ISSN 1000-3304CN 11-1857/O6

基于天然萜类的可持续性聚合物

郝杰 高玉霞 陈厚睿 胡君 巨勇

引用本文: 郝杰, 高玉霞, 陈厚睿, 胡君, 巨勇. 基于天然萜类的可持续性聚合物[J]. 高分子学报, 2020, 51(3): 239-266. doi: 10.11777/j.issn1000-3304.2019.19180 shu
Citation:  Jie Hao, Yu-xia Gao, Hou-rui Chen, Jun Hu and Yong Ju. Sustainable Polymers Based on Natural Terpenes[J]. Acta Polymerica Sinica, 2020, 51(3): 239-266. doi: 10.11777/j.issn1000-3304.2019.19180 shu

基于天然萜类的可持续性聚合物

    作者简介: 胡君,男,1985年生. 北京化工大学软物质科学与工程高精尖创新中心教授. 2011年毕业于清华大学,获博士学位. 2011 ~ 2014年在美国南卡罗莱纳大学化学与生物化学系从事博士后研究. 2014 ~ 2017年,在中国科学院长春应用化学研究所任副研究员. 2018年至今,在北京化工大学任教授. 任2019年中国化学会青年化学家元素代言人,2019年特色木本多糖国家创新联盟理事. 主要研究方向为生物基有机功能小分子及聚合物高分子材料. ;巨勇,男,1961年生. 清华大学化学系教授、博士生导师. 1992年毕业于兰州大学,获博士学位. 1993 ~ 1995年在清华大学从事博士后研究. 1995年至今,在清华大学任副教授(1995年)、教授(2003年). 1996 ~ 1998、2001 ~ 2002、2005、2013年作为访问学者分别在美国New Jersey州立Rutgers大学、美国Ohio州立大学和美国South Carolina大学工作. 主要研究领域:含天然产物骨架有机功能分子的化学合成及特性/天然产物的结构改造和构效关系/生物缀合物的化学合成及生物学功能;
    通讯作者: 胡君, E-mail: jhu@mail.buct.edu.cn 巨勇, E-mail: juyong@mail.tsinghua.edu.cn
摘要: 随着可持续发展观念的逐步深入,可持续性聚合物已发展成为当今高分子领域的研究热点之一. 萜类化合物作为自然界中一类来源广泛的天然资源,具有多种可修饰位点和丰富的功能性,由它出发制备可持续性聚合物,不仅可以简化聚合物的合成步骤,还可以赋予聚合物独特的立体构型、良好的生物活性和生物相容性等特点,进而拓展其在表面涂层、生物医药、组织工程等领域中的应用. 本文综述了近年来国内外基于天然萜类可持续性聚合物的研究进展,从萜类化合物的结构特点出发,系统介绍了基于天然萜类可持续性聚合物的合成策略、特性及应用.

English

    1. [1]

      Zhang X, Fevre M, Jones G O, Waymouth R M. Chem Rev, 2018, 118: 839 − 885 doi: 10.1021/acs.chemrev.7b00329

    2. [2]

      Kristufek S L, Wacker K T, Tsao Y Y T, Su L, Wooley K L. Nat Prod Rep, 2017, 34: 433 − 459 doi: 10.1039/C6NP00112B

    3. [3]

      Zhu Y, Romain C, Williams C K. Nature, 2016, 540: 354 − 362 doi: 10.1038/nature21001

    4. [4]

      Gandini A, Lacerda T M, Carvalho A J F, Trovatti E. Chem Rev, 2016, 116: 1637 − 1669 doi: 10.1021/acs.chemrev.5b00264

    5. [5]

      Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem Rev, 2010, 110: 3552 − 3599 doi: 10.1021/cr900354u

    6. [6]

      Schneiderman D K, Hillmyer M A. Macromolecules, 2017, 50: 3733 − 3749 doi: 10.1021/acs.macromol.7b00293

    7. [7]

      Gandini A, Lacerda T M. Prog Polym Sci, 2015, 48: 1 − 39 doi: 10.1016/j.progpolymsci.2014.11.002

    8. [8]

      Yao K, Tang C. Macromolecules, 2013, 46: 1689 − 1712 doi: 10.1021/ma3019574

    9. [9]

      Miao S, Wang P, Su Z, Zhang S. Acta Biomater, 2014, 10: 1692 − 1704 doi: 10.1016/j.actbio.2013.08.040

    10. [10]

      Satoh K. Polym J, 2015, 47: 527 − 536 doi: 10.1038/pj.2015.31

    11. [11]

      Llevot A, Dannecker P K, Czapiewski M V, Over L C, Söyler Z, Meier M A R. Chem Eur J, 2016, 22: 11510 − 11521 doi: 10.1002/chem.201602068

    12. [12]

      Eichhorn S J, Dufresne A, Aranguren M, Marcovich N E, Capadona J R, Rowan S J, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito A N, Mangalam A, Simonsen J, Benight A S, Bismarck A, Berglund L A, Peijs T. J Mater Sci, 2010, 45: 1 − 33 doi: 10.1007/s10853-009-3874-0

    13. [13]

      Wilbon P A, Chu F, Tang C. Macromol Rapid Commun, 2013, 34: 8 − 37 doi: 10.1002/marc.201200513

    14. [14]

      Winnacker M, Rieger B. ChemSusChem, 2015, 8: 2455 − 2471 doi: 10.1002/cssc.201500421

    15. [15]

      Winnacker M. Angew Chem Int Ed, 2018, 57: 14362 − 14371 doi: 10.1002/anie.201804009

    16. [16]

      Zhao J, Schlaad H. Adv Polym Sci, 2013, 253: 151 − 190

    17. [17]

      Keszler B, Kennedy J P. Adv Polym Sci, 1992, 100: 1 − 9

    18. [18]

      Lu J, Kamigaito M, Sawamoto M, Higashimura T, Deng Y X. Macromolecules, 1997, 30: 22 − 26 doi: 10.1021/ma960118t

    19. [19]

      Lu J, Kamigaito M, Sawamoto M, Higashimura T, Deng Y X. Macromolecules, 1997, 30: 27 − 31 doi: 10.1021/ma9610976

    20. [20]

      Kukhta N A, Vasilenko I V, Kostjuk S V. Green Chem, 2011, 13: 2362 − 2364 doi: 10.1039/c1gc15593h

    21. [21]

      Winnacker M, Sag J, Tischner A, Rieger B. Macromol Rapid Commun, 2017, 38: 1600787 − 16000793 doi: 10.1002/marc.201600787

    22. [22]

      Winnacker M, Sag J. Chem Commun, 2018, 54: 841 − 844 doi: 10.1039/C7CC08266E

    23. [23]

      Quilter H C, Hutchby M, Davidson M G, Jones M D. Polym Chem, 2017, 8: 833 − 837 doi: 10.1039/C6PY02033J

    24. [24]

      Liu S, Zhou L, Yu S, Xie C, Liu F, Song Z. Biomass Bioenergy, 2013, 57: 238 − 242 doi: 10.1016/j.biombioe.2013.06.005

    25. [25]

      Park H J, Ryu C Y, Crivello J V. J Polym Sci, Part A: Polym Chem, 2013, 51: 109 − 117 doi: 10.1002/pola.26280

    26. [26]

      Miyaji H, Satoh K, Kamigaito M. Angew Chem Int Ed, 2016, 55: 1372 − 1376 doi: 10.1002/anie.201509379

    27. [27]

      Sainz M F, Souto J A, Regentova D, Johansson M K G, Timhagen S T, Irvine D J, Buijsen P, Koning C E, Stockman R A, Howdle S M. Polym Chem, 2016, 7: 2882 − 2887 doi: 10.1039/C6PY00357E

    28. [28]

      Strick B F, Delferro M, Geiger F M, Thomson R J. ACS Sustain Chem Eng, 2015, 3: 1278 − 1281 doi: 10.1021/acssuschemeng.5b00255

    29. [29]

      Chandrakala R, Prarabdh C B, Promita G, Ashutosh U. Food Chem Toxicol, 2018, 120: 668 − 680 doi: 10.1016/j.fct.2018.07.052

    30. [30]

      Firdaus M, Espinosa L M D, Meier M A R. Macromolecules, 2011, 44: 7253 − 7262 doi: 10.1021/ma201544e

    31. [31]

      Byrne C, Allen S, Lobkovsky E, Coates G. J Am Chem Soc, 2004, 126: 11404 − 11405 doi: 10.1021/ja0472580

    32. [32]

      Martín C, Kleij A W. Macromolecules, 2016, 49: 6285 − 6295 doi: 10.1021/acs.macromol.6b01449

    33. [33]

      Kindermann N, Cristofol À, Kleij A W. ACS Catal, 2017, 7: 3860 − 3863 doi: 10.1021/acscatal.7b00770

    34. [34]

      Chen W, Vermaak I, Viljoen A. Molecules, 2013, 18: 5434 − 5454 doi: 10.3390/molecules18055434

    35. [35]

      Zhang H, Li J, Tian Z, Liu F. J Appl Polym Sci, 2013, 129: 3333 − 3340 doi: 10.1002/app.39053

    36. [36]

      Choi G-H, Hwang D Y, Suh D H. Macromolecules, 2015, 48: 6839 − 6845 doi: 10.1021/acs.macromol.5b01112

    37. [37]

      Nsengiyumva O, Miller S A. Green Chem, 2019, 21: 973 − 978 doi: 10.1039/C8GC03990A

    38. [38]

      Robert C, Montigny F D, Thomas C M. Nat Commun, 2011, 2: 586 − 592 doi: 10.1038/ncomms1596

    39. [39]

      Granger R E, Campbell E L, Johnston G A R. Biochem Pharmacol, 2005, 69: 1101 − 1111 doi: 10.1016/j.bcp.2005.01.002

    40. [40]

      Roth S, Funk I, Hofer M, Sieber V. ChemSusChem, 2017, 10: 3574 − 3580 doi: 10.1002/cssc.201701146

    41. [41]

      Luo L, Li G, Luan D, Yuan Q, Wei Y, Wang X. ACS Appl Mater Interfaces, 2014, 6: 19371 − 19377 doi: 10.1021/am505481q

    42. [42]

      Speranza G, Gottardi G, Pederzolli C, Lunelli L, Canteri R, Pasquardini L, Carli E, Lui A, Maniglio D, Brugnara M, Anderle M. Biomaterials, 2004, 25: 2029 − 2037 doi: 10.1016/j.biomaterials.2003.08.061

    43. [43]

      Hook, A L, Chang, C Y, Yang, J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine D J, Langer R, Anderson D G, Williams P, Davies M C, Alexander M R. Nat Biotechnol, 2012, 30: 868 − 875 doi: 10.1038/nbt.2316

    44. [44]

      Carvalho C C, Fonseca M M. Food Chem, 2006, 95: 413 − 422 doi: 10.1016/j.foodchem.2005.01.003

    45. [45]

      Lowe J R, Martello M T, Tolman W B, Hillmyer M A. Polym Chem, 2011, 2: 702 − 708 doi: 10.1039/C0PY00283F

    46. [46]

      Lowe J R, Tolman W B, Hillmyer M A. Biomacromolecules, 2009, 10: 2003 − 2008 doi: 10.1021/bm900471a

    47. [47]

      Yang J, Lee S, Choi W J, Seo H, Kim K, Kim G J, Kim Y W, Shin J. Biomacromolecules, 2015, 16: 246 − 256 doi: 10.1021/bm501450c

    48. [48]

      Ding K, John A, Shin J, Lee Y, Quinn T, Tolman W B, Hillmyer M A. Biomacromolecules, 2015, 16: 2537 − 2539 doi: 10.1021/acs.biomac.5b00754

    49. [49]

      Winnacker M, Neumeier M, Zhang X, Papadakis C M, Rieger B. Macromol Rapid Commun, 2016, 37: 851 − 857 doi: 10.1002/marc.201600056

    50. [50]

      Winnacker M, Vagin S, Auer V, Rieger B. Macromol Chem Phys, 2014, 215: 1654 − 1660 doi: 10.1002/macp.201400324

    51. [51]

      Winnacker M, Tischner A, Neumeier M, Rieger B. RSC Adv, 2015, 5: 77699 − 77705 doi: 10.1039/C5RA15656D

    52. [52]

      Shin J, Lee Y, Tolman W B, Hillmyer M A. Biomacromolecules, 2012, 13: 3833 − 3840 doi: 10.1021/bm3012852

    53. [53]

      Zee N J V, Coates G W. Angew Chem Int Ed, 2015, 54: 2665 − 2668 doi: 10.1002/anie.201410641

    54. [54]

      Zee N J V, Sanford M J, Coates G W. J Am Chem Soc, 2016, 138: 2755 − 2761 doi: 10.1021/jacs.5b12888

    55. [55]

      Sanford M J, Carrodeguas L P, Zee N J V, Kleij A W, Coates G W. Macromolecules, 2016, 49: 6394 − 6400 doi: 10.1021/acs.macromol.6b01425

    56. [56]

      Behr A, Johnen L. ChemSusChem, 2009, 2: 1072 − 1095 doi: 10.1002/cssc.200900186

    57. [57]

      Marval C S, Hwa C C L. J Polym Sci, 1960, XLV: 25 − 34

    58. [58]

      Cawse J L, Sanford J L, Still R H. J Appl Polym Sci, 1986, 31: 1963 − 1975 doi: 10.1002/app.1986.070310702

    59. [59]

      Cawse J L, Sanford J L, Still R H. Polymer, 1987, 28: 368 − 374 doi: 10.1016/0032-3861(87)90187-X

    60. [60]

      Sarkar P, Bhowmick A K. RSC Adv, 2014, 4: 61343 − 61354 doi: 10.1039/C4RA09475A

    61. [61]

      Sarkar P, Bhowmick A K. ACS Sustain Chem Eng, 2016, 4: 5462 − 5474 doi: 10.1021/acssuschemeng.6b01038

    62. [62]

      Sarkar P, Bhowmick A K. J Polym Sci, Part A: Polym Chem, 2017, 55: 2639 − 2649 doi: 10.1002/pola.28661

    63. [63]

      Sarkar P, Bhowmick A K. ACS Sustain Chem Eng, 2016, 4: 2129 − 2141 doi: 10.1021/acssuschemeng.5b01591

    64. [64]

      Newmark R A, Majumdar R N. J Polym Sci, Part A: Polym Chem, 1988, 26: 71 − 77 doi: 10.1002/pola.1988.080260107

    65. [65]

      Zhou C, Wei Z, Lei X, Li Y. RSC Adv, 2016, 6: 63508 − 63514 doi: 10.1039/C6RA08689F

    66. [66]

      Zhou C, Wei Z, Wang W, Yu Y, Leng X, Li Y. Eur Polym J, 2018, 99: 477 − 484 doi: 10.1016/j.eurpolymj.2018.01.004

    67. [67]

      Matic A, Schlaad H. Polym Int, 2018, 67: 500 − 505 doi: 10.1002/pi.5534

    68. [68]

      Bolton J M, Hillmyer M A, Hoye T R. ACS Macro Lett, 2014, 3: 717 − 720 doi: 10.1021/mz500339h

    69. [69]

      Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B. Prog Polym Sci, 2013, 38: 63 − 235 doi: 10.1016/j.progpolymsci.2012.06.002

    70. [70]

      Raynaud J, Wu J Y, Ritter T. Angew Chem Int Ed, 2012, 51: 11805 − 11808 doi: 10.1002/anie.201205152

    71. [71]

      Jia X, Li W, Zhao J, Yi F, Luo Y, Gong D. Organometallics, 2019, 38: 278 − 288 doi: 10.1021/acs.organomet.8b00708

    72. [72]

      Li W, Zhao J, Zhang X, Gong D. Ind Eng Chem Res, 2019, 58: 2792 − 2800 doi: 10.1021/acs.iecr.8b05866

    73. [73]

      Zhao J, Chen H, Li W, Jia X, Zhang X, Gong D. Inorg Chem, 2018, 57: 4088 − 4097 doi: 10.1021/acs.inorgchem.8b00270

    74. [74]

      Valente A, Mortreux A, Visseaux M, Zinck P. Chem Rev, 2013, 113: 3836 − 3857 doi: 10.1021/cr300289z

    75. [75]

      Belaid I, Macqueron B, Poradowski M N, Bouaouli S, Thuilliez J, Cruz-Boisson F D, Monteil V, D’Agosto F, Perrin L, Boisson C. ACS Catal, 2019, 9: 9298 − 9309

    76. [76]

      Göttker-Schnetmann I, Kenyon P, Mecking S. Angew Chem Int Ed, 2019, 58: 2 − 7 doi: 10.1002/anie.201813331

    77. [77]

      León Gómez R E D, Enríquez-Medrano F J, Textle H M, Carrizales R M, Acosta K R, González H R L, Romero J L O, Uribe L E L. Can J Chem Eng, 2016, 94: 823 − 832 doi: 10.1002/cjce.22458

    78. [78]

      Loughmari S, Hafid A, Bouazza A, Bouadili A E, Zinck P, Visseaux M. J Polym Sci, Part A: Polym Chem, 2012, 50: 2898 − 2905 doi: 10.1002/pola.26069

    79. [79]

      Georges S, Touré A O, Visseaux M, Zinck P. Macromolecules, 2014, 47: 4538 − 4547 doi: 10.1021/ma5008896

    80. [80]

      Kularatne R N, Yang A, Nguyen H Q, McCandless G T, Stefan M C. Macromol Rapid Commun, 2017, 1700427 − 1700431

    81. [81]

      Naddeo M, Buonerba A, Luciano E, Grassi A, Proto A, Capacchione C. Polymer, 2017, 131: 151 − 159 doi: 10.1016/j.polymer.2017.10.028

    82. [82]

      Moad G. Polym Int, 2017, 66: 26 − 41 doi: 10.1002/pi.5173

    83. [83]

      Hilschmann J, Kali G. Eur Polym J, 2015, 73: 363 − 373 doi: 10.1016/j.eurpolymj.2015.10.021

    84. [84]

      Bauer N, Brunke J, Kali G. ACS Sustainable Chem Eng, 2017, 5: 10084 − 10092 doi: 10.1021/acssuschemeng.7b02091

    85. [85]

      Métafiot A, Kanawati Y, Gérard J F, Defoort B, Maric M. Macromolecules, 2017, 50: 3101 − 3120 doi: 10.1021/acs.macromol.6b02675

    86. [86]

      Kobayashi S, Lu C, Hoye T R, Hillmyer M A. J Am Chem Soc, 2009, 131: 7960 − 7961 doi: 10.1021/ja9027567

    87. [87]

      Liu B, Li S, Wang M, Cui D. Angew Chem Int Ed, 2017, 56: 4560 − 4564 doi: 10.1002/anie.201700546

    88. [88]

      Yamamoto D, Matsumoto A. Macromolecules, 2013, 46: 9526 − 9536 doi: 10.1021/ma4020092

    89. [89]

      Matsumoto A, Yamamoto D. J Polym Sci, Part A: Polym Chem, 2016, 54: 3616 − 3625 doi: 10.1002/pola.28248

    90. [90]

      Goldblatt L A, Palkin S. J Am Chem Soc, 1941, 63: 3517 − 3522 doi: 10.1021/ja01857a075

    91. [91]

      Veazey R L. US Patent, US4694059A. 1987-09-15

    92. [92]

      Marvel C S, Kiener P E, Vessel E D. J Am Chem Soc, 1959, 81: 4694 − 4697 doi: 10.1021/ja01526a062

    93. [93]

      Marvel C S, Kiener P E. J Polym Sci, 1962, 61: 311 − 331 doi: 10.1002/pol.1962.1206117205

    94. [94]

      Puskas J E, Gergely A L, Kaszas G. J Polym Sci, Part A: Polym Chem, 2013, 51: 29 − 33 doi: 10.1002/pola.26306

    95. [95]

      Gergely A L, Puskas J E. J Polym Sci, Part A: Polym Chem, 2015, 53: 1567 − 1574

    96. [96]

      Gergely A L, Turkarslan O, Puskas J E, Kaszas G. J Polym Sci, Part A: Polym Chem, 2013, 51: 4717 − 4721 doi: 10.1002/pola.26915

    97. [97]

      Roh J H, Roy D, Lee W K, Gergely A L, Puskas J E, Roland C M. Polymer, 2015, 56: 280 − 283 doi: 10.1016/j.polymer.2014.11.015

    98. [98]

      Sahu P, Sarkar P, Bhowmick A K. ACS Sustainable Chem Eng, 2017, 5: 7659 − 7669 doi: 10.1021/acssuschemeng.7b00990

    99. [99]

      Srivastava A K, Pandey P. Eur Polym J, 2002, 38: 1709 − 1712 doi: 10.1016/S0014-3057(02)00028-9

    100. [100]

      Sharma S, Srivastava A K. J Appl Polym Sci, 2008, 108: 892 − 899 doi: 10.1002/app.26838

    101. [101]

      Misra G, Srivastava A K. Colloid Polym Sci, 2008, 286: 445 − 451 doi: 10.1007/s00396-007-1794-6

    102. [102]

      Shukla A, Srivastava A K. Polym Adv Technol, 2004, 15: 445 − 452 doi: 10.1002/pat.373

    103. [103]

      Shukla A, Srivastava A K. J Appl Polym Sci, 2004, 92: 1134 − 1143 doi: 10.1002/app.13658

    104. [104]

      Shukla A, Srivastava A K. J Macromol Sci, Part A: Pure Appl Chem, 2003, 40: 61 − 80 doi: 10.1081/MA-120016674

    105. [105]

      Shukla A, Srivastava A K. High Perform Polym, 2003, 15: 243 − 257 doi: 10.1177/0954008303015003002

    106. [106]

      Shukla A, Srivastava A K. Polym Plast Technol Eng, 2002, 41: 777 − 793 doi: 10.1081/PPT-120006448

    107. [107]

      Srivastava A K, Pandey P. Polym Int, 2001, 50: 937 − 945 doi: 10.1002/pi.717

    108. [108]

      Pandey P, Srivastava A K. J Polym Sci, Part A: Polym Chem, 2002, 40: 1243 − 1252 doi: 10.1002/pola.10173

    109. [109]

      Pathak S, Srivastava A K. J Appl Polym Sci, 2009, 112: 2601 − 2608 doi: 10.1002/app.29614

    110. [110]

      Pandey P, Srivastava A K. Des Monomers Polym, 2003, 6: 197 − 209 doi: 10.1163/156855503768338250

    111. [111]

      Srivastava A K, Pandey P, Mishra G. J Appl Polym Sci, 2006, 102: 4908 − 4914 doi: 10.1002/app.24883

    112. [112]

      Pandey P, Srivastava A K. Adv Polym Tech, 2002, 21: 59 − 64 doi: 10.1002/adv.10009

    113. [113]

      Busch H, Stempfle F, Heß S, Grau E, Mecking S. Green Chem, 2014, 16: 4541 − 4545 doi: 10.1039/C4GC01233J

    114. [114]

      Liu X, Xin W, Zhang J. Green Chem, 2009, 11: 1018 − 1025 doi: 10.1039/b903955d

    115. [115]

      Liu X, Xin W, Zhang J. Bioresour Technol, 2010, 101: 2520 − 2524 doi: 10.1016/j.biortech.2009.11.028

    116. [116]

      Wang H, Liu B, Liu X, Zhang J, Xian M. Green Chem, 2008, 10: 1190 − 1196 doi: 10.1039/b803295e

    117. [117]

      Wang H, Liu B, Liu X, Zhang J, Xian M. Polym Int, 2009, 58: 1435 − 1441 doi: 10.1002/pi.2680

    118. [118]

      Bicu I, Mustata F. Angew Makromol Chem, 1993, 213: 169 − 179 doi: 10.1002/apmc.1993.052130115

    119. [119]

      Bicu I, Mustata F. Angew Makromol Chem, 1999, 264: 21 − 29 doi: 10.1002/(SICI)1522-9505(19990201)264:1<21::AID-APMC21>3.0.CO;2-4

    120. [120]

      Bicu I, Mustata F. J Appl Polym Sci, 2004, 92: 2240 − 2252 doi: 10.1002/app.20116

    121. [121]

      Bicu I, Mustata F. J Polym Sci, Part A: Polym Chem, 2005, 43: 6308 − 6322 doi: 10.1002/pola.21070

    122. [122]

      Bicu I, Mustata F. Eur Polym J, 2010, 46: 1316 − 1327 doi: 10.1016/j.eurpolymj.2010.03.011

    123. [123]

      Bicu I, Mustata F. J Polym Sci, Part A: Polym Chem, 2007, 45: 5979 − 5990 doi: 10.1002/pola.22352

    124. [124]

      Bicu I, Mustata F. Macromol Mater Eng, 2000, 280/281: 47 − 53 doi: 10.1002/1439-2054(20000801)280:1<47::AID-MAME47>3.0.CO;2-#

    125. [125]

      Atta A, El-Saeed S, Farag R. React Funct Polym, 2006, 66: 1596 − 1608 doi: 10.1016/j.reactfunctpolym.2006.06.002

    126. [126]

      Zheng Y, Yao K, Lee J, Chandler D, Wang J, Wang C, Chu F, Tang C. Macromolecules, 2010, 43: 5922 − 5924 doi: 10.1021/ma101071p

    127. [127]

      Chen Y, Wilbon P A, Chen Y P, Zhou J, Nagarkatti M, Wang C, Chu F, Decho A W, Tang C. RSC Adv, 2012, 2: 10275 − 10282 doi: 10.1039/c2ra21675b

    128. [128]

      Wang J, Chen Y P, Yao K, Wilbon P A, Zhang W, Ren L, Zhou J, Nagarkatti M, Wang C, Chu F, He X, Decho A W, Tang C. Chem Commun, 2012, 48: 916 − 918 doi: 10.1039/C1CC16432E

    129. [129]

      Yao K, Wang J, Zhang W, Lee J S, Wang C, Chu F, He X, Tang C. Biomacromolecules, 2011, 12: 2171 − 2177 doi: 10.1021/bm200460u

    130. [130]

      Pohjala L, Alakurtti S, Ahola T, Yli-Kauhaluoma J, Tammela P. J Nat Prod, 2009, 72: 1917 − 1926 doi: 10.1021/np9003245

    131. [131]

      Sami A, Taru M, Salme K, Jari Y K. Eur J Pharm Sci, 2006, 29: 1 − 13 doi: 10.1016/j.ejps.2006.04.006

    132. [132]

      Jeromenok J, Böhlmann W, Antonietti M, Weber J. Macromol Rapid Commun, 2011, 32: 1846 − 1851 doi: 10.1002/marc.201100532

    133. [133]

      Chen Y, Song Q, Zhao J, Gong X, Schlaad H, Zhang G. ACS Appl Mater Interfaces, 2018, 10: 6593 − 6600 doi: 10.1021/acsami.7b16255

    134. [134]

      Gorbunova M N, Krainova G F, Tolmacheva I A, Grishko V V. Russ J Appl Chem, 2012, 85: 1137 − 1141 doi: 10.1134/S1070427212070269

    135. [135]

      Ma Z, Jia Y G, Zhu X X. Biomacromolecules, 2017, 18: 3812 − 3818 doi: 10.1021/acs.biomac.7b01106

    136. [136]

      Kao T C, Wu C H, Yen G C. J Agric Food Chem, 2014, 62: 542 − 553 doi: 10.1021/jf404939f

    137. [137]

      Salvador J A R, Leal A S, Valdeira A S, Gonçalves B M F, Alho D P S, S Figueiredo S A C, Silvestre S M, Mendes V I S. Eur J Med Chem, 2017, 142: 95 − 130 doi: 10.1016/j.ejmech.2017.07.013

    138. [138]

      Li Y, Li J, Zhao X, Yan Q, Gao Y, Hao J, Hu J, Ju Y. Chem Eur J, 2016, 22: 18435 − 18441 doi: 10.1002/chem.201603753

    139. [139]

      Hao J, Gao Y, Li Y, Yan Q, Hu J, Ju Y. Chem Asian J, 2017, 12: 2231 − 2236 doi: 10.1002/asia.201700581

    140. [140]

      Li Y, Gao Y, Wang B, Hao J, Hu J, Ju Y. Chem Asian J, 2018, 13: 2723 − 2729 doi: 10.1002/asia.201800761

    141. [141]

      Hao J, Gao Y, Zheng C, Liu J, Hu J, Ju Y. ACS Macro Lett, 2018, 7: 1131 − 1137 doi: 10.1021/acsmacrolett.8b00560

    142. [142]

      Ma Y, Hao J, Zhao K, Ju Y, Hu J, Gao Y, Du F. J Colloid Interface Sci, 2019, 541: 93 − 100 doi: 10.1016/j.jcis.2019.01.088

    1. [1]

      曾汉民张维邦曾景文李艳明 . 碳链接枝共聚物——Ⅴ.少量天然橡胶与甲基丙烯酸-苯乙烯接枝共聚及其产物的结构与性能关系. 高分子学报, 1965, 7(6): 433-447.

    2. [2]

      王黛青王文韵刘耀田陈传文 . 聚合物裂解产物的激光光声光谱. 高分子学报, 1982, (5): 378-380.

    3. [3]

      施冬健刘晓亚陈明清杨成顾正彪相飞 . 光敏性无规-类接枝双亲聚合物的合成与自组装行为的研究. 高分子学报, 2004, (4): 600-604.

    4. [4]

      潘慧铭黄素娟肖发荣黄绍钧 . MMA-天然橡胶接枝聚合物表面的酸碱作用. 高分子学报, 1989, (1): 121-124.

    5. [5]

      赵根祥陈邦杰 . 在线红外光谱法研究丙烯腈聚合物高温热解的气态产物. 高分子学报, 1986, (4): 289-295.

    6. [6]

      陈克正张志琨崔作林杨大智 . 纳米铜粒子催化乙炔聚合产物的IR表征. 高分子学报, 2000, (2): 180-183.

    7. [7]

      黄蝶秦安军唐本忠 . 基于炔类单体的点击聚合制备超支化聚合物. 高分子学报, 2017, (2): 178-199. doi: 10.11777/j.issn1000-3304.2017.16275

    8. [8]

      潘慧铭黄素娟姚似玉潘仕荣施锋金丽华 . 丙烯酚胺/天然橡胶接枝聚合物抗凝血性能的研究. 高分子学报, 1996, (5): 519-526.

    9. [9]

      吴慧丹钱浩余智军叶文虎 . 嗜硫类磁性聚合物微球高效分离抗体. 高分子学报, 2010, (10): 1238-1244. doi: 10.3724/SP.J.1105.2010.09401

    10. [10]

      王艳伟和亚宁王晓工 . 官能化度对环氧树脂类偶氮聚合物光致取向的影响. 高分子学报, 2012, (5): 580-586. doi: 10.3724/SP.J.1105.2012.11344

    11. [11]

      李建科阳明书漆宗能王佛松 . 聚苯类共轭聚合物的合成及荧光特性研究. 高分子学报, 1998, (4): 487-489.

    12. [12]

      杨伟张赤曾幸荣蒋昌云甄红宇侯琼阳仁强曹镛 . 吡啶-芴类电荧光聚合物的光谱特性. 高分子学报, 2005, (2): 177-180.

    13. [13]

      杜作栋陈剑华史保川王浩李亚胜宫淑玲李永明 . 多苯基芳基类硅化合物作为硅聚合物热稳定剂的研究. 高分子学报, 1981, (3): 174-179.

    14. [14]

      许军张艺李瑞祝亚非池振国许家瑞 . 一类含萘环结构的聚酯酰亚胺液晶聚合物的结构与性能研究. 高分子学报, 2007, (4): 314-320.

    15. [15]

      强培荣张赛高峻吴良雷景新 . 含螺噁嗪类基团聚合物的合成及光致变色性能研究. 高分子学报, 2015, (10): 1165-1174. doi: 10.11777/j.issn1000-3304.2015.15058

    16. [16]

      李超袁忠义张有地蔡春生胡昱陈义旺 . 半全氟烷基修饰的可溶萘酰亚胺类共轭聚合物的合成及表征. 高分子学报, 2018, 0(6): 712-720. doi: 10.11777/j.issn1000-3304.2017.17245

    17. [17]

      唐劲松王利祥景遐斌王宝忱王佛松 . 酸浓度对苯胺聚合及所得产物的结构与性能的影响. 高分子学报, 1989, (2): 188-192.

    18. [18]

      陈忠平褚道葆陈君华过家好尹晓娟吴何珍 . 循环伏安法的电扫描方式对苯胺聚合产物形貌影响的观察. 高分子学报, 2007, (6): 536-540.

    19. [19]

      颜德岳 . 电子转移引发的阴离子聚合反应产物的分子量分布函数. 高分子学报, 1980, (5): 271-280.

    20. [20]

      颜德岳 . 极性单体阴离子型聚合反应产物的分子量分布. 高分子学报, 1982, (1): 1-8.

  • Figure 1.  Chemical structures of typical cyclic monoterpenes

    Figure 2.  Mechanism of β-pinene polymerization with H2O/AlCl3OPh2 co-initiator catalysts

    Figure 3.  Synthesis of β-pinene-based polyamides 4 and 5 via cationic ROP

    Figure 4.  Synthesis of β-pinene-based polyester 7 via coordination insertion ROP

    Figure 5.  Mechanism of α-pinene polymerization with Lewis acidic ILs

    Figure 6.  Mechanism of photoinitiated cationic ROP of α-pinene oxide

    Figure 7.  Synthesis of α-pinene-based polyketone 11 via radical ROP

    Figure 8.  Synthesis of limonene-based polyesters 16 22 via condensation polymerization

    Figure 9.  Copolymerization of limonene oxide and carbon dioxide

    Figure 10.  Terpolymerization of cis-LO, CHO and CO2 using the binary catalyst AlMe/PPNCl

    Figure 11.  Sequential synthetic approach toward the preparation of PLC 26

    Figure 12.  Synthesis of camphor-based polyimides 28 and 29 using condensation polymerization

    Figure 13.  Synthesis of camphor-based polycarbonates 31 and 32 from camphorquinone using condensation polymerization

    Figure 14.  Synthesis of camphor-based polyesters 33 39 from camphoric acid using condensation polymerization

    Figure 15.  Tandem synthesis of camphor-based polyester 40 from camphoric acid using condensation polymerization

    Figure 16.  Three configurational isomers of borneol

    Figure 17.  Chemoenzymatic synthesis borneol-based polyester 42

    Figure 18.  (a) Synthesis of polyborneolacrylates (PBAs) 46 48 via ATRP; (b) The antibacterial adhesion experiment of PBAs and PMMA rings (Reprinted with permission from Ref.[41]; Copyright (2014) American Chemical Society)

    Figure 19.  Synthesis of carvone-polyesters 51 and 52 via transesterification type ROP

    Figure 20.  Synthetic route of monomers 53 56 from menthone

    Figure 21.  (a) Synthetic route to cyclic anhydride monomers 57 61 derived from α-terpinene and α-phellandrene; (b) Copolymerization of cyclic anhydride monomers 57, 59 61 and propylene oxide

    Figure 22.  Chemical structures of some common acyclic monoterpenoids

    Figure 23.  Nucleus and chemical structures of myrcene

    Figure 24.  Configuration of repeat units in poly(β-myrcene)

    Figure 25.  Synthesis of β-myrcene-based copolymers 6670 via free radical emulsion polymerization

    Figure 26.  Synthesis of ABA triblock polymer 71 from β-myrcene via sequential living anionic polymerization

    Figure 27.  Synthesis of trans-1,4-poly-β-myrcene 74 via iron-catalyzed polymerization

    Figure 28.  Synthesis of cis-1,4-poly-β-myrcene 81 via cobalt-catalyzed polymerization

    Figure 29.  Synthesis of β-myrcene-based copolymers 82 and 83 via CCTP

    Figure 30.  Synthesis of (a) poly(β-myrcene) 84, poly(β-myrcene-b-styrene) block copolymer 85, and (b) poly(β-myrcene-stat-styrene) statistical copolymer 86

    Figure 31.  Synthesis of β-myrcene-based polymers 8890 from 3-methylenecyclopentene 87

    Figure 32.  Coordination polymerization of 3-methylenecyclopentene using lutetium catalysts 91 or 92 with tridentate ligands as the catalyst

    Figure 33.  Controlled radical polymerization of 3-methylenecyclopentene with N-substituted maleimides

    Figure 34.  Synthesis of alloocimene-based polymer 97 with anionic polymerization

    Figure 35.  Structures of alloocimene-based polymer 98 and poly(alloocimene-isobutylene) 99

    Figure 36.  Synthesis of alloocimene-based polymer 100 via redox-initiated emulsion polymerization

    Figure 37.  Synthesis of geraniol-based alternative copolymers 101 and 102 via free radical polymerization

    Figure 38.  Structures of poly(linalool-acrylonitrile) alternative copolymer 103 and poly(citronellol-vinyl acetate) alternative copolymer 104

    Figure 39.  Synthesis of citronellic acid-based polyester 107 with condensation polymerization

    Figure 40.  Chemical structures of abietic acid and stereoisomers

    Figure 41.  Synthesis of rosin-based curing agents 108 and 109 from abietic acid via Diels-Alder reaction

    Figure 42.  Synthetic route of rosin-based curing agent 110 from abietic acid and PCL

    Figure 43.  Chemical structures of main-chain rosin-based polyamide 111 and its derivative 112 substituted with epichlorohydrin

    Figure 44.  Synthetic route of (meth)acrylic monomers 113 and 114 based on rosin

    Figure 45.  Synthetic route of (meth)acrylic monomers 115118 based on dehydroabietic acid

    Figure 46.  Synthetic route of (a) rosin derivative 119 and (b) cationic methacrylic polymers 120 and 121

    Figure 47.  Structures of rosin-grafted PCLs 122 and 123

    Figure 48.  Synthesis of hyperbranched polyester 124 and linear polyester 125 from betulin with condensation polymerization

    Figure 49.  Synthesis of betulin-based polyurethanes (a) 127, (b) 128 and 129; (c) Schematic illustration of the broad-spectrum protein resistance behavior of betulin-based polyurethanes (Reprinted with permission from Ref.[133]; Copyright (2018) American Chemical Society)

    Figure 50.  Synthesis of betulin-based copolymers 131133 with free radical polymerization

    Figure 51.  Synthesis of (a) betulin-based random copolymer 135 via free radical polymerization, and (b) betulin-based block copolymer 136 via RAFT polymerization

    Figure 52.  (a) Synthesis of glycyrrhetinic acid-based copolymer 138 via free radical polymerization; (b) preparation and self-healing process of supramolecular hydrogels cross-linked by 138 and 139 on the basis of host-guest interactions between GA and β-CD units (Reprinted with permission from Ref.[138]; Copyright (2016) Wiley-VCH)

    Figure 53.  Synthesis of (a) glycyrrhetinic acid-based random copolymer 142 and (b) glycyrrhetinic acid-based block copolymer 143 via ring-opening metathesis polymerization; (c) schematic illustration of the assemblies formed by copolymers 142 and 143 and the NR release triggered by pH change (Reprinted with permission from Ref.[140]; Copyright (2018) Wiley-VCH)

    Figure 54.  (a) Synthesis of glycyrrhetinic acid-based polyurethane 145 via step-growth polymerization; (b) Schematic illustration of the size-dictated construction of PPRs (Reprinted with permission from Ref.[141]; Copyright (2018) American Chemical Society)

    Figure 55.  Synthesis of glycyrrhizic acid-based homopolymer 147 via RAFT polymerization

    Table 1.  The summary of the most representative natural terpenes recently developed in sustainable polymers

    No.TerpeneProperties
    1C10H16Main source: turpentine oil from pine trees[15]
    mp: −62 °CReactive sites: endocyclic double bond, bridged ring
    bp: 155 °CPolymerization method: cationic ROP[25], radical ROP[26]
    2C10H16Main source: turpentine oil from pine trees[15]
    mp: −62 °CReactive sites: exocyclic double bond, bridged ring
    bp: 166 °CPolymerization method: cationic ROP[20], anionic ROP[22], coordination insertion ROP[23]
    3C10H16Main source: citrus plants[29]
    mp: −74 °CReactive sites: endocyclic and exocyclic double bond
    bp: 175 °CPolymerization method: condensation polymerization[30], ROP[31]
    4C10H16Main source: bark and resin from lauraceae trees[34]
    mp: 177 °CReactive sites: ketone group, bridged ring
    bp: 209 °CPolymerization method: condensation polymerization[35], tandem-catalyzed polymerization[38]
    5C10H16Main source: essential oils from numerous medicinal plants, including valerian, chamomile and lavender[39]
    mp: 201 °CReactive sites: hydroxyl group, bridged ring
    bp: 214 °CPolymerization method: chemoenzymatic polymerization[40], ATRP[41]
    6C10H16Main source: essential oils from wild thyme and ylang-ylang fruit[55]
    mp: 34 °CReactive sites: conjugated double bond
    bp: 165 °CPolymerization method: radical polymerization[58], anionic polymerization[68], coordinative polymerization[70], CCTP[78], RAFT[83], NMP[85]
    7C10H16Main source: thermal isomerization α-pinene[90]
    mp: 50 °CReactive sites: conjugated double bond
    bp: 167 °CPolymerization method: anionic polymerization[91], cationic polymerization[92], emulsion polymerization[98]
    8C20H30O2Main source: turpentine oil from pine trees[15]
    mp: 172 °CReactive sites: conjugated double bond, carboxy group
    bp: −Polymerization method: thermocuring polymerization[114], step-growth polymerization[118], radical polymerization[125], ATRP[126]
    9C30H50O2Main source: bark of white birches[130]
    mp: 256 °CReactive sites: hydroxyl group, double bond
    bp: −Polymerization method: condensation polymerization[132], radical polymerization[134], RAFT[135]
    10C30H46O4Main source: licorice root and stem[136]
    mp: 293 °CReactive sites: Hydroxyl group, carboxy group
    bp: −Polymerization method: radical polymerization[138], ring-opening metathesis polymerization[140], step-growth[141]
    11C42H62O16Main source: licorice root and stem[136]
    mp: 234 °CReactive sites: hydroxyl group, carboxy group
    bp: −Polymerization method: RAFT[142]
    下载: 导出CSV
  • 加载中
WeChat 点击查看大图
图(56)表(1)
计量
  • PDF下载量:  225
  • 文章访问数:  2142
  • HTML全文浏览量:  754
  • 引证文献数: 0
文章相关
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计