ISSN 1000-3304CN 11-1857/O6

Citation: Rong-chun ZhangThe Microstructures and Molecular Interactions in Multiphase Polymers: Insights from Solid-State NMR Spectroscopy[J]. Acta Polymerica Sinica, 2020, 51(2): 136-147. doi: 10.11777/j.issn1000-3304.2019.19175 shu

The Microstructures and Molecular Interactions in Multiphase Polymers: Insights from Solid-State NMR Spectroscopy

Figures(8)

  • In recent decades, solid-state nuclear magnetic resonance (NMR) spectroscopy has been playing an important role in the characterization of polymer materials. To some degree, it has become one of the indispensable tools for studying the microstructures, segmental dynamics and inter-/intra-molecular interactions and elucidating the structure-functionality-property relationship of multiphase polymer materials, because the anisotropic spin interactions in the molecules can be selectively manipulated via various radiofrequency pulse sequence design. As a result, NMR can provide important information on a length scale from 0.1 nm to 100 nm and a time scale from 1 ns to 100 s. Herein, in this current review article, we will review some of our recently developed solid-state NMR approaches specifically for applications in polymers, including quantitative determination of compositional contents, characterization of crosslinking/entanglement density and inhomogeneity of the network, hydrogen bonding interactions between segments, and so on. A variety of typical examples, including self-healing supramolecular rubbers, thermal reversible polyurethanes, dual-cross-linked hydrogels, elastomers, etc., are given in detail, showing how various solid-state NMR approaches were implemented to quantitatively characterizing the structures, molecular interactions, and crosslinking network. Furthermore, due to the presence of heterogeneous dynamic in multiphase polymers, the applications of traditional solid-state NMR techniques are sustainably limited, and we also developed corresponding novel solid-state NMR approaches to overcome the limitations and enhance the spectral resolution and signal sensitivity.
  • 加载中
    1. [1]

      Rubinstein M, Colby R H. Polymer Physics. New York: Oxford University Press, 2003

    2. [2]

      Ma Dezhu(马德柱). Structures and Performance of Polymers(高聚物的结构与性能). Beijing(北京): Science Press(科学出版社), 2012

    3. [3]

      Hansen M R, Graf R, Spiess H W. Chem Rev, 2016, 116(3): 1272 − 1308 doi: 10.1021/acs.chemrev.5b00258

    4. [4]

      Zhang R, Miyoshi T, Sun P. ed. NMR Methods for Characterization of Synthetic and Natural Polymers. London: Royal Society of Chemistry, 2019

    5. [5]

      Spiess H W. Macromolecules, 2017, 50(5): 1761 − 1777 doi: 10.1021/acs.macromol.6b02736

    6. [6]

      Zhang Rongchun(张荣纯), Sun Pingchuan(孙平川). Chinese Journal of Magnetic Resonance(波谱学杂志), 2012, 29(3): 307 − 338 doi: 10.3969/j.issn.1000-4556.2012.03.001

    7. [7]

      Schmidt-Rohr K, Spiess H W. Multidimensional Solid-state NMR and Polymers. London: Academic Press, 1994

    8. [8]

      Xue Gi(薛奇). Spectroscopy for Studying Structures of Organic Compounds and Polymers(有机及高分子化合物结构研究中的光谱方法). Beijing(北京): Science Press(科学出版社), 2016

    9. [9]

      Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. New York: Oxford University Press, 1987

    10. [10]

      Mehring M. Principles of High Resolution NMR in Solids. Springer Science & Business Media, 2012

    11. [11]

      Paul D R, Bucknall C B. Polymer Blends: Formulation & Performance. Beijing(北京): Science Press(科学出版社), 2004.

    12. [12]

      Mark J, Ngai K, Graessley W, Mandelkern L, Samulski E, Wignall G, Koenig J. Physical Properties of Polymers. Cambridge: Cambridge University Press, 2004

    13. [13]

      Pavlidou S, Papaspyrides C D. Prog Polym Sci, 2008, 33(12): 1119 − 1198 doi: 10.1016/j.progpolymsci.2008.07.008

    14. [14]

      Yang Y, Ding X, Urban M W. Prog Polym Sci, 2015, 49-50: 34 − 59 doi: 10.1016/j.progpolymsci.2015.06.001

    15. [15]

      Hager M D, Bode S, Weber C, Schubert U S. Prog Polym Sci, 2015, 49-50: 3 − 33 doi: 10.1016/j.progpolymsci.2015.04.002

    16. [16]

      Yilgör I, Yilgör E, Wilkes G L. Polymer, 2015, 58: A1 − A36 doi: 10.1016/j.polymer.2014.12.014

    17. [17]

      Deanin R D. High Performance Biomaterials: A Complete Guide to Medical and Pharmaceutical Applications, 1st ed. New York: Routledge Press, 2017

    18. [18]

      Hernandez R, Weksler J, Padsalgikar A, Choi T, Angelo E, Lin J, Xu L-C, Siedlecki C A, Runt J. Macromolecules, 2008, 41(24): 9767 − 9776 doi: 10.1021/ma8014454

    19. [19]

      Bates F S, Fredrickson G. Phys Today, 2000, 52: 32 − 38

    20. [20]

      Yang C, Yin T, Suo Z. J Mech Phys Solids, 2019, 131: 43 − 55 doi: 10.1016/j.jmps.2019.06.018

    21. [21]

      Zhong M, Wang R, Kawamoto K, Olsen B D, Johnson J A. Science, 2016, 353(6305): 1264 − 1268 doi: 10.1126/science.aag0184

    22. [22]

      Saalwaechter K, Seiffert S. Soft Matter, 2018, 14: 1976 − 1991 doi: 10.1039/C7SM02444D

    23. [23]

      Saalwachter K, Chasse W, Sommer J U. Soft Matter, 2013, 9: 6587 − 6593 doi: 10.1039/c3sm50194a

    24. [24]

      Shen Jiacong(沈家骢), Zhang Wenke(张文科), Sun Junqi(孙俊奇). Introduction to Supramolecular Materials(超分子材料引论). Beijing(北京): Science Press(科学出版社), 2019

    25. [25]

      Xu Jiangfei(徐江飞), Zhang Xi(张希). Acta Polymerica Sinica(高分子学报), 2017, (1): 37 − 49 doi: 10.11777/j.issn1000-3304.2017.16262

    26. [26]

      Kuo S W, Chang F C. Macromolecules, 2001, 34(15): 5224 − 5228 doi: 10.1021/ma010517a

    27. [27]

      He Y, Zhu B, Inoue Y. Prog Polym Sci, 2004, 29(10): 1021 − 1051 doi: 10.1016/j.progpolymsci.2004.07.002

    28. [28]

      Tseng T C, Kuo S W. Macromolecules, 2018, 51(16): 6451 − 6459 doi: 10.1021/acs.macromol.8b00751

    29. [29]

      Rhim W K, Pines A, Waugh J S. Phys Rev B, 1971, 3(3): 684 − 696 doi: 10.1103/PhysRevB.3.684

    30. [30]

      Mauri M, Thomann Y, Schneider H, Saalwächter K. Solid State Nucl Magn Reson, 2008, 34(1-2): 125 − 141 doi: 10.1016/j.ssnmr.2008.07.001

    31. [31]

      Maus A, Hertlein C, Saalwächter K. Macro Chem Phys, 2006, 207(13): 1150 − 1158 doi: 10.1002/macp.200600169

    32. [32]

      Zhang R, Yu S, Chen S, Wu Q, Chen T, Sun P, Li B, Ding D. J Phys Chem B, 2014, 118(4): 1126 − 1137 doi: 10.1021/jp409893f

    33. [33]

      Wang F, Zhang R, Lin A, Chen R, Wu Q, Chen T, Sun P. Polymer, 2016, 107: 61 − 70 doi: 10.1016/j.polymer.2016.11.009

    34. [34]

      Zhao Shouyuan(赵守远), Wang Yuanyuan(王媛媛), Zhang Rongchun(张荣纯), Chen Tiehong(陈铁红), Sun Pingchuan(孙平川). Chinese Journal of Magnetic Resonance(波谱学杂志), 2014, 31(2): 172 − 184 doi: 10.3969/j.issn.1000-4556.2014.02.004

    35. [35]

      Anderson P W, Weiss P. Rev Mod Phys, 1953, 25(1): 269 − 276 doi: 10.1103/RevModPhys.25.269

    36. [36]

      Papon A, Saalwächter K, Schäler K, Guy L, Lequeux F, Montes H. Macromolecules, 2011, 44(4): 913 − 922 doi: 10.1021/ma102486x

    37. [37]

      Zhang R, Yan T, Lechner B-D, Schröter K, Liang Y, Li B, Furtado F, Sun P, Saalwächter K. Macromolecules, 2013, 46(5): 1841 − 1850 doi: 10.1021/ma400019m

    38. [38]

      Sturniolo S, Saalwächter K. Chem Phys Lett, 2011, 516(1-3): 106 − 110 doi: 10.1016/j.cplett.2011.09.059

    39. [39]

      Saalwachter K. Prog Nucl Magn Reson Spectrosc, 2007, 51(1): 1 − 35 doi: 10.1016/j.pnmrs.2007.01.001

    40. [40]

      Saalwächter K. Multiple-Quantum NMR studies of anisotropic polymer chain dynamics. In: Webb G A, ed. Modern Magnetic Resonance. Cham: Springer International Publishing, 2018. Chapter 38

    41. [41]

      Chassé W, Saalwächter K, Sommer J U. Macromolecules, 2012, 45(13): 5513 − 5523 doi: 10.1021/ma3009004

    42. [42]

      Zou X, Kui X, Zhang R, Zhang Y, Wang X, Wu Q, Chen T, Sun P. Macromolecules, 2017, 50(23): 9340 − 9352 doi: 10.1021/acs.macromol.7b01854

    43. [43]

      Saalwächter K, Heuer A. Macromolecules, 2006, 39(9): 3291 − 3303 doi: 10.1021/ma052567b

    44. [44]

      Saalwächter K, Herrero B, López-Manchado M A. Macromolecules, 2005, 38(23): 9650 − 9660 doi: 10.1021/ma051238g

    45. [45]

      Chasse W, Valentin J L, Genesky G D, Cohen C, Saalwächter K. J Chem Phys, 2011, 134(4): 044907

    46. [46]

      Voda M, Demco D, Perlo J, Orza R, Blümich B. J Magn Reson, 2005, 172(1): 98 − 109 doi: 10.1016/j.jmr.2004.10.001

    47. [47]

      Fechete R, Demco D, Blümich B. Macromolecules, 2002, 35(16): 6083 − 6085 doi: 10.1021/ma020532v

    48. [48]

      Baum J, Pines A. J Am Chem Soc, 1986, 108(24): 7447 − 7454 doi: 10.1021/ja00284a001

    49. [49]

      Wang M, Bertmer M, Demco D, Blümich B, Litvinov V, Barthel H. Macromolecules, 2003, 36(12): 4411 − 4413 doi: 10.1021/ma0217534

    50. [50]

      Gao Y, Zhang R, Lv W, Liu Q, Wang X, Sun P, Winter H H, Xue G. J Phys Chem C, 2014, 118(10): 5606 − 5614 doi: 10.1021/jp5013472

    51. [51]

      Saalwächter K, Kleinschmidt F, Sommer J U. Macromolecules, 2004, 37(23): 8556 − 8568 doi: 10.1021/ma048803k

    52. [52]

      Wang F, Chen S, Wu Q, Zhang R, Sun P. Polymer, 2019, 163: 154 − 161 doi: 10.1016/j.polymer.2018.12.062

    53. [53]

      Demco D E, Johansson A, Tegenfeldt J. Solid State Nucl Magn Reson, 1995, 4(1): 13 − 38 doi: 10.1016/0926-2040(94)00036-C

    54. [54]

      Huang C, Huang G, Li S, Luo M, Liu H, Fu X, Qu W, Xie Z, Wu J. Polymer, 2018, 154: 90 − 100 doi: 10.1016/j.polymer.2018.08.057

    55. [55]

      Liu H, Huang G S, Wei L Y, Zeng J, Fu X, Huang C, Wu J R. Chinese J Polym Sci, 2019, 37(11): 1142 − 1151 doi: 10.1007/s10118-019-2267-3

    56. [56]

      Kim S Y, Meyer H W, Saalwächter K, Zukoski C F. Macromolecules, 2012, 45(10): 4225 − 4237 doi: 10.1021/ma300439k

    57. [57]

      Ott M, Pérez-Aparicio R, Schneider H, Sotta P, Saalwächter K. Macromolecules, 2014, 47(21): 7597 − 7611 doi: 10.1021/ma5012655

    58. [58]

      Coleman M M, Painter P C, Graf J F. Specific Interactions and the Miscibility of Polymer Blends. New York: CRC Press, 2017

    59. [59]

      Tian D, Li T, Zhang R, Wu Q, Chen T, Sun P, Ramamoorthy A. J Phys Chem B, 2017, 121(25): 6108 − 6116 doi: 10.1021/acs.jpcb.7b02838

    60. [60]

      Radloff D, Boeffel C, Spiess H W. Macromolecules, 1996, 29(5): 1528 − 1534 doi: 10.1021/ma950405h

    61. [61]

      Zhang C, Yang Z, Duong N T, Li X, Nishiyama Y, Wu Q, Zhang R, Sun P. Macromolecules, 2019, 52(13): 5014 − 5025 doi: 10.1021/acs.macromol.9b00503

    62. [62]

      Li M, Zhang R, Li X, Wu Q, Chen T, Sun P. Polymer, 2018, 148: 127 − 137 doi: 10.1016/j.polymer.2018.06.024

    63. [63]

      Yang Z, Wang F, Zhang C, Li J, Zhang R, Wu Q, Chen T, Sun P. Polym Chem, 2019, 10(24): 3362 − 3370 doi: 10.1039/C9PY00383E

    64. [64]

      Wojtecki R J, Meador M A, Rowan S J. Nat Mater, 2011, 10(1): 14 − 27 doi: 10.1038/nmat2891

    65. [65]

      Fantner G E, Hassenkam T, Kindt J H, Weaver J C, Birkedal H, Pechenik L, Cutroni J A, Cidade G A G, Stucky G D, Morse D E, Hansma P K. Nat Mater, 2005, 4(8): 612 − 616 doi: 10.1038/nmat1428

    66. [66]

      Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat Mater, 2013, 12(10): 932 − 937 doi: 10.1038/nmat3713

    67. [67]

      Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Hirschberg J H K K, Lange R F M, Lowe J K L, Meijer E W. Science, 1997, 278(5343): 1601 − 1604 doi: 10.1126/science.278.5343.1601

    68. [68]

      Robertson A J, Pandey M K, Marsh A, Nishiyama Y, Brown S P. J Magn Reson, 2015, 260: 89 − 97 doi: 10.1016/j.jmr.2015.09.005

    69. [69]

      Zhang R, Mroue K H, Ramamoorthy A. Acc Chem Res, 2017, 50(4): 1105 − 1113 doi: 10.1021/acs.accounts.7b00082

    70. [70]

      Schaefer J, Stejskal E. J Am Chem Soc, 1976, 98(4): 1031 − 1032 doi: 10.1021/ja00420a036

    71. [71]

      Pines A, Gibby M G, Waugh J. J Chem Phys, 1973, 59(2): 569 − 590 doi: 10.1063/1.1680061

    72. [72]

      Zhang R, Mroue K H, Ramamoorthy A. J Magn Reson, 2016, 266: 59 − 66 doi: 10.1016/j.jmr.2016.03.006

    73. [73]

      Zhang R, Nishiyama Y, Ramamoorthy A. J Magn Reson, 2019, 309: 106615 doi: 10.1016/j.jmr.2019.106615

    74. [74]

      Zhang R, Duong N T, Nishiyama Y, Ramamoorthy A. J Phys Chem B, 2017, 121(24): 5944 − 5952 doi: 10.1021/acs.jpcb.7b03480

    75. [75]

      Zhang R, Mroue K H, Sun P, Ramamoorthy A. High-resolution proton NMR spectroscopy of polymers and biological solids. In: Webb G A. ed. Modern Magnetic Resonance. Cham: Springer International Publishing, 2018. Chapter 25

    76. [76]

      Zhang R, Chen Y, Rodriguez-Hornedo N, Ramamoorthy A. ChemPhysChem, 2016, 17(19): 2962 − 2966 doi: 10.1002/cphc.201600637

    77. [77]

      Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Patrick C A V, Herzfeld J, Temkin R J, Griffin R G. J Chem Phys, 2008, 128(5): 052211 doi: 10.1063/1.2833582

  • 加载中
    1. [1]

      Jing-ke DengGuo-ping LiYun-jun Luo . Studies on Cross-linking Network Structure of GAP Binder System. Acta Polymerica Sinica, 2016, (4): 464-470. doi: 10.11777/j.issn1000-3304.2016.15232

    2. [2]

      Yun-ni ChenQin XiaoQing-yin LiShi-jie Ren . Preparation and Characterization of Electrospinning Crosslinked Gel Polymer Electrolytes. Acta Polymerica Sinica, 2020, 51(2): 183-190. doi: 10.11777/j.issn1000-3304.2019.19149

    3. [3]

      Shu-yan YangZhi-xin JiaLan LiuYuan-fang LuoDe-min JiaZhi-meng Liu . Studies on Effects of Crosslinking Network Structure on Mechanical Properties of Natural Rubber by Freezing Point Depression Approach. Acta Polymerica Sinica, 2014, (7): 943-947. doi: 10.11777/j.issn1000-3304.2014.13411

    4. [4]

      YANG Wei-manWANG Han-qingYAN Xing-zhongHUANG Xue-jianHAN Xiu-wen . NMR STUDY ON REACTION KINETICS OF RING-OPENING POLYMERIZATION OF PROPYLENE OXIDE (PO). Acta Polymerica Sinica, 1993, (4): 456-462.

    5. [5]

      HE TaoJIA ShaojinJIANG PingkaiCHEN Yan . SOLID STATE 13C-NMR STUDY OF γ-IRRADIATED POE. Acta Polymerica Sinica, 2006, (4): 624-626.

    6. [6]

      Heng ZhangLi-mei HuCun-guo LinLi WangShi-ling Yuan . Molecular Dynamics Simulation of Interaction between Lysozyme and Non-fouling Polymer Membranes. Acta Polymerica Sinica, 2014, (1): 99-106. doi: 10.3724/SP.J.1105.2014.13164

    7. [7]

      Ni-na MiaoMin ZhangXiao-ling XuLei WangJian-hui Qiu . Verifying the Interactions between PBS-based Copolymers and Starch Composite Materials by Molecular Dynamics. Acta Polymerica Sinica, 2016, (4): 511-519. doi: 10.11777/j.issn1000-3304.2016.15251

    8. [8]

      Shao-fan Li Xiang-ning Wen Wei-long Ju Yun-lan Su Du-jin Wang . Effects of Particle-polymer Interactions and Particle-particle Interactions on Mechanical Properties of Polymer Nanocomposites. Acta Polymerica Sinica, 2020, 51(0): 0-0. doi: 10.11777/j.issn1000-3304.2020.20189

    9. [9]

      ZUO JuQIAO feng-junQian Ting-baoMI Jiang-lin . THE CHARACTERIZATION OF INHOMOGENEITY OF SPATIAL DISTRIBUTION OF POLYMER NETWORK. Acta Polymerica Sinica, 1995, (5): 542-547.

    10. [10]

      Yi-jie ZhangTian-tian LiXiao-dong MaJie YinXue-song Jiang . Multiresponsive Network Surface Wrinkle Based on PEA Polymernetwork Contained on Boronic Bond. Acta Polymerica Sinica, 2020, 51(0): 1-8. doi: 10.11777/j.issn1000-3304.2020.20133

    11. [11]

      YU KaichaoZHUO Renxi . STUDY ON THE SYNTHESIS AND NMR RELAXIVITY OF MACROMOLECULAR POLYESTER LIGANDS AND THEIR GADOLINIUM (Ⅲ) COMPLEXES. Acta Polymerica Sinica, 1996, (4): 450-455.

    12. [12]

      Sheng-hui ChenShuang-qing SunSteven R GwaltneyChun-ling LiXiu-min WangSong-qing Hu . Molecular Dynamics Simulations of the Interaction between Carbon Nanofiber and Epoxy Resin Monomers. Acta Polymerica Sinica, 2015, (10): 1158-1164. doi: 10.11777/j.issn1000-3304.2015.15053

    13. [13]

      YU Zhong-zhenOU Yu-chunFENG Yu-peng . EFFECT OF INTERFACIAL INTERACTION ON MORPHOLOGY AND RHEOLOGICAL BEHAVIOR OF NYLON 6/POLYETHYLENE BLENDS. Acta Polymerica Sinica, 1995, (5): 566-571.

    14. [14]

      Chun-yang YuShan-long LiKe LiYong-feng Zhou . Investigation of the Transformation Dynamics of Diblock Copolymers Assemblies in Reverse Solvent via Computer Simulation. Acta Polymerica Sinica, 2020, 51(3): 311-318. doi: 10.11777/j.issn1000-3304.2019.19173

    15. [15]

      . . Acta Polymerica Sinica, 1965, 7(2): 127-148.

    16. [16]

      WANG YingHAN Xiao-zuFAN Shi-xiaZHANG Qing-yu . A STUDY ON DYNAMIC MECHANICAL PROPERTIES AND MORPHOLOGY OF TOUGHENED EPOXY RESIN/ CASTOR OIL POLYURETHANE CROS- SLINKED IPN. Acta Polymerica Sinica, 1991, (4): 405-408.

    17. [17]

      Zhu LiuPeng HongHong-ping XiangZi-ying HuangQing-hong LuoXian-jun YangXiao-xuan Liu . Preparation and Self-healability of Silicone Elastomer with Dual-crosslinked Network. Acta Polymerica Sinica, 2020, 51(6): 656-669. doi: 10.11777/j.issn1000-3304.2019.19207

    18. [18]

      CHEN YunSHENG JingSHEN NingxiangJIA Hongtao . PHASE-SIZE ANALYSIS FOR MULTIPHASE POLYMER SYSTEMS DURING TWIN-SCREW EXTRUSION BY SMALL ANGLE LIGHT SCATTERING ONLINE MEASUREMENTS—POLYETHYLENE/POLYAMIDE IMMISCIBLE BLENDS. Acta Polymerica Sinica, 2004, (2): 282-287.

    19. [19]

      CHEN YantaoDING Jiandong . COMPUTER SIMULATION OF THE ROLE OF NON-NATIVE INTERACTIONS IN THE KINETIC PROCESS OF HELIX FORMATION FOR A HOMOPOLYPEPTIDE CHAIN. Acta Polymerica Sinica, 2010, (7): 918-923. doi: 10.3724/SP.J.1105.2010.09358

    20. [20]

      BAI Feng-lianWANG Shen-guo . THE INTERACTION OF MIXED POLYETHER POLYESTER BLOCKCOPOLYMER AND 1,4-DICARBAZYLCYCLOB-UTANE IN THE EXCITED STATE AND THE GROUND STATE. Acta Polymerica Sinica, 1991, (3): 374-377.

Metrics
  • PDF Downloads(159)
  • Abstract views(2739)
  • HTML views(833)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Supported byBeijing Renhe Information Technology Co. Ltd Technical support: info@rhhz.net 百度统计

/

DownLoad:  Full-Size Img  PowerPoint
Return