ISSN 1000-3304CN 11-1857/O6

多相聚合物微观结构和分子间相互作用的固体NMR研究

张荣纯

引用本文: 张荣纯. 多相聚合物微观结构和分子间相互作用的固体NMR研究[J]. 高分子学报. doi: 10.11777/j.issn1000-3304.2019.19175 shu
Citation1:  Rong-chun ZhangThe Microstructures and Molecular Interactions in Multiphase Polymers: Insights from Solid-State NMR Spectroscopy[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19175 shu

多相聚合物微观结构和分子间相互作用的固体NMR研究

    作者简介: 张荣纯,男,1987年生. 2009年和2014年在南开大学分别获得凝聚态物理学士和博士学位,随后在美国密歇根大学安娜堡分校生物物理和化学系及南开大学药物化学生物学国家重点实验室从事博士后研究,2018年加入华南理工大学华南软物质科学与技术高等研究院,任特聘副研究员. 主要研究方向包括:(1)发展高分辨高灵敏固体核磁共振新方法用于研究复杂体系的微观结构和动力学,包括聚合物、无机材料、药物、有机-无机杂化纳米复合材料、生物大分子等;(2)高分子材料的交联/缠结网络结构和黏弹性;(3)高性能多相聚合物材料的设计、合成及表征;
    通讯作者: 张荣纯, zhangcr@scut.edu.cn
摘要: 近年来固体核磁共振(NMR)技术在聚合物材料表征领域正发挥着越来越重要的作用,已经成为研究聚合物微观结构、链段动力学、分子间相互作用等微观信息及阐明材料结构-功能-性质关系必不可少的重要手段. 本文将综述我们近年来系统构建和发展的固体NMR方法及其在研究多相聚合物微观结构、分子间相互作用和交联网络等问题中的应用. 此外,针对存在不均匀性动力学的多相聚合物体系,我们发展了增强固体NMR谱图灵敏度的新方法.

English

    1. [1]

      Rubinstein M, Colby R H. Polymer Physics. New York: Oxford University Press, 2003

    2. [2]

      Ma Dezhu(马德柱). Structures and Performance of Polymers(高聚物的结构与性能). Beijing(北京): Science Press(科学出版社), 2012

    3. [3]

      Hansen M R, Graf R, Spiess H W. Chem Rev, 2016, 116(3): 1272 − 1308 doi: 10.1021/acs.chemrev.5b00258

    4. [4]

      Zhang R, Miyoshi T, Sun P. ed. NMR Methods for Characterization of Synthetic and Natural Polymers. London: Royal Society of Chemistry, 2019

    5. [5]

      Spiess H W. Macromolecules, 2017, 50(5): 1761 − 1777 doi: 10.1021/acs.macromol.6b02736

    6. [6]

      Zhang Rongchun(张荣纯), Sun Pingchuan(孙平川). Chinese Journal of Magnetic Resonance(波谱学杂志), 2012, 29(3): 307 − 338 doi: 10.3969/j.issn.1000-4556.2012.03.001

    7. [7]

      Schmidt-Rohr K, Spiess H W. Multidimensional Solid-state NMR and Polymers. London: Academic Press, 1994

    8. [8]

      Xue Gi(薛奇). Spectroscopy for Studying Structures of Organic Compounds and Polymers(有机及高分子化合物结构研究中的光谱方法). Beijing(北京): Science Press(科学出版社), 2016

    9. [9]

      Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. New York: Oxford University Press, 1987

    10. [10]

      Mehring M. Principles of high resolution NMR in solids. Springer Science & Business Media 2012

    11. [11]

      Paul D R, Bucknall C B, Polymer Blends: Formulation & Performance. Beijing(北京): Science Press(科学出版社), 2004.

    12. [12]

      Mark J, Ngai K, Graessley W, Mandelkern L, Samulski E, Wignall G, Koenig J. Physical Properties of Polymers. Cambridge: Cambridge University Press, 2004

    13. [13]

      Pavlidou S, Papaspyrides C D. Prog Polym Sci, 2008, 33(12): 1119 − 1198 doi: 10.1016/j.progpolymsci.2008.07.008

    14. [14]

      Yang Y, Ding X, Urban M W. Prog Polym Sci, 2015, 49-50: 34 − 59 doi: 10.1016/j.progpolymsci.2015.06.001

    15. [15]

      Hager M D, Bode S, Weber C, Schubert U S. Prog Polym Sci, 2015, 49-50: 3 − 33 doi: 10.1016/j.progpolymsci.2015.04.002

    16. [16]

      Yilgör I, Yilgör E, Wilkes G L. Polymer, 2015, 58: A1 − A36 doi: 10.1016/j.polymer.2014.12.014

    17. [17]

      Deanin R D. High Performance Biomaterials: A Complete Guide to Medical and Pharmaceutical Applications, 1st ed. New York: Routledge Press, 2017

    18. [18]

      Hernandez R, Weksler J, Padsalgikar A, Choi T, Angelo E, Lin J, Xu L-C, Siedlecki C A, Runt J. Macromolecules, 2008, 41(24): 9767 − 9776 doi: 10.1021/ma8014454

    19. [19]

      Bates F S, Fredrickson G. Phys Today, 2000, 52: 32 − 38

    20. [20]

      Yang C, Yin T, Suo Z. J Mech Phys Solids, 2019, 131: 43 − 55 doi: 10.1016/j.jmps.2019.06.018

    21. [21]

      Zhong M, Wang R, Kawamoto K, Olsen B D, Johnson J A. Science, 2016, 353(6305): 1264 − 1268 doi: 10.1126/science.aag0184

    22. [22]

      Saalwaechter K, Seiffert S. Soft Matter, 2018, 14: 1976 − 1991 doi: 10.1039/C7SM02444D

    23. [23]

      Saalwachter K, Chasse W, Sommer J U. Soft Matter, 2013, 9: 6587 − 6593 doi: 10.1039/c3sm50194a

    24. [24]

      Shen Jiacong(沈家骢), Zhang Wenke(张文科), Sun Junqi(孙俊奇). Introduction to Supramolecular Materials(超分子材料引论). Beijing(北京): Science Press(科学出版社), 2019

    25. [25]

      Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37 − 49 doi: 10.11777/j.issn1000-3304.2017.16262

    26. [26]

      Kuo S W, Chang F C. Macromolecules, 2001, 34(15): 5224 − 5228 doi: 10.1021/ma010517a

    27. [27]

      He Y, Zhu B, Inoue Y. Prog Polym Sci, 2004, 29(10): 1021 − 1051 doi: 10.1016/j.progpolymsci.2004.07.002

    28. [28]

      Tseng T C, Kuo S W. Macromolecules, 2018, 51(16): 6451 − 6459 doi: 10.1021/acs.macromol.8b00751

    29. [29]

      Rhim W K, Pines A, Waugh J S. Phys Rev B, 1971, 3(3): 684 − 696 doi: 10.1103/PhysRevB.3.684

    30. [30]

      Mauri M, Thomann Y, Schneider H, Saalwächter K. Solid State Nucl Magn Reson, 2008, 34(1-2): 125 − 141 doi: 10.1016/j.ssnmr.2008.07.001

    31. [31]

      Maus A, Hertlein C, Saalwächter K. Macro Chem Phys, 2006, 207(13): 1150 − 1158 doi: 10.1002/macp.200600169

    32. [32]

      Zhang R, Yu S, Chen S, Wu Q, Chen T, Sun P, Li B, Ding D. J Phys Chem B, 2014, 118(4): 1126 − 1137 doi: 10.1021/jp409893f

    33. [33]

      Wang F, Zhang R, Lin A, Chen R, Wu Q, Chen T, Sun P. Polymer, 2016, 107: 61 − 70 doi: 10.1016/j.polymer.2016.11.009

    34. [34]

      Zhao Shouyuan(赵守远), Wang Yuanyuan(王媛媛), Zhang Rongchun(张荣纯), Chen Tiehong(陈铁红), Sun Pingchuan(孙平川). Chinese Journal of Magnetic Resonance(波谱学杂志), 2014, 31(2): 172 − 184 doi: 10.3969/j.issn.1000-4556.2014.02.004

    35. [35]

      Anderson P W, Weiss P. Rev Mod Phys, 1953, 25(1): 269 − 276 doi: 10.1103/RevModPhys.25.269

    36. [36]

      Papon A, Saalwächter K, Schäler K, Guy L, Lequeux F, Montes H. Macromolecules, 2011, 44(4): 913 − 922 doi: 10.1021/ma102486x

    37. [37]

      Zhang R, Yan T, Lechner B-D, Schröter K, Liang Y, Li B, Furtado F, Sun P, Saalwächter K. Macromolecules, 2013, 46(5): 1841 − 1850 doi: 10.1021/ma400019m

    38. [38]

      Sturniolo S, Saalwächter K. Chem Phys Lett, 2011, 516(1-3): 106 − 110 doi: 10.1016/j.cplett.2011.09.059

    39. [39]

      Saalwachter K. Prog Nucl Magn Reson Spectrosc, 2007, 51(1): 1 − 35 doi: 10.1016/j.pnmrs.2007.01.001

    40. [40]

      Saalwächter K. Multiple-Quantum NMR studies of anisotropic polymer chain dynamics. In: Webb G A, ed. Modern Magnetic Resonance. Cham: Springer International Publishing, 2018. Chapter 38

    41. [41]

      Chassé W, Saalwächter K, Sommer J U. Macromolecules, 2012, 45(13): 5513 − 5523 doi: 10.1021/ma3009004

    42. [42]

      Zou X, Kui X, Zhang R, Zhang Y, Wang X, Wu Q, Chen T, Sun P. Macromolecules, 2017, 50(23): 9340 − 9352 doi: 10.1021/acs.macromol.7b01854

    43. [43]

      Saalwächter K, Heuer A. Macromolecules, 2006, 39(9): 3291 − 3303 doi: 10.1021/ma052567b

    44. [44]

      Saalwächter K, Herrero B, López-Manchado M A. Macromolecules, 2005, 38(23): 9650 − 9660 doi: 10.1021/ma051238g

    45. [45]

      Chasse W, Valentin J L, Genesky G D, Cohen C, Saalwächter K. J Chem Phys, 2011, 134(4): 044907

    46. [46]

      Voda M, Demco D, Perlo J, Orza R, Blümich B. J Magn Reson, 2005, 172(1): 98 − 109 doi: 10.1016/j.jmr.2004.10.001

    47. [47]

      Fechete R, Demco D, Blümich B. Macromolecules, 2002, 35(16): 6083 − 6085 doi: 10.1021/ma020532v

    48. [48]

      Baum J, Pines A. J Am Chem Soc, 1986, 108(24): 7447 − 7454 doi: 10.1021/ja00284a001

    49. [49]

      Wang M, Bertmer M, Demco D, Blümich B, Litvinov V, Barthel H. Macromolecules, 2003, 36(12): 4411 − 4413 doi: 10.1021/ma0217534

    50. [50]

      Gao Y, Zhang R, Lv W, Liu Q, Wang X, Sun P, Winter H H, Xue G. J Phys Chem C, 2014, 118(10): 5606 − 5614 doi: 10.1021/jp5013472

    51. [51]

      Saalwächter K, Kleinschmidt F, Sommer J U. Macromolecules, 2004, 37(23): 8556 − 8568 doi: 10.1021/ma048803k

    52. [52]

      Wang F, Chen S, Wu Q, Zhang R, Sun P. Polymer, 2019, 163: 154 − 161 doi: 10.1016/j.polymer.2018.12.062

    53. [53]

      Demco D E, Johansson A, Tegenfeldt J. Solid State Nucl Magn Reson, 1995, 4(1): 13 − 38 doi: 10.1016/0926-2040(94)00036-C

    54. [54]

      Huang C, Huang G, Li S, Luo M, Liu H, Fu X, Qu W, Xie Z, Wu J. Polymer, 2018, 154: 90 − 100 doi: 10.1016/j.polymer.2018.08.057

    55. [55]

      Liu H, Huang G S, Wei L Y, Zeng J, Fu X, Huang C, Wu J R. Chinese J Polym Sci, 2019, 37(11): 1142 − 1151 doi: 10.1007/s10118-019-2267-3

    56. [56]

      Kim S Y, Meyer H W, Saalwächter K, Zukoski C F. Macromolecules, 2012, 45(10): 4225 − 4237 doi: 10.1021/ma300439k

    57. [57]

      Ott M, Pérez-Aparicio R, Schneider H, Sotta P, Saalwächter K. Macromolecules, 2014, 47(21): 7597 − 7611 doi: 10.1021/ma5012655

    58. [58]

      Coleman M M, Painter P C, Graf J F. Specific Interactions and the Miscibility of Polymer Blends. New York: CRC Press, 2017

    59. [59]

      Tian D, Li T, Zhang R, Wu Q, Chen T, Sun P, Ramamoorthy A. J Phys Chem B, 2017, 121(25): 6108 − 6116 doi: 10.1021/acs.jpcb.7b02838

    60. [60]

      Radloff D, Boeffel C, Spiess H W. Macromolecules, 1996, 29(5): 1528 − 1534 doi: 10.1021/ma950405h

    61. [61]

      Zhang C, Yang Z, Duong N T, Li X, Nishiyama Y, Wu Q, Zhang R, Sun P. Macromolecules, 2019, 52(13): 5014 − 5025 doi: 10.1021/acs.macromol.9b00503

    62. [62]

      Li M, Zhang R, Li X, Wu Q, Chen T, Sun P. Polymer, 2018, 148: 127 − 137 doi: 10.1016/j.polymer.2018.06.024

    63. [63]

      Yang Z, Wang F, Zhang C, Li J, Zhang R, Wu Q, Chen T, Sun P. Polym Chem, 2019, 10(24): 3362 − 3370 doi: 10.1039/C9PY00383E

    64. [64]

      Wojtecki R J, Meador M A, Rowan S J. Nat Mater, 2011, 10(1): 14 − 27 doi: 10.1038/nmat2891

    65. [65]

      Fantner G E, Hassenkam T, Kindt J H, Weaver J C, Birkedal H, Pechenik L, Cutroni J A, Cidade G A G, Stucky G D, Morse D E, Hansma P K. Nat Mater, 2005, 4(8): 612 − 616 doi: 10.1038/nmat1428

    66. [66]

      Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater, 2013, 12(10): 932 − 937 doi: 10.1038/nmat3713

    67. [67]

      Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Hirschberg J H K K, Lange R F M, Lowe J K L, Meijer E W. Science, 1997, 278(5343): 1601 − 1604 doi: 10.1126/science.278.5343.1601

    68. [68]

      Robertson A J, Pandey M K, Marsh A, Nishiyama Y, Brown S P. J Magn Reson, 2015, 260: 89 − 97 doi: 10.1016/j.jmr.2015.09.005

    69. [69]

      Zhang R, Mroue K H, Ramamoorthy A. Acc Chem Res, 2017, 50(4): 1105 − 1113 doi: 10.1021/acs.accounts.7b00082

    70. [70]

      Schaefer J, Stejskal E. J Am Chem Soc, 1976, 98(4): 1031 − 1032 doi: 10.1021/ja00420a036

    71. [71]

      Pines A, Gibby M G, Waugh J. J Chem Phys, 1973, 59(2): 569 − 590 doi: 10.1063/1.1680061

    72. [72]

      Zhang R, Mroue K H, Ramamoorthy A. J Magn Reson, 2016, 266: 59 − 66 doi: 10.1016/j.jmr.2016.03.006

    73. [73]

      Zhang R, Nishiyama Y, Ramamoorthy A. J Magn Reson, 2019, 309: 106615 doi: 10.1016/j.jmr.2019.106615

    74. [74]

      Zhang R, Duong N T, Nishiyama Y, Ramamoorthy A. J Phys Chem B, 2017, 121(24): 5944 − 5952 doi: 10.1021/acs.jpcb.7b03480

    75. [75]

      Zhang R, Mroue K H, Sun P, Ramamoorthy A. High-resolution proton NMR spectroscopy of polymers and biological solids. In: Webb G A. ed. Modern Magnetic Resonance. Cham: Springer International Publishing, 2018. Chapter 25

    76. [76]

      Zhang R, Chen Y, Rodriguez-Hornedo N, Ramamoorthy A. ChemPhysChem, 2016, 17(19): 2962 − 2966 doi: 10.1002/cphc.201600637

    77. [77]

      Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Patrick C A V, Herzfeld J, Temkin R J, Griffin R G. J Chem Phys, 2008, 128(5): 052211 doi: 10.1063/1.2833582

    1. [1]

      邓竞科李国平罗运军 . GAP黏合剂体系交联网络结构研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2016.15232

    2. [2]

      陈云妮肖琴李青音任世杰 . 静电纺丝交联凝胶聚合物电解质的制备与表征. 高分子学报, doi: 10.11777/j.issn1000-3304.2019.19149

    3. [3]

      杨树颜贾志欣刘岚罗远芳贾德民刘治猛 . 冰点下降法研究交联网络结构对天然橡胶力学性能的影响. 高分子学报, doi: 10.11777/j.issn1000-3304.2014.13411

    4. [4]

      杨薇蔓汪汉卿颜星中黄学俭韩秀雯 . 原位核磁研究环氧丙烷的开环聚合反应动力学. 高分子学报,

    5. [5]

      何涛贾少晋江平开陈燕 . γ-辐照乙烯-辛烯共聚物的固体核磁13C谱研究. 高分子学报,

    6. [6]

      张恒胡立梅蔺存国王利苑世领 . 溶菌酶蛋白与聚合物防污膜相互作用的分子动力学模拟. 高分子学报, doi: 10.3724/SP.J.1105.2014.13164

    7. [7]

      苗妮娜张敏许小玲王蕾邱建辉 . 结合分子动力学验证PBS基共聚物和淀粉复合材料之间的相互作用. 高分子学报, doi: 10.11777/j.issn1000-3304.2016.15251

    8. [8]

      左榘乔凤军钱庭宝米江林 . 高分子交联网络空间分布非均匀性的表征. 高分子学报,

    9. [9]

      俞开潮卓仁禧 . 大分子聚酯配体及其钆(Ⅲ)配合物的合成和核磁弛豫性能研究. 高分子学报,

    10. [10]

      陈生辉孙霜青Steven R Gwaltney李春玲王秀民胡松青 . 碳纳米纤维与环氧树脂单体相互作用的分子动力学模拟. 高分子学报, doi: 10.11777/j.issn1000-3304.2015.15053

    11. [11]

      于中振欧玉春冯宇鹏 . 界面相互作用对尼龙6/聚乙烯共混物形态结构和流变行为的影响. 高分子学报,

    12. [12]

      于春阳李善龙李珂周永丰 . 两嵌段共聚物反相溶剂中组装结构转变动力学的模拟研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2019.19173

    13. [13]

      刘珠洪鹏向洪平黄梓英罗青宏杨先君刘晓暄 . 双交联网络有机硅弹性体的制备及其自修复性能研究. 高分子学报, doi: 10.11777/j.issn1000-3304.2019.19207

    14. [14]

      L.deBrouckère . 链柔性与相互作用对高分子溶液的介电性质和热力学性质的影响. 高分子学报,

    15. [15]

      王颖韩孝族范世霞张庆余 . 网间交联型增韧环氧树脂/蓖麻油聚氨酯互穿网络聚合物的动态力学性能和形态结构. 高分子学报,

    16. [16]

      陈云盛京沈宁祥贾宏涛 . 小角光散射在线系统研究多相聚合物双螺杆挤出过程中的相尺寸——非相容PE/PA1010体系. 高分子学报,

    17. [17]

      陈彦涛丁建东 . 非天然相互作用对均聚多肽链螺旋形成动力学过程的影响的计算机模拟研究. 高分子学报, doi: 10.3724/SP.J.1105.2010.09358

    18. [18]

      白凤莲王身国 . 聚酯聚醚嵌段共聚物与1,4-二咔唑环丁烷在激发态及基态的相互作用. 高分子学报,

    19. [19]

      汪瑜华戚国荣杨士林 . 分别含有质子给体和质子受体的丙烯酸酯共聚物在溶液中的特殊相互作用研究. 高分子学报,

    20. [20]

      高南于志钢俞剑峰 . 聚氨酯/聚甲基丙烯酸甲酯离子聚合体型互穿聚合物网络生成动力学研究. 高分子学报,

  • Figure 1.  (a) Pulse sequence for the magic-sandwich-echo (MSE) experiment; (b) A typical example of MSE experiment on a polyurethane sample, where the fraction and signal decay of rigid, interphase and mobile components can be determined through the numeric fitting on the MSE-FID, respectively (Reproduced with permission from Ref.[32]. Copyright (2014) American Chemical Society)

    Figure 2.  (a) Orientation fluctuation of polymer segments. The order parameter is parallel to the end-to-end vector $\mathop {{R}}\limits^{\rightharpoonup} $ (Reproduced with permission from Ref.[40]; Copyright (2018) Springer Nature); (b) Schematic pulse sequence of the DQ NMR experiments; (c) DQ NMR signals as a function of excitation time τDQ for a dual-crosslinked P(AAm-co-AA)/Fe3+ hydrogel (Reproduced with permission from Ref.[42], Copyright (2017) American Chemical Society)

    Figure 3.  (a) Normalized DQ intensity as a function of DQ excitation time for the p(AAm-co-AAc)/Fe3+ hydrogel with a molar concentration ratio (cAAc/cAAm) of 20% and variable Fe3+ concentration; (b) The Dres distribution curves as obtained from the numeric fitting on the normalized DQ curves for dual-crosslinked hydrogels prepared with variable Fe3+ concentrations; (c) The median value (Dm) and standard deviation (σ) as a function of Fe3+ concentration (Reproduced with permission from Ref.[42], Copyright (2017) American Chemical Society)

    Figure 4.  (a) Chemical structures of cellulose and the major motifs of silk fibroin; (b) High resolution 1H-NMR spectra of cellulose, SF and cellulose/SF blend films; (c) 13C-1H HETCOR NMR spectra of cellulose/SF blend films (The cross-polarization contact time was set as 1 ms.) (Reproduced with permission from Ref.[59]; Copyright (2017) American Chemical Society)

    Figure 5.  (a) Schematic structures of dual-crosslinked PBA network containing dynamic covalent diboronic ester bonds and self-complementary quadruple hydrogen bonds; (b) Pulse sequence for the selective saturation proton double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment used in this study; (c) Selective saturation proton DQ/SQ chemical shift correlation spectrum obtained under 600 MHz magnetic field and 70 kHz MAS. The DQ correlations between UPy motifs are indicated with red lines, demonstrating the proximity of the indicated two spins. (Reproduced with permission from Ref.[61]; Copyright (2019) American Chemical Society)

    Figure 6.  (a) Chemical structures of poly(methyl methacrylate) (PMMA) and 1,4-polybutadiene (PB); (b) Comparison of CP and CP-NOE spectrum for PMMA/PB blend; (c) Pulse sequences for the 1D CP-NOE and CP-RINEPT experiments; (d) The CP and RINEPT spectra of PMMA/PB blend obtained from a single CP-RINEPT experiment. The CP-RINEPT spectrum is obtained by simple addition of CP and RINEPT spectra. (Reproduced with permission from Ref.[72]; Copyright (2016) Elsevier)

    Figure 7.  (a) 2D 13C-detected and (b) 1H-detected HETCOR NMR pulse sequences applied under slow and very fast MAS, respectively. 13C-detected HETCOR spectra of PMMA/PB blend obtained under 8 kHz MAS: Rigid-HETCOR (c) and Mobile-HETCOR (d) spectra were obtained from a single experiment using the pulse sequence shown in Fig. 7(a). 1H-detected HETCOR spectra of PMMA/PB blend obtained under 70 kHz MAS: Rigid-HETCOR (e) and Mobile-HETCOR (f) spectra were obtained simultaneously from a single experiment using the pulse sequence shown in Fig. 7(b). HORROR sequence for 0.5 s was used in 1H-detected HETCOR experiment to remove the residual proton magnetization before detection and also to enable the NOE-based polarization transfer for enhancing signals from mobile components. (Reproduced with permission from Ref.[73]; Copyright (2019) Elsevier)

  • 加载中
图(7)
计量
  • PDF下载量:  79
  • 文章访问数:  586
  • HTML全文浏览量:  282
  • 引证文献数: 0
文章相关
  • 通讯作者:  张荣纯, zhangcr@scut.edu.cn
  • 收稿日期:  2019-09-29
  • 修稿日期:  2019-10-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计