ISSN 1000-3304CN 11-1857/O6

Citation: Xi-xi Wang, Lu Dai, Su-yun Jie and Bo-geng Li. Synthesis of Carboxyl-terminated Polyolefins via Metathesis Degradation-hydrogenation of Diene Rubbers[J]. Acta Polymerica Sinica, 2020, 51(3): 277-286. doi: 10.11777/j.issn1000-3304.2019.19171 shu

Synthesis of Carboxyl-terminated Polyolefins via Metathesis Degradation-hydrogenation of Diene Rubbers

  • Corresponding author: Su-yun Jie, jiesy@zju.edu.cn
    Su-yun Jie, E-mail: jiesy@zju.edu.cn
  • Received Date: 2019-09-18
    Accepted Date: 2019-10-21
    Available Online: 2020-03-01

Figures(13) / Tables(3)

  • The carboxyl-terminated polydiene is a kind of widely used telechelic liquid rubber, which is commonly used as adhesive for solid rocket propellant, material bonding, sealant, electric insulation or as modifier of epoxy resins. Taking diene rubbers as raw materials, the carboxyl-terminated polydienes were synthesized via olefin metathesis degradation of diene rubbers catalyzed by Grubbs II catalyst ( G2 ) in the presence of maleic acid as a chain transfer agent (CTA). The carboxyl-terminated polyolefins were further prepared by the subsequent chemical hydrogenation with p-toluenesulfonyl hydrazide/tri(n-propyl)amine reagents. The influences of reaction conditions on the molecular weight and molecular weight distribution of products, including reaction time, reaction temperature, molar ratios of C=C/catalyst and C=C/chain transfer agent, were investigated. The results indicated that the molecular weight of products could be controlled by varying the molar ratio of C=C/catalyst or C=C/chain transfer agent. It turned out that the catalyst was highly active for the metathesis degradation of diene rubbers even if there was no existence of chain transfer agents. The structures of carboxyl-terminated polydienes and polyolefins were characterized by nuclear magnetic resonance spectroscopy (1H-NMR) and carbon spectrum (13C-NMR), infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) and their thermal properties were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It’s worth noting that the trans-1,4 content of carboxyl-terminated polybutadiene via metathesis degradation greatly increased and the corresponding cis-1,4 content decreased, thus affecting the properties of polymers. After hydrogenation, the carboxyl-terminated polyolefins had better thermal stability than the carboxyl-terminated polydienes.
  • 加载中
    1. [1]

      Sturzel M, Mihan S, Mulhaupt R. Chem Rev, 2016, 116(3): 1398 − 1433 doi: 10.1021/acs.chemrev.5b00310

    2. [2]

      Kaminsky W. Macromol Chem Phys, 2008, 209(5): 459 − 466 doi: 10.1002/macp.200700575

    3. [3]

      Chen Jianzhuang(陈健壮), Cui Kun(崔崑), Zhang Shuyuan(张淑媛), Ma Zhi(马志). Progress in Chemistry(化学进展), 2008, 20(11): 1740 − 1750

    4. [4]

      Wang Huanxin(汪焕心). Guangzhou Chemical Industry(广州化工), 2012, 40(3): 1 − 3 doi: 10.3969/j.issn.1001-9677.2012.03.002

    5. [5]

      Jian Zhongbao(简忠保). Acta Polymerica Sinica(高分子学报), 2018, (11): 1359 − 1371 doi: 10.11777/j.issn1000-3304.2018.18146

    6. [6]

      Zou Tingting(邹婷婷), Jiang Bin(蒋斌), Lin Shaohui(林韶晖), Pan Qinmin(潘勤敏). Acta Polymerica Sinica(高分子学报), 2016, (10): 1374 − 1382

    7. [7]

      Smith R F, Boothroyd S C, Thompson R L, Khosravi E. Green Chem, 2016, 18(11): 3448 − 3455 doi: 10.1039/C5GC03075G

    8. [8]

      Michel X, Fouquay S, Michaud G, Simon F, Brusson J M, Carpentier J F, Guillaume S M. Eur Polym J, 2017, 96: 403 − 413 doi: 10.1016/j.eurpolymj.2017.09.027

    9. [9]

      Saetung N, Campistron I, Pascua S, Pilard J F, Fontaine L. Macromolecules, 2011, 44(4): 784 − 794 doi: 10.1021/ma102406w

    10. [10]

      Chen Min(陈敏), Chen Changle(陈昶乐). Acta Polymerica Sinica(高分子学报), 2018, (11): 1372 − 1384 doi: 10.11777/j.issn1000-3304.2018.18155

    11. [11]

      Dong J Y, Hu Y. Coord Chem Rev, 2006, 250(1-2): 47 − 65 doi: 10.1016/j.ccr.2005.05.008

    12. [12]

      Martinez H, Hillmyer M A. Macromolecules, 2014, 47(2): 479 − 485 doi: 10.1021/ma402397b

    13. [13]

      Xu Z, Jie S, Li B G. J Polym Sci, Part A: Polym Chem, 2014, 52(22): 3205 − 3212 doi: 10.1002/pola.27381

    14. [14]

      Trzaskowski J, Quinzler D, Bahrle C, Mecking S. Macromol Rapid Commun, 2011, 32(17): 1352 − 1356 doi: 10.1002/marc.201100319

    15. [15]

      Vilela C, Silvestre A J D, Meier M A R. Macromol Chem Phys, 2012, 213(21): 2220 − 2227 doi: 10.1002/macp.201200332

    16. [16]

      Stempfle F, Ortmann P, Mecking S. Chem Rev, 2016, 116(7): 4597 − 4641 doi: 10.1021/acs.chemrev.5b00705

    17. [17]

      Shiono T, Yoshida K, Soga K. Makromol Chem Rapid Commun, 1990, 11(4): 169 − 175 doi: 10.1002/marc.1990.030110405

    18. [18]

      Shiono T, Kurosawa H, Soga K. Makromol Chem, 1992, 193(11): 2751 − 2761 doi: 10.1002/macp.1992.021931104

    19. [19]

      Mazzolini J, Boyron O, Monteil V, Gigmes D, Bertin D, D Agosto F, Boisson C. Macromolecules, 2011, 44(9): 3381 − 3387 doi: 10.1021/ma200342y

    20. [20]

      Zhang Yongjie(张勇杰), Li Huayi(李化毅), Dong Jinyong(董金勇), Hu Youliang(胡友良). Progress in Chemistry(化学进展), 2014, 26(1): 110 − 124

    21. [21]

      Tasdelen M A, Kahveci M U, Yagci Y. Prog Polym Sci, 2011, 36(4): 455 − 567 doi: 10.1016/j.progpolymsci.2010.10.002

    22. [22]

      Berenbaum M B, Bulbenko G F, Gobran R H, Hoffman R F. US Patent, 3235589, 1966-02-15

    23. [23]

      Reed S F. J Polym Sci, Part A: Polym Chem, 1971, 9(8): 2147 − 2153 doi: 10.1002/pol.1971.150090804

    24. [24]

      Norsic S, Thomas C, D' Agosto F, Boisson C. Angew Chem Int Ed, 2015, 54(15): 4631 − 4635 doi: 10.1002/anie.201411223

    25. [25]

      Pitet L M, Hillmyer M A. Macromolecules, 2011, 44(7): 2378 − 2381 doi: 10.1021/ma102975r

    26. [26]

      Morita T, Maughon B R, Bielawski C W, Grubbs R H. Macromolecules, 2000, 33(17): 6621 − 6623 doi: 10.1021/ma000013x

    27. [27]

      Dai L, Wang X, Bu Z, Li B-G, Jie S. J Appl Polym Sci, 2019, 136(2): 46934 doi: 10.1002/app.46934

    28. [28]

      Esteruelas M A, Gonzalez F, Herrero J, Lucio P, Olivan M, Ruiz-Labrador B. Polym Bull, 2007, 58(5-6): 923 − 931 doi: 10.1007/s00289-007-0734-4

    29. [29]

      Lichtenheldt M, Wang D R, Vehlow K, Reinhardt I, Kuhnel C, Decker U, Blechert S, Buchmeiser M R. Chem Eur J, 2009, 15(37): 9451 − 9457 doi: 10.1002/chem.200900384

    30. [30]

      Grubbs R H. Handbook of Metathesis. Weinheim: Wiley-VCH, 2003. 1 − 6

    31. [31]

      Harwood H J, Russell D B, Verthe J A, Zymonas J. Makromol Chem, 1973, 163: 1 − 12 doi: 10.1002/macp.1973.021630101

    32. [32]

      Mango L A, Lenz R W. Makromol Chem, 1973, 163: 13 − 36 doi: 10.1002/macp.1973.021630102

    33. [33]

      Hahn F. J Polym Sci, Part A: Polym Chem, 1992, 30(3): 397 − 408 doi: 10.1002/pola.1992.080300307

    34. [34]

      Zhou Q, Wang A, Dai L, Jie S, Li B G. Polymer, 2016, 107: 306 − 315 doi: 10.1016/j.polymer.2016.11.033

    35. [35]

      Song S F, Fu Z S, Xu J T, Fan Z Q. J Appl Polym Sci, 2018, 135(7): 41586

    36. [36]

      Carella J M, Graessley W W, Fetters L J. Macromolecules, 1984, 17(12): 2775 − 2786 doi: 10.1021/ma00142a059

    37. [37]

      Rasid H M, Azhar N H A, Jamaluddin N, Yusoff S F M. Bull Korean Chem Soc, 2016, 37(6): 797 − 801 doi: 10.1002/bkcs.10767

    38. [38]

      Samran J, Phinyocheep P, Daniel P, Kittipoom S. J Appl Polym Sci, 2005, 95(1): 16 − 27 doi: 10.1002/app.20811

    39. [39]

      Mahittikul A, Prasassarakich P, Rempel G L. J Appl Polym Sci, 2007, 103(5): 2885 − 2895 doi: 10.1002/app.25449

    40. [40]

      Azhar N H A, Jamaluddin N, Rasid H M, Yusof M J M, Yusoff S F M. Int J Polym Sci, 2015, 243038

    41. [41]

      Hunig S, Muller H R. Angew Chem Int Ed, 1962, 74(6): 215 − 216

    42. [42]

      Corey E J, Mock W Y, Pasto D J. Tetrahedron Lett, 1961, 2(11): 347 − 352 doi: 10.1016/S0040-4039(01)91637-5

    43. [43]

      Brandrup J, Immergut E H, Grulke E A. Polymer Handbook, 4th ed. New York: Wiley, 1999. 705 − 710

    44. [44]

      Singha N K, De P P, Sivaram S J. J Appl Polym Sci, 1997, 66(9): 1674 − 1652

  • 加载中
    1. [1]

      Jie-ying ZhiShen-ping WangHai-qing WangHong-li LuWen-jun LinCong-de QiaoChang-xu HuYu-xi Jia . Analysis on Energy Loss of Rubber under Dynamic Load. Acta Polymerica Sinica, 2017, (4): 708-715. doi: 10.11777/j.issn1000-3304.2017.16172

    2. [2]

      Yi-hu SongMiao DuHong-mei YangQiang Zheng . STRUCTURE AND VISCOELASTICITY OF RUBBER MATERIALS. Acta Polymerica Sinica, 2013, (9): 1115-1130. doi: 10.3724/SP.J.1105.2013.13135

    3. [3]

      Si-wu WuZheng-hai TangBao-chun Guo . Design and Performance of Rubbers Cross-linked with Dynamic Covalent Bonds. Acta Polymerica Sinica, 2019, 50(5): 442-450. doi: 10.11777/j.issn1000-3304.2019.19002

    4. [4]

      Shu-yan YangZhi-xin JiaLan LiuYuan-fang LuoDe-min JiaZhi-meng Liu . Studies on Effects of Crosslinking Network Structure on Mechanical Properties of Natural Rubber by Freezing Point Depression Approach. Acta Polymerica Sinica, 2014, (7): 943-947. doi: 10.11777/j.issn1000-3304.2014.13411

    5. [5]

      Zheng-hai TangBao-chun GuoLi-qun ZhangDe-min Jia . Graphene/Rubber Nanocomposites. Acta Polymerica Sinica, 2014, (7): 865-877. doi: 10.11777/j.issn1000-3304.2014.14083

    6. [6]

      Qiang BuFang-fang HeHe-sheng Xia . Progress in Graphene/Rubber Nanocomposites. Acta Polymerica Sinica, 2014, (6): 715-723. doi: 10.3724/SP.J.1105.2014.14017

    7. [7]

      YU JianxiangLIU Taiqi . PREPARATION OF NANO_FIBER SUPPORTED PALLADIUM CATALYSTS AND THEIR USE FOR THE CATALYTIC HYDROGENATION OF OLEFINS. Acta Polymerica Sinica, 2007, (6): 514-518.

    8. [8]

      Zhou Yan-zhuChiang Ying-yen . HIGHLY ACTIVE POLYMER CATALYST, POLY-γ-AMINOPRO-PYLSILOXANE-Pd COMPLEX, FOR HYDROGENATION OF OLEFINS. Acta Polymerica Sinica, 1979, (2): 97-100.

    9. [9]

      FENG Zhen-guo . CHARACTERIZATION OF PHOTOGRAFTED SURFACE OF HSPE FIBER BY ESCA. Acta Polymerica Sinica, 1990, (2): 182-187.

    10. [10]

      Zou Ting-tingJiang BinLin Shao-huiPan Qin-min . Metathetic Degradation of Polybutadiene and Formation of Telechelic Oligomers via Cross Metathesis. Acta Polymerica Sinica, 2016, (10): 1374-1382. doi: 10.11777/j.issn1000-3304.2016.16050

    11. [11]

      YANG XiaYANG MingboLI ZhongminFENG Jianmin . THE NEGATIVE POISSON'S RATIO EFFECT OF POLYOLEFIN BLENDS. Acta Polymerica Sinica, 2003, (2): 221-224.

    12. [12]

      YANG HongWANG YongNA Bing CAO WenLI JiangZHANG QinDU RongniFU Qiang . SPATIAL HIERARCHY AND INTERFACIAL STRUCTURE IN INJECTION-MOLDED BARS OF POLYOLEFIN BLENDS. Acta Polymerica Sinica, 2007, (3): 209-218.

    13. [13]

      TANG TaoCHEN HuiZHANG XuequanLI LinHUANG Baotong . MOLECULAR STATE OF POLYMER IN THE INTERFACIAL AREA OF POLYOLEFIN AND POLAR POLYMES. Acta Polymerica Sinica, 1996, (3): 336-342.

    14. [14]

      HE Ming-boHU Xing-zhou . SURFACE GRAFTING OF PRE-PEROXIDIZED POLYOLEFINL FILMS BY UV-IRRADIATION. Acta Polymerica Sinica, 1989, (3): 275-279.

    15. [15]

      GONG Xiao-yiXU Xi . STUDIES ON EFFECTS OF PLASMA TREATED MICA ON STRUCTURE OF MICA FILLED POLYOLEFINES. Acta Polymerica Sinica, 1990, (4): 468-470.

    16. [16]

      Sun Xiu-liTang Yong . Sidearm Approach to the Synthesis of Catalysts Used in Olefin Polymerization. Acta Polymerica Sinica, 2017, (7): 1019-1037. doi: 10.11777/j.issn1000-3304.2017.17033

    17. [17]

      Zhong-bao Jian . Synthesis of Functionalized Polyolefins: Design from Catalysts to Polar Monomers. Acta Polymerica Sinica, 2018, 0(11): 1359-1371. doi: 10.11777/j.issn1000-3304.2018.18146

    18. [18]

      Xue-min YinYa-wei QinLi WangJian-jun YiJin-yong Dong . Controlling Phase Morphology of EPR in Polypropylene Heterophasic Copolymer by Dichlorosilane-Functionalized Nonconjugated α,ω-Diolefin. Acta Polymerica Sinica, 2020, 51(6): 641-648. doi: 10.11777/j.issn1000-3304.2019.19213

    19. [19]

      KONG XiangmingXIE XumingXIAO TianjingDUAN JianhuaZHANG Zengmin . STUDY ON THE FORMATION RATE OF GRADIENT PHASE MORPHOLOGY IN THE POLYMER BLENDS. Acta Polymerica Sinica, 1998, (6): 686-691.

    20. [20]

      Min ChenChang-le Chen . Polar and Functionalized Polyolefins: New Catalysts, New Modulation Strategies and New Materials. Acta Polymerica Sinica, 2018, 0(11): 1372-1384. doi: 10.11777/j.issn1000-3304.2018.18155

Metrics
  • PDF Downloads(72)
  • Abstract views(1422)
  • HTML views(680)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Supported byBeijing Renhe Information Technology Co. Ltd Technical support: info@rhhz.net 百度统计

/

DownLoad:  Full-Size Img  PowerPoint
Return