ISSN 1000-3304CN 11-1857/O6

原子力显微镜研究高分子超薄膜结晶机理及功能化调控

张彬

引用本文: 张彬. 原子力显微镜研究高分子超薄膜结晶机理及功能化调控[J]. 高分子学报. doi: 10.11777/j.issn1000-3304.2019.19185 shu
Citation1:  Bin ZhangAtomic Force Microscopy Studies of Polymer Crystallization in Thin Film: Understanding the Formation Mechanism and Tuning the Properties[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19185 shu

原子力显微镜研究高分子超薄膜结晶机理及功能化调控

    作者简介: 张彬,男,1979年生,郑州大学材料学院教授,博士生导师. 2004年本科毕业于郑州大学计算机信息管理专业,2010年于郑州大学获得材料加工工程专业硕士学位,2014年在德国弗莱堡大学化学系获得博士学位(施陶丁格大分子研究所荣誉毕业). 2015年3月入职郑州大学,2018年1月受聘为郑州大学教授. 主要研究方向为高分子薄膜结晶机制、功能高分子薄膜结晶结构与性能调控和高分子成型加工中的物理问题. 目前主持国家自然基金面上项目2项;
    通讯作者: 张彬, E-mail: binzhang@zzu.edu.cn
摘要: 近十年来,随着功能高分子单晶(含单层或寡层片晶)工程及应用研究的不断深入,除了纳米尺度结晶形貌的表征以外,多功能原子力显微镜还被用于研究分子结构、结晶条件和后处理条件对功能高分子晶体性能(电、热、光、磁等)的影响,进一步还可采用扫描探针加工技术(机械刻蚀、电致刻蚀和热致刻蚀等)对其性能进行调控以构筑功能化聚集态结构和微图案. 另一方面,超薄膜中单层或寡层片晶可为研究高分子结晶提供合适的模型体系,与原子力显微镜相结合,不但可以原位、实空间、高分辨地研究高分子的成核与生长过程(生长形态演变和生长动力学),还可以用于研究亚稳态折叠链片晶厚度和形态随热处理温度与时间的演化,从而加深对片晶内有序差异、片晶增厚与熔融行为和自诱导成核的认识.

English

    1. [1]

      Stingelinstutzmann N, Smits E C P, Wondergem H J, Tanase C, Blom P W M, Smith P, De Leeuw D M. Nat Mater, 2005, 4(8): 601 − 606 doi: 10.1038/nmat1426

    2. [2]

      Jimenezsolomon M F, Song Q, Jelfs K E, Munozibanez M, Livingston A G. Nat Mater, 2016, 15(7): 760 − 767 doi: 10.1038/nmat4638

    3. [3]

      Li M, Wondergem H J, Spijkman M, Asadi K, Katsouras I, Blom P W M, De Leeuw D M. Nat Mater, 2013, 12(5): 433 − 438 doi: 10.1038/nmat3577

    4. [4]

      Treat N D, Malik J A N, Reid O, Yu L, Shuttle C G, Rumbles G, Hawker C J, Chabinyc M L, Smith P, Stingelin N. Nat Mater, 2013, 12(7): 628 − 633 doi: 10.1038/nmat3655

    5. [5]

      Hu Z, Tian M, Nysten B, Jonas A M. Nat Mater, 2009, 8(1): 62 − 67 doi: 10.1038/nmat2339

    6. [6]

      Zhou T, Wang B, Dong B, Li C Y. Macromolecules, 2012, 45(21): 8780 − 8789 doi: 10.1021/ma3019987

    7. [7]

      Ma L, Zhou Z, Zhang J, Sun X, Li H, Zhang J, Yan S. Macromolecules, 2017, 50(9): 3582 − 3589 doi: 10.1021/acs.macromol.7b00299

    8. [8]

      Gbabode G, Delvaux M, Schweicher G, Andreasen J W, Nielsen M M, Geerts Y H. Macromolecules, 2017, 50(15): 5877 − 5891 doi: 10.1021/acs.macromol.7b00441

    9. [9]

      Russell T P, Chai Y. Macromolecules, 2017, 50(12): 4597 − 4609 doi: 10.1021/acs.macromol.7b00418

    10. [10]

      Hou C, Yang T, Sun X, Ren Z, Li H, Yan S. J Phys Chem B, 2016, 120(1): 222 − 230 doi: 10.1021/acs.jpcb.5b09960

    11. [11]

      Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F. Macromolecules, 2016, 49(9): 3442 − 3451 doi: 10.1021/acs.macromol.6b00473

    12. [12]

      Zhong L W, Ren X K, Yang S, Chen E Q, Sun C X, Stroeks A, Yang T Y. Polymer, 2014, 55(16): 4332 − 4340 doi: 10.1016/j.polymer.2014.06.031

    13. [13]

      Yao Y, Dong H, Liu F, Russell T P, Hu W. Adv Mater, 2017, 29(29): 1701251 doi: 10.1002/adma.201701251

    14. [14]

      Duong D T, Phan H, Hanifi D, Jo P S, Nguyen T Q, Salleo A. Adv Mater, 2014, 26(35): 6069 − 6073 doi: 10.1002/adma.201402015

    15. [15]

      Gelmi A A. Probing nanoscale properties of organic conducting polymer interfaces using atomic force microscopy, University of Wollongong, 2012

    16. [16]

      Lin H N, Lin H L, Wang S S, Yu L S, Perng G Y, Chen S A, Chen S H. Appl Phys Lett, 2002, 81(14): 2572 − 2574 doi: 10.1063/1.1509464

    17. [17]

      Tan Zhongyin(谭忠印), Ma Jin(马金), Wang Chen(王琛), Bai Chunli(白春礼). Science China(中国科学), 1999, 29(2): 97 − 100

    18. [18]

      Qu Xiaozhong(屈小中), Jin Xigao(金熹高). Journal of Functional Polymers(功能高分子学报), 1999, 12(2): 218 − 224

    19. [19]

      Gong Jianru(宫建茹), Wan Lijun(万立骏), Bai Chunli(白春礼). University Chemistry(大学化学), 2003, 18(1): 7 − 11

    20. [20]

      Hu W. Phys Rep, 2018, 747: 1 − 50

    21. [21]

      Jiang X, Reiter G, Hu W. J Phys Chem B, 2016, 120(3): 566 − 571 doi: 10.1021/acs.jpcb.5b09324

    22. [22]

      Majumder S, Busch H, Poudel P, Mecking S, Reiter G. Macromolecules, 2018, 51(21): 8738 − 8745 doi: 10.1021/acs.macromol.8b01765

    23. [23]

      Li Zhaolei(李照磊), Zhou Dongshan(周东山), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1179 − 1197

    24. [24]

      Liu Xiao(刘枭), Wei Qianshi(魏千适), Chai Liguo(柴利国), Zhou Jianjun(周建军), Yan Dadong(严大东), Yan Shouke(闫寿科), Li Lin(李林). Acta Polymerica Sinica(高分子学报), 2013, (5): 654 − 659

    25. [25]

      Yang Rong(杨榕), Li Hongmei(李红梅), Jiang Jing(姜菁), Zhou Dongshan(周东山). Acta Polymerica Sinica(高分子学报), 2018, (9): 96 − 103

    26. [26]

      Chan C M, Li L. Adv Polym Sci, 2005, 188: 1 − 41

    27. [27]

      Hu W, Cai T, Ma Y, Hobbs J K, Farrance O, Reiter G. Faraday Discuss, 2009, 143(0): 129 − 141

    28. [28]

      Müller A, Michell R, Pérez R, Lorenzo A. Eur Polym J, 2015, 65: 132 − 154 doi: 10.1016/j.eurpolymj.2015.01.015

    29. [29]

      Cavallo D, Lorenzo A T, Müller A J. J Polym Sci, Part B: Polym Phys, 2016, 54(21): 2200 − 2209 doi: 10.1002/polb.24129

    30. [30]

      Cui K, Ma Z, Tian N, Su F, Liu D, Li L. Chem Rev, 2018, 118(4): 1840 − 1886 doi: 10.1021/acs.chemrev.7b00500

    31. [31]

      Tang X, Yang J, Xu T, Tian F, Xie C, Li L. Phys Rev Mater, 2017, 1(7): 073401 doi: 10.1103/PhysRevMaterials.1.073401

    32. [32]

      Zhang H, Shao C, Kong W, Wang Y, Cao W, Liu C, Shen C. Eur Polym J, 2017, 91: 376 − 385 doi: 10.1016/j.eurpolymj.2017.04.016

    33. [33]

      Li X, Liu Y, Tian X, Cui K. J Polym Sci, Part B: Polym Phys, 2016, 54(16): 1573 − 1580 doi: 10.1002/polb.24051

    34. [34]

      Gao H, Vadlamudi M, Alamo R G, Hu W. Macromolecules, 2013, 46(16): 6498 − 6506 doi: 10.1021/ma400842h

    35. [35]

      Zhu X, Yan D, Yao H, Zhu P. Macromol Rapid Commun, 2000, 21(7): 354 − 357 doi: 10.1002/(SICI)1521-3927(20000401)21:7<354::AID-MARC354>3.0.CO;2-B

    36. [36]

      Chen E-Q, Weng X, Zhang A, Mann I, Harris F W, Cheng S Z, Stein R, Hsiao B S, Yeh F. Macromol Rapid Commun, 2001, 22(8): 611 − 615 doi: 10.1002/1521-3927(20010501)22:8<611::AID-MARC611>3.0.CO;2-J

    37. [37]

      Hamad F G, Colby R H, Milner S T. Macromolecules, 2015, 48(19): 7286 − 7299 doi: 10.1021/acs.macromol.5b01408

    38. [38]

      Li H, Yan S. Macromolecules, 2011, 44(3): 417 − 428 doi: 10.1021/ma1023457

    39. [39]

      Li H, Jiang S, Wang J, Wang D, Yan S. Macromolecules, 2003, 36(8): 2802 − 2807 doi: 10.1021/ma034062w

    40. [40]

      Jiang X, Liu X, Liao Q, Wang X, Yan D D, Huo H, Li L, Zhou J J. Soft Matter, 2014, 10(18): 3238 − 3244 doi: 10.1039/c3sm52975d

    41. [41]

      Zhang G, Cao Y, Jin L, Zheng P, Van Horn R M, Lotz B, Cheng S Z D, Wang W. Polymer, 2011, 52(4): 1133 − 1140 doi: 10.1016/j.polymer.2011.01.002

    42. [42]

      Zhang B, Chen J, Baier M C, Mecking S, Reiter R, Mülhaupt R, Reiter G. Macromol Rapid Commun, 2015, 36(2): 181 − 189 doi: 10.1002/marc.201400433

    43. [43]

      Zhang G, Jin L, Zheng P, Shi A C, Wang W. Polymer, 2010, 51(2): 554 − 562 doi: 10.1016/j.polymer.2009.11.061

    44. [44]

      Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社). 2013

    45. [45]

      Cheng Zhengdi(程正迪), Zhu lei(祝磊), Li Yuren(李育人). Polymer Bulletin(高分子通报), 1999, (3): 28 − 33

    46. [46]

      Blundell D, Keller A. J Macromol Sci B, 1968, 2(2): 301 − 336 doi: 10.1080/00222346808212454

    47. [47]

      Strobl G. Prog Polym Sci, 2006, 31(4): 398 − 442 doi: 10.1016/j.progpolymsci.2006.01.001

    48. [48]

      Hiejima Y, Takeda K, Nitta K. Macromolecules, 2017, 50(15): 5867 − 5876 doi: 10.1021/acs.macromol.7b00229

    49. [49]

      Roe R J, Gieniewski C, Vadimsky R G. J Polym Sci, Part B: Polym Phys, 1973, 11(8): 1653 − 1670 doi: 10.1002/pol.1973.180110813

    50. [50]

      Loos J, Tian M. Polymer, 2006, 47(15): 5574 − 5581 doi: 10.1016/j.polymer.2004.12.064

    51. [51]

      Zhang F, Baralia G G, Nysten B, Jonas A M. Macromolecules, 2011, 44(19): 7752 − 7757 doi: 10.1021/ma2012249

    52. [52]

      Zhai X, Zhang G, Ma Z, Tang X, Wang W. Macromol Chem Phys, 2007, 208(6): 651 − 657 doi: 10.1002/macp.200600511

    53. [53]

      Tang X F, Wen X J, Zhai X M, Xia N, Wang W, Wegner G, Wu Z H. Macromolecules, 2007, 40(12): 4386 − 4388 doi: 10.1021/ma070414d

    54. [54]

      Lee S W, Chen E, Zhang A, Yoon Y, Moon B S, Lee S, Harris F W, Cheng, S Z D, von Meerwall E D, Hsiao B S. Macromolecules, 1996, 29(27): 8816 − 8823 doi: 10.1021/ma960048q

    55. [55]

      Chen E Q, Lee S W, Zhang A, Moon B-S, Honigfort P S, Mann I, Lin H M, Harris F W, Cheng, S Z D, Hsiao B S. Polymer, 1999, 40(16): 4543 − 4551 doi: 10.1016/S0032-3861(99)00069-5

    56. [56]

      Zardalidis G, Mars J, Allgaier J, Mezger M, Richter D, Floudas G. Soft Matter, 2016, 12(39): 8124 − 8134 doi: 10.1039/C6SM01622G

    57. [57]

      Sun X, Li H, Zhang X, Wang D, Schultz J M, Yan S. Macromolecules, 2010, 43(1): 561 − 564 doi: 10.1021/ma9019784

    58. [58]

      Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat Mater, 2009, 8(4): 348 − 353 doi: 10.1038/nmat2405

    59. [59]

      Wang B, Tang S, Wang Y, Shen C, Reiter R, Reiter G, Chen J, Zhang B. Macromolecules, 2018, 51(5): 1626 − 1635 doi: 10.1021/acs.macromol.7b02445

    60. [60]

      Huang Y, Xia X, Liu Z, Yang W, Zhu C, Xie D, Chen R, Yang M. Mate Today Commun, 2017, 12: 43 − 54 doi: 10.1016/j.mtcomm.2017.06.005

    61. [61]

      Gao Y, Dong X, Wang L, Liu G, Liu X, Tuinea-Bobe C, Whiteside B, Coates P, Wang D, Han C C. Polymer, 2015, 73: 91 − 101 doi: 10.1016/j.polymer.2015.07.029

    62. [62]

      Yang H, Liu D, Ju J, Li J, Wang Z, Yan G, Ji Y, Zhang W, Sun G, Li L. Macromolecules, 2016, 49(23): 9080 − 9088 doi: 10.1021/acs.macromol.6b01945

    63. [63]

      Yang Haoran(杨皓然), Ju Jianzhu(鞠见竹), Lu Jie(卢杰), Chang Jiarui(常家瑞), Su Fengmei(苏凤梅), Li Liangbin(李良彬). Acta Polymerica Sinica(高分子学报), 2017, (9): 1462 − 1470

    64. [64]

      Yang H, Zhang R, Wang L, Zhang J, Yu X, Liu J, Xing R, Geng Y, Han Y. Macromolecules, 2015, 48(20): 7557 − 7566 doi: 10.1021/acs.macromol.5b01804

    65. [65]

      Michell R M, Müller A J. Prog Polym Sci, 2016, 54: 183 − 213

    66. [66]

      Zhang B, Chen J, Freyberg P, Reiter R, Mülhaupt R, Xu J, Reiter G. Macromolecules, 2015, 48(5): 1518 − 1523 doi: 10.1021/ma502345p

    67. [67]

      Chen J, Li L, Zhou D, Xu J, Xue G. Macromolecules, 2014, 47(10): 3497 − 3501 doi: 10.1021/ma500188b

    68. [68]

      Li Sijia(李思佳), Zhang Wanxi(张万喜), Yao Weiguo(姚卫国), Shi Tongfei(石彤非). Chemical Journal of Chinese Universities(高等学校化学学报), 2015, 36(6): 1133 − 1139

    69. [69]

      Zhu Dunshen(朱敦深), Shou Xingxian(寿兴贤), Liu Yixin(刘一新), Chen Erqiang(陈尔强), Cheng Zhengdi(程正迪). Acta Polymerica Sinica(高分子学报), 2006, (4): 553 − 556

    70. [70]

      Diao Y, Zhou Y, Kurosawa T, Shaw L, Wang C, Park S, Guo Y, Reinspach J A, Gu K, Gu X. Nat Commun, 2015, 6: 7955 doi: 10.1038/ncomms8955

    71. [71]

      Diao Y, Tee B C, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T Hoon, Xue G, Mannsfeld S C B. Nat Mater, 2013, 12(7): 665 − 671 doi: 10.1038/nmat3650

    72. [72]

      Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y. Macromol Chem Phys, 2003, 204(15): 1822 − 1831 doi: 10.1002/macp.200350044

    73. [73]

      Fujita M, Takikawa Y, Sakuma H, Teramachi S, Kikkawa Y. Macromol Chem Phys, 2007, 208(17): 1862 − 1870 doi: 10.1002/macp.200700208

    74. [74]

      Jradi K, Bistac S, Schmitt M, Schmatulla A, Reiter G. Eur Phys J E, 2009, 29(4): 383 − 389 doi: 10.1140/epje/i2009-10480-0

    75. [75]

      Kong X, He S, Wang Z, Chen Z, Xie X. Acta Polymerica Sinica(高分子学报), 2003, (4): 571 − 576

    76. [76]

      Ren Z, Zhang X, Li H, Sun X, Yan S. Chem Commun, 2016, 52(73): 10972 − 10975 doi: 10.1039/C6CC05522B

    77. [77]

      Liu Q, Sun X, Li H, Yan S. Polymer, 2013, 54(17): 4404 − 4421 doi: 10.1016/j.polymer.2013.04.066

    78. [78]

      Nie Y, Zhao Y, Matsuba G, Hu W. Macromolecules, 2018, 51(2): 480 − 487 doi: 10.1021/acs.macromol.7b02357

    79. [79]

      Hu W, Frenkel D, Mathot V. Macromolecules, 2002, 35(19): 7172 − 7174 doi: 10.1021/ma0255581

    80. [80]

      Weathers A, Khan Z U, Brooke R, Evans D, Pettes M T, Andreasen J W, Crispin X, Shi L. Adv Mater, 2015, 27(12): 2101 − 2106 doi: 10.1002/adma.201404738

    81. [81]