ISSN 1000-3304CN 11-1857/O6

异丁烯与对氯甲基苯乙烯正离子共聚合研究

杨科 刘强 文帅 徐舒心 施晨琦

引用本文: 杨科, 刘强, 文帅, 徐舒心, 施晨琦. 异丁烯与对氯甲基苯乙烯正离子共聚合研究[J]. 高分子学报, 2020, 51(4): 355-365. doi: 10.11777/j.issn1000-3304.2019.19179 shu
Citation:  Ke Yang, Qiang Liu, Shuai Wen, Shu-xin Xu and Chen-qi Shi. Study of Cationic Copolymerization of Isobutylene and p-(Chloromethyl)styrene[J]. Acta Polymerica Sinica, 2020, 51(4): 355-365. doi: 10.11777/j.issn1000-3304.2019.19179 shu

异丁烯与对氯甲基苯乙烯正离子共聚合研究

    通讯作者: 刘强, E-mail: liuqiang@qust.edu.cn
摘要: 以四氯化钛(TiCl4)、二氯乙基铝(AlEtCl2)、倍半铝(AlEt1.5Cl1.5)、三氯化铝(AlCl3)等路易斯酸为共引发剂,水或枯基醇(CumOH)为引发剂,在−80 °C下的正己烷/二氯甲烷(V/V = 6/4)的混合溶剂内,研究了异丁烯(IB)与对氯甲基苯乙烯(p-CMS)的正离子共聚合. 利用示差凝胶渗透色谱仪(GPC-RI)以及核磁氢谱(1H-NMR)对共聚物的表观分子量及分子量分布、共聚组成等进行分析,采用Kelen-Tüdős与Yezreielv-Brokhina-Roskin法计算了单体竞聚率,初步探讨了p-CMS与IB正离子共聚合的反应机理. 结果表明,AlEtCl2、AlEt1.5Cl1.5、AlCl3均可催化大分子间的烷基化反应,产生凝胶;TiCl4作为共引发剂,可以得到无凝胶单峰分布共聚物;邻位氯甲基苯乙烯(o-CMS)不能参与共聚,p-CMS的共聚活性较低,IB与p-CMS的单体竞聚率为rIB = 4.67,rp-CMS = 0.70;随反应时间延长,共聚物中p-CMS的含量及共聚物分子量均逐渐增加;p-CMS单体自身几乎不参与引发,共聚到大分子链后,苄基氯缓慢参与引发,形成支化. 提高共聚合温度至− 60和− 40 °C,聚合速率降低,p-CMS的引发活性未发生明显变化.

English

    1. [1]

      Malmberg S E, Parent J S, Pratt D A. Macromolecules, 2010, 20: 8456 − 8461

    2. [2]

      Xie Zhonglin(谢忠麟). Journal of Rubber Technology Market(橡胶科技市场), 2008, (11): 7 − 8

    3. [3]

      Jones G D. US patent, 3067182. 1962-11-04

    4. [4]

      Jones G D, Runyon J R, Ong J. J Appl Polym Sci, 1961, 16: 452 − 459

    5. [5]

      Jones G D, Runyon J R, Ong J. Ind Eng Chem, 1961, 53: 291 − 298

    6. [6]

      Powers K W. US patent, 4074035. 1978-03-14

    7. [7]

      Powers K W. US patent, 3948868. 1976-04-06

    8. [8]

      Wang H C. CN patent, CN1468282A. 2004-01-14

    9. [9]

      Wang H C. CN patent, CN1636036A. 2005-07-06

    10. [10]

      Nuyken O, Gruber F, Pask S D. Makromol Chem, 1993, 194: 3415 − 3432 doi: 10.1002/macp.1993.021941220

    11. [11]

      Nuyken O, Sanchez J R, Voit B. Macromol Rapid Commun, 1997, 18: 125 − 131 doi: 10.1002/marc.1997.030180209

    12. [12]

      Grasmuller M, Rueda-sanchez J C, Nuyken O. Macromol Symp, 1998, 127: 109 − 114 doi: 10.1002/masy.19981270115

    13. [13]

      Nuyken O, Vierle M. Des Monomer Polym, 2005, 8: 91 − 105 doi: 10.1163/1568555053603233

    14. [14]

      Osman A. US patent, 5629386. 1997-05-13

    15. [15]

      Schafer M, Wieland, P C, Nuyken O. J Polym Sci, Part A: Polym Chem, 2002, 40: 3725 − 3733 doi: 10.1002/pola.10472

    16. [16]

      Kennedy J P. US patent, 4327201. 1982-04-27

    17. [17]

      Yan P F, Guo A R, Liu Q, Wu Y X. J Polym Sci, Part A: Polym Chem, 2012, 50: 3383 − 3392 doi: 10.1002/pola.26126

    18. [18]

      Liu Q, Wu Y X, Yan P F, Zhang Y, Xu R W. Macromolecules, 2011, 44: 1866 − 1875 doi: 10.1021/ma1027017

    19. [19]

      Kanaoka S, Sawamoto M, Higashimura T. Macromolecules, 1996, 29: 1778 − 1783 doi: 10.1021/ma951320j

    20. [20]

      Kamigaito M, Nakashima J, Satoh K, Sawamoto M. Macromolecules, 2003, 36: 3540 − 3544 doi: 10.1021/ma0216876

    21. [21]

      Ren Ping(任苹), Wu yibo(伍一波), Guo wenLi(郭文莉), Li ShuXin(李树新), Wang HongLiang(王洪亮), Xiao Fei (肖菲), Liu KeLong(刘克龙). China Elastomerics(弹性体), 2012, 22(1): 25 − 28 doi: 10.3969/j.issn.1005-3174.2012.01.006

    22. [22]

      Kelen T, Tüdős F. J Macromol Sci Part A, 1975, A9(1): 1 − 27

    23. [23]

      Cao Lina(曹丽娜), Luo Qingzhi(罗青枝), Xiao Libin(肖丽彬), Wang Desong(王德松), Dou Haiyang(窦海洋). Journal of Hebei University of Science and Technology(河北科技大学学报), 2010, 31(3): 195 − 200 doi: 10.7535/hbkd.2010yx03003

    24. [24]

      Held D, Ivan B, Muller A H E. Macromolecules, 2001, 34: 2418 − 2426 doi: 10.1021/ma000641e

    25. [25]

      Ashbaugh J R, Ruff C R, Shaffer T D. J Polym Sci, Part A: Polym Chem, 2000, 38: 1680 − 1686 doi: 10.1002/(SICI)1099-0518(20000501)38:9<1680::AID-POLA34>3.0.CO;2-Y

    26. [26]

      Fodor Z, Bae Y C, Faust R. Macromolecules, 1998, 31: 4439 − 4446 doi: 10.1021/ma980193z

    27. [27]

      Fréchet J M J, Henmi M, Gitsov I, Ashima S, Leduc M R, Grubbs R B. Science, 1995, 269: 1080 − 1083 doi: 10.1126/science.269.5227.1080

    28. [28]

      Simon P F W, Muller A H E. Macromolecules, 2001, 34: 6206 − 6213 doi: 10.1021/ma002156p

    29. [29]

      Zhang C B, Zhou Y, Liu Q, Li S X, Perrier S, Zhao Y L. Macromolecules, 2011, 44: 2034 − 2049 doi: 10.1021/ma1024736

    30. [30]

      Wang Z M, He J P, Tao J F, Yang L, Jiang H J, Yang Y L. Macromolecules, 2003, 36: 7446 − 7452 doi: 10.1021/ma025673b

    31. [31]

      Hull D L, Kennedy J P. J Polym Sci, Part A: Polym Chem, 2001, 39: 1515 − 1524 doi: 10.1002/pola.1128

    32. [32]

      Safa K D, Babazadeh M. Eur Polym J, 2004, 40: 1659 − 1669 doi: 10.1016/j.eurpolymj.2004.04.005

    33. [33]

      Voit B I, Lederer A. Chem Rev, 2009, 109: 5924 − 5973 doi: 10.1021/cr900068q

    34. [34]

      Gao C, Yan D. Prog Polym Sci, 2004, 29: 183 − 275 doi: 10.1016/j.progpolymsci.2003.12.002

    1. [1]

      崔家喜宛新华 . L-丙烯酸薄荷酯与2,5-二(4'-己氧基苯基)苯乙烯无规共聚物的合成和旋光性质. 高分子学报, 2011, (10): 1202-1207. doi: 10.3724/SP.J.1105.2011.10289

    2. [2]

      穆景山李悦生 . 乙丙共聚物的微结构测定及调控. 高分子学报, 2013, (12): 1492-1500. doi: 10.3724/SP.J.1105.2013.13111

    3. [3]

      师建军秦亚伟牛慧董金勇 . 橡胶相具有交联结构的新型抗冲聚丙烯合金. 高分子学报, 2013, (4): 576-582. doi: 10.3724/SP.J.1105.2013.12343

    4. [4]

      张书洋陈哲峰吴枫朱洨易刘正英冯建明杨鸣波 . 四臂聚乳酸/线性聚乳酸共混物的结晶行为及机理研究. 高分子学报, 2016, (5): 679-684. doi: 10.11777/j.issn1000-3304.2016.15303

    5. [5]

      伍一波郭文莉李树新龚惠勤 . 活性正离子聚合制备聚(异丁烯-b-α-甲基苯乙烯)嵌段共聚物. 高分子学报, 2008, (6): 574-580. doi: 10.3724/SP.J.1105.2008.00574

    6. [6]

      黄丽吴一弦刘耀昌邱迎昕冉奋武冠英 . 聚醋酸乙烯酯和共聚物大分子引发剂引发异丁烯正离子接枝共聚合反应. 高分子学报, 2006, (3): 467-473.

    7. [7]

      陈绯应圣康 . α-甲基苯乙烯与苯乙烯阴离子共聚合研究——Ⅱ.共聚组成及单体表观竞聚率. 高分子学报, 1991, (6): 672-677.

    8. [8]

      曹宪一王强朱晖武冠英 . 苯端基聚异丁烯的合成──1.1-二苯基乙烯对聚异丁烯阳离子端基的封端反应. 高分子学报, 1996, (5): 633-636.

    9. [9]

      林涛吴一弦叶晓林张来宝黄启谷武冠英 . TiCl4共引发异丁烯正离子聚合合成反应活性聚异丁烯. 高分子学报, 2008, (2): 129-135. doi: 10.3724/SP.J.1105.2008.00129

    10. [10]

      邱迎昕吴一弦崔宇叶晓林武冠英 . 体系引发异丁烯控制正离子聚合中的影响因素研究. 高分子学报, 2007, (2): 190-197.

    11. [11]

      梁立虎吴一弦李艳徐日炜杨万泰武冠英 . HES/TiCl4体系引发异丁烯可控正离子聚合. 高分子学报, 2008, (12): 1166-1174. doi: 10.3724/SP.J.1105.2008.01166

    12. [12]

      刘迅吴一弦张成龙张蓓李艳徐旭武冠英 . DCC/AlCl3体系引发异丁烯正离子聚合. 高分子学报, 2007, (3): 255-261.

    13. [13]

      李梅曹宪一 . 异丁烯的活性阳离子聚合反应. 高分子学报, 1999, (5): 596-599.

    14. [14]

      王文俊潘祖仁CHANT.C. . 1,3-二烯基-1,1,3,3-四甲基二硅氧烷/苯乙烯共聚合的环化率与竞聚率. 高分子学报, 1998, (3): 269-275.

    15. [15]

      张方张航天杨甜孔波郭安儒章琦吴一弦 . 官能化聚四氢呋喃-b-聚异丁烯-b-聚四氢呋喃三嵌段共聚物的合成与性能. 高分子学报, 2020, 51(1): 98-116. doi: 10.11777/j.issn1000-3304.2020.19151

    16. [16]

      李森张明祖何金林倪沛红 . 含氟聚甲基丙烯酸酯/聚异丁烯嵌段共聚物的成膜性质研究. 高分子学报, 2014, (12): 1648-1658. doi: 10.11777/j.issn1000-3304.2014.14140

    17. [17]

      袁才根胡春圃徐旭东张勤来胡庆华 . 全氟甲基乙烯基醚和其它含氟单体乳液共聚合的竞聚率测定. 高分子学报, 2001, (3): 316-319.

    18. [18]

      何炳林俞耀庭林沝姜鹏 . 氯甲基聚苯乙烯的鋰金属化反应及其在接枝聚合上的应用. 高分子学报, 1964, 6(3): 178-185.

    19. [19]

      林思聪巫锦娣陆云朱永 . 聚对氯甲基苯乙烯季铵化反应动力学的研究. 高分子学报, 1990, (4): 459-462.

    20. [20]

      邹友思戴李宗兰涛潘容华 . 丙烯腈和(甲基)丙烯酸酯基团转移共聚合的竞聚率. 高分子学报, 1997, (5): 513-518.

  • Figure 1.  1H-NMR spectrum of the CMS monomer

    Figure 2.  1H-NMR spectrum of the resulting copolymer (Conditions: CMS/IB = 2.5/100 (molar ratio). [IB] = 1.63 mol/L, [CumOH] = 0.004 mol/L, [DTBP] = 0.005 mol/L, [TiCl4] = 0.045 mol/L, reaction time = 6 min, T = −80 °C)

    Figure 3.  η versus ε line (a) and η′ versus ε′ line (b) by K-T method

    Figure 4.  Plots of conversion versus time for p-CMS-IB copolymerization (Conditions: [IB] = 1.63 mol/L, [CumOH] = 0.004 mol/L, [DTBP] = 0.005 mol/L, [TiCl4] = 0.045 mol/L, T = −80 °C)

    Figure 5.  Plots of first-order plots of ln([M0]/[M]) versus time for p-CMS-IB copolymerization

    Figure 6.  The GPC-RI traces of the resulting copolymers

    Figure 7.  1H-NMR spectra of the resulting copolymers

    Figure 8.  1H-NMR spectrum of the resulting copolymer (run 1018-6 in Table 5)

    Figure 9.  1H-NMR spectrum of the resulting copolymer (run 1018-9 in Table 5)

    Figure 10.  1H-NMR spectra of the resulting copolymers

    Figure 11.  Mark-Houwink-Sakurada plots for linear PIB and IB/p-CMS copolymer (run 0410-5 in Table 4) (LS data: Linear PIB, Mn = 3.9 × 104, Mw = 8.6 × 104, MWD = 2.19; Copolymer, Mn = 5.3 × 104, Mw = 12.5 × 104, MWD = 2.37)

    Figure 12.  DSC traces of the resulting branched copolymer and linear PIB

    Figure 1.  The proposed mechanism of IB and p-CMS copolymerization with CumOH/TiCl4 initiating system

    Table 1.  The experimental phenomenon with different initiating systems

    InitiatorCo-initiatorElectron donorPhenomenon
    CumOHTiCl4Polymer; no gel; pale yellow
    H2OAlEtCl2Polymer and gel; red
    H2OAlEt1.5Cl1.5Polymer and gel; red
    H2OAlEt2ClNo polymer
    H2OAlCl3AnisoleNo polymer
    H2OAlCl3Chloroacetyl chloridePolymer and gel; red
    Reaction conditions: [co-initiator] = 0.045 mol/L, [CumOH] = 0.01 mol/L, ED/AlCl3 (molar ratio) = 1.1/1, n-Hex/CH2Cl2 = 6/4 (V/V), [IB] = 1.63 mol/L, [CMS] = 0.33 mol/L, T = − 80 °C, reaction time = 30 min
    下载: 导出CSV

    Table 2.  Copolymer compositions by 1H-NMR

    RunConversion (%)Monomer feeding (%)Copolymer composition (%)
    IBp-CMSIBp-CMS
    10001000
    111.497.882.1299.540.46
    29.591.658.3597.962.04
    313.982.9517.0595.364.64
    48.573..9526.0590.949.06
    57.5664.6035.4088.1311.87
    67.354.8945.1182.0217.98
    01000100
    Conditions: [IB] = 1.63 mol/L, [CumOH] = 0.004 mol/L, [DTBP] = 0.005 mol/L, [TiCl4] = 0.045 mol/L, reaction time = 6 min, T = −80 °C
    下载: 导出CSV

    Table 3.  sReactivity ratios of the p-CMS-IB copolymerization systems

    MethodsPositive sequenceReverse
    rIBrp-CMSrIBrp-CMS
    K-T4.6580.71954.65820.7196
    YBR4.676 ± 0.0756710.6886 ± 0.02088
    AveragerIB = 4.67rp-CMS = 0.70
    下载: 导出CSV

    Table 4.  The 1H-NMR data of the resulting copolymers

    RunReaction time
    (min)
    Mn,GPC,RI$F_{\rm CH_2 Cl} $
    (mol%)
    ICMS
    (mol%)
    Branching points
    (per chain)
    BSB
    (mol%)
    SSB
    (mol%)
    0410-13NA0.690.6901000
    0410-230117000.81.080.581000
    0410-345126800.821.230.9372.4627.53
    0410-460156700.761.451.9370.9229.08
    0410-590162200.892.133.5959.1740.83
    下载: 导出CSV

    Table 5.  The monomer conversion and 1H-NMR data of the resulting copolymers

    RunReaction
    time (min)
    Reaction
    temp. (°C)
    Conversion
    (%)
    $F_{{\rm CH}_2 {\rm Cl}} $
    (mol%)
    ICMS
    (mol%)
    BSB
    (mol%)
    SSB
    (mol%)
    1018-445−409.62NANANANA
    1018-690−4023.080.881.6174.0032.00
    1018-820−6015.31NANANANA
    1018-930−6020.190.660.9959.4940.51
    1018-1045−6026.12NANANANA
    1018-1160−6039.420.891.3356.5943.41
    1018-1290−6051.920.711.671.8328.17
    Conditions: CMS/IB = 5/100. [IB] = 1.63 mol/L, [CumOH] = 0.004 mol/L, [DTBP] = 0.005 mol/L, [TiCl4] = 0.045 mol/L
    下载: 导出CSV
  • 加载中
图(14)表(5)
计量
  • PDF下载量:  88
  • 文章访问数:  1537
  • HTML全文浏览量:  805
  • 引证文献数: 0
文章相关
  • 通讯作者:  刘强, liuqiang@qust.edu.cn
  • 收稿日期:  2019-09-30
  • 修稿日期:  2019-10-30
  • 刊出日期:  2020-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计