材料的结构与黏弹性. 高分子学报, doi: 10.3724/SP.J.1105.2013.13135

    3. [3]

      吴思武唐征海郭宝春 . 动态共价键交联橡胶的设计和性能. 高分子学报, doi: 10.11777/j.issn1000-3304.2019.19002

    4. [4]

      杨树颜贾志欣刘岚罗远芳贾德民刘治猛 . 冰点下降法研究交联网络结构对天然橡胶力学性能的影响. 高分子学报, doi: 10.11777/j.issn1000-3304.2014.13411

    5. [5]

      唐征海郭宝春张立群贾德民 . 石墨烯/橡胶纳米复合材料. 高分子学报, doi: 10.11777/j.issn1000-3304.2014.14083

    6. [6]

      补强何方方夏和生 . 石墨烯/橡胶纳米复合材料研究进展. 高分子学报, doi: 10.3724/SP.J.1105.2014.14017

    7. [7]

      于建香刘太奇 . 纳米丝负载钯催化剂的制备及催化烯烃加氢性能研究. 高分子学报,

    8. [8]

      周砚珠江英彦 . 高活性烯烃加氢的高分子催化剂——聚-γ-氨丙基硅氧烷-钯络合物. 高分子学报,

    9. [9]

      冯震国 . 聚烯烃纤维表面光接枝的ESCA表征. 高分子学报,

    10. [10]

      邹婷婷蒋斌林韶晖潘勤敏 . 烯烃易位法降解顺丁橡胶及制备遥爪低聚物的研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2016.16050

    11. [11]

      杨红王勇那兵曹文李江张琴杜荣昵傅强 . 聚烯烃共混物注射制品的形态控制与多层次结构. 高分子学报,

    12. [12]

      何明波胡兴洲 . 预氧化聚烯烃膜的表面光接枝聚合. 高分子学报,

    13. [13]

      宫晓颐徐僖 . 等离子体处理云母对填充聚烯烃结构影响的研究. 高分子学报,

    14. [14]

      阳霞杨鸣波李忠明冯建民 . 具有负泊松比效应的聚烯烃共混物. 高分子学报,

    15. [15]

      唐涛陈辉张学全李林黄葆同 . 聚烯烃/极性聚合物界面的分子状态. 高分子学报,

    16. [16]

      孙秀丽唐勇 . 边臂策略在聚烯烃催化剂设计中的应用. 高分子学报, doi: 10.11777/j.issn1000-3304.2017.17033

    17. [17]

      简忠保 . 功能化聚烯烃合成:从催化剂到极性单体设计. 高分子学报, doi: 10.11777/j.issn1000-3304.2018.18146

    18. [18]

      孔祥明谢续明肖天晶段建华张增民 . 聚烯烃共混物分散相尺寸梯度分布形态形成速度影响因素的研究. 高分子学报,

    19. [19]

      陈敏陈昶乐 . 官能团化聚烯烃:新催化剂、新聚合调控手段、新材料. 高分子学报, doi: 10.11777/j.issn1000-3304.2018.18155

    20. [20]

      张鸿志张志毅冯新德 . 聚烯烃低聚物转化为双端正离子活性链及其遥爪三嵌段物的合成. 高分子学报,

  • Figure 1.  Metathetic degradation and sequential hydrogenation of polydiene rubbers (PB and PI) in the presence of maleic acid

    Figure 1.  GPC traces of products via metathetic degradation of PB in different reaction time

    Figure 2.  FTIR spectra of PB, CTPB0, CTPB5 and CTPE5

    Figure 3.  1H-NMR spectra of PB, CTPB0, CTPB5 and CTPE5

    Figure 4.  13C-NMR spectra of PB, CTPB0, CTPB5 and CTPE5 (*, CDCl3; *', o-C6D4Cl2)

    Figure 5.  TGA curves of CTPB5 and CTPE5

    Figure 6.  DSC curves of PB, CTPB5 and CTPE5

    Figure 7.  1H-NMR spectra of PI, CTPI0, CTPI5 and HCTPI5

    Figure 8.  13C-NMR results of PI, CTPI0, CTPI5 and HCTPI5

    Figure 9.  FTIR spectra of PI, CTPI0, CTPI5 and HCTPI5

    Figure 10.  TGA curves of PI, CTPI5 and HCTPI5

    Figure 11.  DSC curves of PI, CTPI5 and HCTPI5

    Table 1.  Metathetic degradation of PB under different conditions a

    EntryC=C/CTA
    (molar ratio)
    C=C/G2
    (molar ratio)
    T ( °C)t (h)Mn (g/mol)Yield d (%)
    NMRbGPC c (Ɖ)
    1e5:12000:1401/1218401880 (2.22)
    1/610601200 (1.85)
    1/29101190 (1.61)
    18701170 (1.61)
    28801180 (1.60)
    48701100 (1.66)
    25:12000:110416501740 (2.31)76
    35:12000:120414401490 (2.20)62
    45:12000:130411601320 (1.82)71
    55:12000:14048701080 (1.70)70
    62:12000:1404560780 (1.49)74
    710:12000:140434604400 (1.32)59
    820:12000:140437304100 (1.43)62
    95:11000:14048801030 (1.75)73
    105:13000:140425402900 (1.87)98
    11f5:12000:140412301800 (1.75)90
    12e5:02000:1401/24520 (2.00)
    14290 (2.00)
    24390 (1.94)
    44550 (1.91)
    a PB: 2.0 g, solvent: THF (15 mL); b Determined by 1H-NMR spectroscopy, Mn,NMR(CTPB) = ${{\dfrac{{{I_{\left( {5.0 - 5.4} \right)}} + {I_{\left( {7.0 - 7.1} \right)}}}}{{{I_{\left( {5.80 - 5.86} \right)}}}} }}$×54+116; c Determined by GPC against polystyrene standards; d Isolated yield; e Kinetic experiments, PB: 4.0 g, THF: 30 mL; f Solvent: THF (30 mL)
    下载: 导出CSV

    Table 2.  GPC results of products via metathetic degradation of PI with different conditions a

    EntryPI/MA
    (molar ratio)
    C=C/G2
    (molar ratio)
    Mn (g/mol)
    1H-NMR bGPC (Ð) c
    15:11000:126002960 (2.19)
    25:12000:1760010500 (1.97)
    35:13000:14350050600 (1.95)
    42:12000:1630010000 (2.05)
    510:12000:160008800 (1.94)
    620:12000:1770010700 (1.93)
    71:02000:159600 (2.16)
    a PI: 2.0 g, solvent: THF (15 mL), reaction temperature: 45 ºC, reaction time: 4 h; b Determined by 1H-NMR spectroscopy, ${{M_{ {\rm{n} },{\rm{NMR} } { \left({\rm{CTPI} }\right) } } = \textstyle\dfrac{ { {I_{{1.68}} } } }{ {3{I_{ {5.85} } } } } \times 68 + 116}}$; c Determined by GPC against polystyrene standards
    下载: 导出CSV

    Table 3.  Thermal properties of functionalized polydienes and polyolefins

    SampleApperanceMn (Ɖ) aTg b ( °C)Tm b ( °C)
    CTPB5Colorless liquid1030 (1.75)−87.1
    CTPE5White solid1150 (1.61)115
    CTPI5Rubber13200 (1.89)−66.3
    HCTPI5Rubber14200 (1.47)−65.1
    a Determined by GPC, in unit of g/mol; b Determined by DSC (second heating cycle)
    下载: 导出CSV
  • 加载中
图(12)表(3)
计量
  • PDF下载量:  43
  • 文章访问数:  503
  • HTML全文浏览量:  289
  • 引证文献数: 0
文章相关
  • 通讯作者:  介素云, jiesy@zju.edu.cn
  • 收稿日期:  2019-09-18
  • 修稿日期:  2019-10-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计