ISSN 1000-3304CN 11-1857/O6

两嵌段共聚物反相溶剂中组装结构转变动力学的模拟研究

于春阳 李善龙 李珂 周永丰

引用本文: 于春阳, 李善龙, 李珂, 周永丰. 两嵌段共聚物反相溶剂中组装结构转变动力学的模拟研究[J]. 高分子学报, 2020, 51(3): 311-318. doi: 10.11777/j.issn1000-3304.2019.19173 shu
Citation:  Chun-yang Yu, Shan-long Li, Ke Li and Yong-feng Zhou. Investigation of the Transformation Dynamics of Diblock Copolymers Assemblies in Reverse Solvent via Computer Simulation[J]. Acta Polymerica Sinica, 2020, 51(3): 311-318. doi: 10.11777/j.issn1000-3304.2019.19173 shu

两嵌段共聚物反相溶剂中组装结构转变动力学的模拟研究

摘要: 利用耗散粒子动力学方法,分别研究了不同结构的组装体在改变溶剂的选择性后,在溶液及界面上的结构演变动力学. 模拟结果表明,在改变溶剂的选择性后,大球形胶束在溶液中转变形成反向球形胶束,而在界面上则转变形成反向环状胶束,当前模拟结果与已有的实验结果一致. 此外,模拟结果还预测出,在改变溶剂的选择性后,环状胶束在溶液中转变形成反向环状胶束,而在界面处受限形成反向的支化蠕虫状胶束;蠕虫状胶束则在溶液中转变形成反向环状胶束,而在界面处受限形成多层纳米球结构;囊泡在溶液中转变形成分散的小胶束聚集体,而在界面处受限形成球形的补丁纳米粒子.

English

    1. [1]

      Mai Y Y, Eisenberg A. Chem Soc Rev, 2012, 41(18): 5969 − 5985 doi: 10.1039/c2cs35115c

    2. [2]

      Schacher F H, Brendel J C. Chem-Asian J, 2018, 13(3): 230 − 239 doi: 10.1002/asia.201701542

    3. [3]

      Feng H B, Lu X Y, Wang W Y, Kang N G, Mays J W. Polymers, 2017, 9(10): 494

    4. [4]

      Albert J N L, Epps III T H. Mater Today, 2010, 13(6): 24 − 33 doi: 10.1016/S1369-7021(10)70106-1

    5. [5]

      Zhang Xiaohong(张晓宏), Wu Shikang(吴世康), Huang Pengcheng(黄鹏程). Acta Polymerica Sinica(高分子学报), 1998, (3): 332 − 337

    6. [6]

      Thomas E L, Anderson D M, Henkee C S, Hoffman D. Nature, 1988, 334(6183): 598 − 601 doi: 10.1038/334598a0

    7. [7]

      Bates F S. Science, 1991, 251(4996): 898 − 905 doi: 10.1126/science.251.4996.898

    8. [8]

      Bates F S, Fredrickson G H. Phys Today, 1999, 52(40): 32 − 38

    9. [9]

      van Hest J C M, Delnoye D A P, Baars M W P L, van Genderen M H P, Meijer E W. Science, 1995, 268(5217): 1592 − 1595 doi: 10.1126/science.268.5217.1592

    10. [10]

      Zhang L, Eisenberg A. Science, 1995, 268(5218): 1728 − 1731 doi: 10.1126/science.268.5218.1728

    11. [11]

      Zhang L, Yu K, Eisenberg A. Science, 1996, 272(5269): 1777 − 1779 doi: 10.1126/science.272.5269.1777

    12. [12]

      Lin Z X, Liu S H, Mao W T, Tian H, Wang N, Zhang N H, Tian F, Han L, Feng X L, Mai Y Y. Angew Chem Int Ed, 2017, 56(25): 7135 − 7140 doi: 10.1002/anie.201702591

    13. [13]

      Riess G. Prog Polym Sci, 2003, 28(7): 1107 − 1170 doi: 10.1016/S0079-6700(03)00015-7

    14. [14]

      Rösler A, Vandermeulen G W, Klok H A. Adv Drug Deliv Rev, 2001, 53(1): 95 − 108 doi: 10.1016/S0169-409X(01)00222-8

    15. [15]

      O’Reilly R K, Hawker C J, Wooley K L. Chem Soc Rev, 2006, 35(11): 1068 − 1083 doi: 10.1039/b514858h

    16. [16]

      Wei H, Cheng S X, Zhang X Z, Zhuo R X. Prog Polym Sci, 2009, 34(9): 893 − 910 doi: 10.1016/j.progpolymsci.2009.05.002

    17. [17]

      Roy D, Brooks W L, Sumerlin B S. Chem Soc Rev, 2013, 42(17): 7214 − 7243 doi: 10.1039/c3cs35499g

    18. [18]

      Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2013, 47(1): 2 − 12

    19. [19]

      Li W, Muller M. Annu Rev Chem Biomol, 2015, 6(1): 187 − 216 doi: 10.1146/annurev-chembioeng-061114-123209

    20. [20]

      Schulze M W, McIntosh L D, Hillmyer M A, Lodge T P. Nano Lett, 2013, 14(1): 122 − 126

    21. [21]

      Kennemur J G, Hillmyer M A, Bates F S. Macromolecules, 2012, 45(17): 7228 − 7236 doi: 10.1021/ma301047y

    22. [22]

      Keen I, Yu A, Cheng H H, Jack K S, Nicholson T M, Whittaker A K, Blakey I. Langmuir, 2012, 28(24): 15876 − 15888

    23. [23]

      Zhang Lianbin(张连斌), Wang Ke(王珂), Zhu Jintao(朱锦涛). Acta Polymerica Sinica(高分子学报), 2017, (8): 1261 − 1276 doi: 10.11777/j.issn1000-3304.2017.17126

    24. [24]

      O’Driscoll S M, O’Mahony C T, Farrell R A, Fitzgerald T G, Holmes J D, Morris M A. Chem Phys Lett, 2009, 476(1−3): 65 − 68

    25. [25]

      Chen Z, He C, Li F, Tong L, Liao X, Wang Y. Langmuir, 2010, 26(11): 8869 − 8874 doi: 10.1021/la904623e

    26. [26]

      Xue F, Li H, An L, Jiang S. J Colloid Interface Sci, 2013, 399(1): 62 − 67

    27. [27]

      Zhu H, Wang X, Cui Y, Cai J, Tian F, Wang J, Qiu H. Macromolecules, 2019, 52(9): 3479 − 3485 doi: 10.1021/acs.macromol.9b00197

    28. [28]

      Groot R D, Madden T J. J Chem Phys, 1998, 108(20): 8713 − 8724 doi: 10.1063/1.476300

    29. [29]

      Liu Y T, Zhao Y, Liu H, Liu Y H, Lu Z Y. J Phys Chem B, 2009, 113(46): 15256 − 15262 doi: 10.1021/jp903570w

    30. [30]

      Sheng Y J, Wang T Z, Chen W M, Tsao H K. J Phys Chem B, 2007, 111(37): 10938 − 10945 doi: 10.1021/jp073408s

    31. [31]

      Sheng Y J, Nung C H, Tsao H K. J Phys Chem B, 2006, 110(43): 21643 − 21650 doi: 10.1021/jp0642950

    32. [32]

      Chang H Y, Lin Y L, Sheng Y J, Tsao H K. Macromolecules, 2012, 45(11): 4778 − 4789 doi: 10.1021/ma3007366

    33. [33]

      Tan H N, Wang W, Yu C Y, Zhou Y F, Lu Z Y, Yan D Y. Soft Matter, 2015, 11(43): 8460 − 8470 doi: 10.1039/C5SM01495F

    34. [34]

      Tan H N, Yu C Y, Lu Z Y, Zhou Y F, Yan D Y. Soft Matter, 2017, 13(36): 6178 − 6188 doi: 10.1039/C7SM01170A

    35. [35]

      Wang Y L, Li B, Zhou Y F, Lu Z Y, Yan D Y. Soft Matter, 2013, 9(12): 3293 − 3304 doi: 10.1039/c3sm27396b

    36. [36]

      Yu C Y, Ma L, Li K, Li S L, Liu Y N, Liu L F, Zhou Y F, Yan D Y. Langmuir, 2016, 33(1): 388 − 399

    37. [37]

      Hoogerbrugge P J, Koelman J M V A. Europhys Lett, 1992, 19(3): 155 − 160 doi: 10.1209/0295-5075/19/3/001

    38. [38]

      Koelman J M V A, Hoogerbrugge P J. Europhys Lett, 1993, 21(3): 363 − 368 doi: 10.1209/0295-5075/21/3/018

    39. [39]

      Groot R D, Warren P B. J Chem Phys, 1997, 107(11): 4423 − 4435 doi: 10.1063/1.474784

    40. [40]

      Wang Z K, Wang H B, Cheng M, Li C L, Faller R, Sun S Q, Hu S Q. ACS Nano, 2018, 12(2): 1413 − 1419 doi: 10.1021/acsnano.7b07777

    41. [41]

      Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J Comput Chem, 2013, 34(25): 2197 − 2211 doi: 10.1002/jcc.23365

    42. [42]

      Han Y Y, Yu H Z, Du H B. J Am Chem Soc, 2010, 132(3): 1144 − 1150 doi: 10.1021/ja909379y

    43. [43]

      Jiang Y, Zhu J T, Jiang W. J Phys Chem B, 2005, 109(46): 21549 − 21555 doi: 10.1021/jp052420m

    1. [1]

      朱有亮李占伟孙昭艳吕中元 . 超支化分子自组装形成纳米纤维的计算机模拟研究. 高分子学报, 2017, (2): 351-358. doi: 10.11777/j.issn1000-3304.2017.16294

    2. [2]

      张连斌王珂朱锦涛 . 中国嵌段共聚物受限自组装的研究进展. 高分子学报, 2017, (8): 1261-1276. doi: 10.11777/j.issn1000-3304.2017.17126

    3. [3]

      徐纪华蒋润尹玉华王铮李宝会 . 锚定非对称ABA三嵌段共聚物在选择性溶剂中自组装行为的模拟退火研究. 高分子学报, 2013, (10): 1277-1284. doi: 10.3724/SP.J.1105.2013.13028

    4. [4]

      曹旭光蒋涛王立权张良顺林嘉平蔡春华 . 两亲性/双疏性嵌段共聚物共混体系的自组装行为研究. 高分子学报, 2015, (4): 475-483. doi: 10.11777/j.issn1000-3304.2015.14339

    5. [5]

      马世营汪蓉 . 嵌段共聚物调控纳米粒子自组装的研究进展. 高分子学报, 2016, (8): 1030-1041. doi: 10.11777/j.issn1000-3304.2016.16082

    6. [6]

      崔杰张晓旭韩媛媛姜伟 . 多分散性对两亲性两嵌段共聚物在选择性溶剂中自组装行为影响的Monte Carlo模拟. 高分子学报, 2011, (4): 421-426. doi: 10.3724/SP.J.1105.2011.10246

    7. [7]

      王英英麻家妮崔杰韩媛媛姜伟 . 球壳受限下非对称两嵌段共聚物自组装行为的Monte Carlo模拟研究. 高分子学报, 2018, 0(8): 1116-1126. doi: 10.11777/j.issn1000-3304.2018.18058

    8. [8]

      孙建平胡继文刘锋李银辉张干伟邹海良刘国军涂园园 . 含无规共聚组分的两嵌段聚合物A-b-(B-r-C)的合成以及自组装. 高分子学报, 2012, (9): 997-1006. doi: 10.3724/SP.J.1105.2012.12028

    9. [9]

      刘志瑶王铮尹玉华蒋润李宝会 . 溶剂对嵌段共聚物AB/均聚物C共混体系增容效果的模拟研究. 高分子学报, 2019, 50(11): 1220-1228. doi: 10.11777/j.issn1000-3304.2019.19072

    10. [10]

      刘圆圆唐鹤玮李倩王晓琳 . 嵌段共聚物规整纳米多孔薄膜的制备与形貌调控. 高分子学报, 2015, (4): 466-474. doi: 10.11777/j.issn1000-3304.2015.14338

    11. [11]

      秦江雷陈永明 . 由嵌段共聚物制备有形状的核壳结构聚合物纳米颗粒. 高分子学报, 2011, (6): 572-585. doi: 10.3724/SP.J.1105.2011.11132

    12. [12]

      陈增磊何林李 . Coil-Rod-Coil刚柔嵌段共聚物在选择性溶剂中的自组装. 高分子学报, 2014, (4): 514-522. doi: 10.3724/SP.J.1105.2014.13327

    13. [13]

      王志达姜伟 . 剪切作用对PS-b-P2VP-b-PEO三嵌段共聚物多节状蠕虫胶束形成的影响. 高分子学报, 2011, (4): 360-365. doi: 10.3724/SP.J.1105.2011.10097

    14. [14]

      郑玲飞王铮尹玉华蒋润李宝会 . ABA三嵌段共聚物在油/水乳化液滴中自组装行为的Monte Carlo模拟研究. 高分子学报, 2019, 50(9): 915-924. doi: 10.11777/j.issn1000-3304.2019.19051

    15. [15]

      唐雯岳衎程正迪 . 巨型表面活性剂的本体自组装研究和分子拓扑结构效应. 高分子学报, 2018, 0(8): 959-972. doi: 10.11777/j.issn1000-3304.2018.18102

    16. [16]

      李占伟贾晓溪张静孙昭艳吕中元 . 嵌段共聚物纳米结构设计的计算机模拟研究. 高分子学报, 2011, (9): 973-984. doi: 10.3724/SP.J.1105.2011.11102

    17. [17]

      李青霄王铮尹玉华蒋润李宝会 . 聚合物接枝纳米粒子两亲性分子在溶液中自组装行为的模拟研究. 高分子学报, 2018, 0(10): 1351-1358. doi: 10.11777/j.issn1000-3304.2018.18072

    18. [18]

      朱煜王晓工 . 偶氮液晶嵌段共聚物自组装和光响应性研究进展. 高分子学报, 2013, (8): 962-970. doi: 10.3724/SP.J.1105.2013.13109

    19. [19]

      李小霞谷梦鑫张良顺林嘉平 . 双亲性DNA嵌段共聚物胶束构建超结构的模拟研究. 高分子学报, 2020, 51(11): 1257-1266. doi: 10.11777/j.issn1000-3304.2020.20078

    20. [20]

      林瑞崇郭绍伟 . 调控氢键作用力在多组分嵌段共聚物共混体系中的自组装结构. 高分子学报, 2018, 0(8): 1016-1032. doi: 10.11777/j.issn1000-3304.2018.18020

  • Figure 1.  DPD simulations on the self-assembly of AmB20−m copolymers in solution. (a) The schematic model for AmB20−m polymer; (b) The self-assembled morphologies of AmB20−m copolymers versus the solvophobic block length. A: red bead, solvophobic block; B: blue bead, solvophilic block. (The online version is colorful.)

    Figure 2.  The transition dynamics of small spherical micelle of A8B12 copolymers: (a) In solution at different time during its evolution ((I) t = 0, (II) t = 3 × 102, (III) t = 1 × 103, (IV) t = 8 × 103, (V) t = 2 × 104); (b) At the interface at different time during its evolution ((I) t = 0, (II) t = 5 × 102, (III) t = 2 × 103, (IV) t = 9 × 103, (V) t = 2 × 104) (A: red beads; B: blue beads; D: the interface, cyan beads) (The online version is colorful.)

    Figure 3.  The transition dynamics of large spherical micelle of A12B8 copolymers: (a) In solution at different time during its evolution ((I) t = 0, (II) t = 2 × 102, (III) t = 5 × 102, (IV) t = 5 × 103, (V) t = 2 × 104); (b) At the interface at different time during its evolution ((I) t = 0, (II) t = 2 × 102, (III) t = 5 × 102, (IV) t = 6 × 103, (V) t = 2 × 104) (A: red beads, B: blue beads, D: the interface, cyan beads) (The online version is colorful.)

    Figure 4.  Simulation results showing the variation of mean square end-to-end distance (Re2) of A12B8 copolymer with time at different conditions: (a) in solution and (b) at the interface

    Figure 5.  The transition dynamics of wormlike micelle of A12B8 copolymers: (a) In solution at different time during its evolution ((I) t = 0, (II) t = 2 × 102, (III) t = 5 × 102, (IV) t = 2 × 103, (V) t = 1 × 104, (VI) t = 2 × 104, (VII) t = 5 × 104); (b) At the interface at different time during its evolution ((I) t = 0, (II) t = 5 × 102, (III) t = 1 × 103, (IV) t = 5 × 103, (V) t = 1 × 104, (VI) t = 3 × 104, (VII) t = 4 × 104, (VIII) t = 5 × 104) (A: red beads, B: blue beads, D: the interface, cyan beads) (The online version is colorful.)

    Figure 6.  The transition dynamics of ring-like micelle of A12B8 copolymers: (a) In solution at different time during its evolution ((I) t = 0; (II) t = 2 × 102; (III) t = 5 × 102; (IV) t = 2 × 103; (V) t = 5 × 103; (VI) t = 2 × 104; (VII) t = 5 × 104); (b) At the interface at different time during its evolution ((I) t = 0; (II) t = 3 × 102; (III) t = 2 × 103; (IV) t = 5 × 103; (V) t = 2 × 104; (VI) t = 5 × 104) (A: red beads; B: blue beads; D: the interface, cyan beads) (The online version is colorful.)

    Figure 7.  The transition dynamics of vesicle of A12B8 copolymers: (a) In solution at different time during its evolution ((I) t = 0; (II) t = 5 × 102; (III) t = 5 × 103; (IV) t = 2 × 104); (b) At the interface at different time during its evolution ((I) t = 0; (II) t = 5 × 102; (III) t = 5 × 103; (IV) t = 1 × 104; (V) t = 2 × 104) (A: red beads; B: blue beads; D: the interface, cyan beads) (The online version is colorful.)

  • 加载中
图(8)
计量
  • PDF下载量:  67
  • 文章访问数:  1079
  • HTML全文浏览量:  626
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计