ISSN 1000-3304CN 11-1857/O6

Citation: Bin ZhangAtomic Force Microscopy Studies of Polymer Crystallization in Thin Film: Understanding the Formation Mechanism and Tuning the Properties[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19185 shu

Atomic Force Microscopy Studies of Polymer Crystallization in Thin Film: Understanding the Formation Mechanism and Tuning the Properties

Figures(9)

  • Over the past decade, besides fundamental concepts, single-crystal engineering of functional polymers and its applications have attracted increasing attention. With the advances of multiparametric and multifunctional characterization, atomic force microscopy (AFM) not only can image the surface topography of polymer crystals in nanoscale while simultaneously mapping the physical properties, like the electrical and thermal properties, but also provides a unique way of linking molecular structures, crystallization conditions and post-treatment to properties. Furthermore, the nanoscale control afforded by scanning probe lithography (SPL) has prompted the development of a regulation of the polymer aggregation structures and surface patterns in thin films. To explicitly probe the mechanism of polymer crystallization, single layer lamella and few layer lamellae in thin films as a model system, combined with AFM can provide information on polymer nucleation and growth with high spatial and temporal resolution. On the other hand, to promote a better understanding of the nature of heterogeneities of metastable state within the lamellae, lamellar thickening/melting and self-seeding, the effects of annealing temperature and time on lamellar thickness of metastable folded-chain crystals have been investigated in polymer thin films.
  • 加载中
    1. [1]

      Stingelinstutzmann N, Smits E C P, Wondergem H J, Tanase C, Blom P W M, Smith P, De Leeuw D M. Nat Mater, 2005, 4(8): 601 − 606 doi: 10.1038/nmat1426

    2. [2]

      Jimenezsolomon M F, Song Q, Jelfs K E, Munozibanez M, Livingston A G. Nat Mater, 2016, 15(7): 760 − 767 doi: 10.1038/nmat4638

    3. [3]

      Li M, Wondergem H J, Spijkman M, Asadi K, Katsouras I, Blom P W M, De Leeuw D M. Nat Mater, 2013, 12(5): 433 − 438 doi: 10.1038/nmat3577

    4. [4]

      Treat N D, Malik J A N, Reid O, Yu L, Shuttle C G, Rumbles G, Hawker C J, Chabinyc M L, Smith P, Stingelin N. Nat Mater, 2013, 12(7): 628 − 633 doi: 10.1038/nmat3655

    5. [5]

      Hu Z, Tian M, Nysten B, Jonas A M. Nat Mater, 2009, 8(1): 62 − 67 doi: 10.1038/nmat2339

    6. [6]

      Zhou T, Wang B, Dong B, Li C Y. Macromolecules, 2012, 45(21): 8780 − 8789 doi: 10.1021/ma3019987

    7. [7]

      Ma L, Zhou Z, Zhang J, Sun X, Li H, Zhang J, Yan S. Macromolecules, 2017, 50(9): 3582 − 3589 doi: 10.1021/acs.macromol.7b00299

    8. [8]

      Gbabode G, Delvaux M, Schweicher G, Andreasen J W, Nielsen M M, Geerts Y H. Macromolecules, 2017, 50(15): 5877 − 5891 doi: 10.1021/acs.macromol.7b00441

    9. [9]

      Russell T P, Chai Y. Macromolecules, 2017, 50(12): 4597 − 4609 doi: 10.1021/acs.macromol.7b00418

    10. [10]

      Hou C, Yang T, Sun X, Ren Z, Li H, Yan S. J Phys Chem B, 2016, 120(1): 222 − 230 doi: 10.1021/acs.jpcb.5b09960

    11. [11]

      Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F. Macromolecules, 2016, 49(9): 3442 − 3451 doi: 10.1021/acs.macromol.6b00473

    12. [12]

      Zhong L W, Ren X K, Yang S, Chen E Q, Sun C X, Stroeks A, Yang T Y. Polymer, 2014, 55(16): 4332 − 4340 doi: 10.1016/j.polymer.2014.06.031

    13. [13]

      Yao Y, Dong H, Liu F, Russell T P, Hu W. Adv Mater, 2017, 29(29): 1701251 doi: 10.1002/adma.201701251

    14. [14]

      Duong D T, Phan H, Hanifi D, Jo P S, Nguyen T Q, Salleo A. Adv Mater, 2014, 26(35): 6069 − 6073 doi: 10.1002/adma.201402015

    15. [15]

      Gelmi A A. Probing nanoscale properties of organic conducting polymer interfaces using atomic force microscopy, University of Wollongong, 2012

    16. [16]

      Lin H N, Lin H L, Wang S S, Yu L S, Perng G Y, Chen S A, Chen S H. Appl Phys Lett, 2002, 81(14): 2572 − 2574 doi: 10.1063/1.1509464

    17. [17]

      Tan Zhongyin(谭忠印), Ma Jin(马金), Wang Chen(王琛), Bai Chunli(白春礼). Science China(中国科学), 1999, 29(2): 97 − 100

    18. [18]

      Qu Xiaozhong(屈小中), Jin Xigao(金熹高). Journal of Functional Polymers(功能高分子学报), 1999, 12(2): 218 − 224

    19. [19]

      Gong Jianru(宫建茹), Wan Lijun(万立骏), Bai Chunli(白春礼). University Chemistry(大学化学), 2003, 18(1): 7 − 11

    20. [20]

      Hu W. Phys Rep, 2018, 747: 1 − 50

    21. [21]

      Jiang X, Reiter G, Hu W. J Phys Chem B, 2016, 120(3): 566 − 571 doi: 10.1021/acs.jpcb.5b09324

    22. [22]

      Majumder S, Busch H, Poudel P, Mecking S, Reiter G. Macromolecules, 2018, 51(21): 8738 − 8745 doi: 10.1021/acs.macromol.8b01765

    23. [23]

      Li Zhaolei(李照磊), Zhou Dongshan(周东山), Hu Wenbing(胡文兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1179 − 1197

    24. [24]

      Liu Xiao(刘枭), Wei Qianshi(魏千适), Chai Liguo(柴利国), Zhou Jianjun(周建军), Yan Dadong(严大东), Yan Shouke(闫寿科), Li Lin(李林). Acta Polymerica Sinica(高分子学报), 2013, (5): 654 − 659

    25. [25]

      Yang Rong(杨榕), Li Hongmei(李红梅), Jiang Jing(姜菁), Zhou Dongshan(周东山). Acta Polymerica Sinica(高分子学报), 2018, (9): 96 − 103

    26. [26]

      Chan C M, Li L. Adv Polym Sci, 2005, 188: 1 − 41

    27. [27]

      Hu W, Cai T, Ma Y, Hobbs J K, Farrance O, Reiter G. Faraday Discuss, 2009, 143(0): 129 − 141

    28. [28]

      Müller A, Michell R, Pérez R, Lorenzo A. Eur Polym J, 2015, 65: 132 − 154 doi: 10.1016/j.eurpolymj.2015.01.015

    29. [29]

      Cavallo D, Lorenzo A T, Müller A J. J Polym Sci, Part B: Polym Phys, 2016, 54(21): 2200 − 2209 doi: 10.1002/polb.24129

    30. [30]

      Cui K, Ma Z, Tian N, Su F, Liu D, Li L. Chem Rev, 2018, 118(4): 1840 − 1886 doi: 10.1021/acs.chemrev.7b00500

    31. [31]

      Tang X, Yang J, Xu T, Tian F, Xie C, Li L. Phys Rev Mater, 2017, 1(7): 073401 doi: 10.1103/PhysRevMaterials.1.073401

    32. [32]

      Zhang H, Shao C, Kong W, Wang Y, Cao W, Liu C, Shen C. Eur Polym J, 2017, 91: 376 − 385 doi: 10.1016/j.eurpolymj.2017.04.016

    33. [33]

      Li X, Liu Y, Tian X, Cui K. J Polym Sci, Part B: Polym Phys, 2016, 54(16): 1573 − 1580 doi: 10.1002/polb.24051

    34. [34]

      Gao H, Vadlamudi M, Alamo R G, Hu W. Macromolecules, 2013, 46(16): 6498 − 6506 doi: 10.1021/ma400842h

    35. [35]

      Zhu X, Yan D, Yao H, Zhu P. Macromol Rapid Commun, 2000, 21(7): 354 − 357 doi: 10.1002/(SICI)1521-3927(20000401)21:7<354::AID-MARC354>3.0.CO;2-B

    36. [36]

      Chen E-Q, Weng X, Zhang A, Mann I, Harris F W, Cheng S Z, Stein R, Hsiao B S, Yeh F. Macromol Rapid Commun, 2001, 22(8): 611 − 615 doi: 10.1002/1521-3927(20010501)22:8<611::AID-MARC611>3.0.CO;2-J

    37. [37]

      Hamad F G, Colby R H, Milner S T. Macromolecules, 2015, 48(19): 7286 − 7299 doi: 10.1021/acs.macromol.5b01408

    38. [38]

      Li H, Yan S. Macromolecules, 2011, 44(3): 417 − 428 doi: 10.1021/ma1023457

    39. [39]

      Li H, Jiang S, Wang J, Wang D, Yan S. Macromolecules, 2003, 36(8): 2802 − 2807 doi: 10.1021/ma034062w

    40. [40]

      Jiang X, Liu X, Liao Q, Wang X, Yan D D, Huo H, Li L, Zhou J J. Soft Matter, 2014, 10(18): 3238 − 3244 doi: 10.1039/c3sm52975d

    41. [41]

      Zhang G, Cao Y, Jin L, Zheng P, Van Horn R M, Lotz B, Cheng S Z D, Wang W. Polymer, 2011, 52(4): 1133 − 1140 doi: 10.1016/j.polymer.2011.01.002

    42. [42]

      Zhang B, Chen J, Baier M C, Mecking S, Reiter R, Mülhaupt R, Reiter G. Macromol Rapid Commun, 2015, 36(2): 181 − 189 doi: 10.1002/marc.201400433

    43. [43]

      Zhang G, Jin L, Zheng P, Shi A C, Wang W. Polymer, 2010, 51(2): 554 − 562 doi: 10.1016/j.polymer.2009.11.061

    44. [44]

      Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社). 2013

    45. [45]

      Cheng Zhengdi(程正迪), Zhu lei(祝磊), Li Yuren(李育人). Polymer Bulletin(高分子通报), 1999, (3): 28 − 33

    46. [46]

      Blundell D, Keller A. J Macromol Sci B, 1968, 2(2): 301 − 336 doi: 10.1080/00222346808212454

    47. [47]

      Strobl G. Prog Polym Sci, 2006, 31(4): 398 − 442 doi: 10.1016/j.progpolymsci.2006.01.001

    48. [48]

      Hiejima Y, Takeda K, Nitta K. Macromolecules, 2017, 50(15): 5867 − 5876 doi: 10.1021/acs.macromol.7b00229

    49. [49]

      Roe R J, Gieniewski C, Vadimsky R G. J Polym Sci, Part B: Polym Phys, 1973, 11(8): 1653 − 1670 doi: 10.1002/pol.1973.180110813

    50. [50]

      Loos J, Tian M. Polymer, 2006, 47(15): 5574 − 5581 doi: 10.1016/j.polymer.2004.12.064

    51. [51]

      Zhang F, Baralia G G, Nysten B, Jonas A M. Macromolecules, 2011, 44(19): 7752 − 7757 doi: 10.1021/ma2012249

    52. [52]

      Zhai X, Zhang G, Ma Z, Tang X, Wang W. Macromol Chem Phys, 2007, 208(6): 651 − 657 doi: 10.1002/macp.200600511

    53. [53]

      Tang X F, Wen X J, Zhai X M, Xia N, Wang W, Wegner G, Wu Z H. Macromolecules, 2007, 40(12): 4386 − 4388 doi: 10.1021/ma070414d

    54. [54]

      Lee S W, Chen E, Zhang A, Yoon Y, Moon B S, Lee S, Harris F W, Cheng, S Z D, von Meerwall E D, Hsiao B S. Macromolecules, 1996, 29(27): 8816 − 8823 doi: 10.1021/ma960048q

    55. [55]

      Chen E Q, Lee S W, Zhang A, Moon B-S, Honigfort P S, Mann I, Lin H M, Harris F W, Cheng, S Z D, Hsiao B S. Polymer, 1999, 40(16): 4543 − 4551 doi: 10.1016/S0032-3861(99)00069-5

    56. [56]

      Zardalidis G, Mars J, Allgaier J, Mezger M, Richter D, Floudas G. Soft Matter, 2016, 12(39): 8124 − 8134 doi: 10.1039/C6SM01622G

    57. [57]

      Sun X, Li H, Zhang X, Wang D, Schultz J M, Yan S. Macromolecules, 2010, 43(1): 561 − 564 doi: 10.1021/ma9019784

    58. [58]

      Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat Mater, 2009, 8(4): 348 − 353 doi: 10.1038/nmat2405

    59. [59]

      Wang B, Tang S, Wang Y, Shen C, Reiter R, Reiter G, Chen J, Zhang B. Macromolecules, 2018, 51(5): 1626 − 1635 doi: 10.1021/acs.macromol.7b02445

    60. [60]

      Huang Y, Xia X, Liu Z, Yang W, Zhu C, Xie D, Chen R, Yang M. Mate Today Commun, 2017, 12: 43 − 54 doi: 10.1016/j.mtcomm.2017.06.005

    61. [61]

      Gao Y, Dong X, Wang L, Liu G, Liu X, Tuinea-Bobe C, Whiteside B, Coates P, Wang D, Han C C. Polymer, 2015, 73: 91 − 101 doi: 10.1016/j.polymer.2015.07.029

    62. [62]

      Yang H, Liu D, Ju J, Li J, Wang Z, Yan G, Ji Y, Zhang W, Sun G, Li L. Macromolecules, 2016, 49(23): 9080 − 9088 doi: 10.1021/acs.macromol.6b01945

    63. [63]

      Yang Haoran(杨皓然), Ju Jianzhu(鞠见竹), Lu Jie(卢杰), Chang Jiarui(常家瑞), Su Fengmei(苏凤梅), Li Liangbin(李良彬). Acta Polymerica Sinica(高分子学报), 2017, (9): 1462 − 1470

    64. [64]

      Yang H, Zhang R, Wang L, Zhang J, Yu X, Liu J, Xing R, Geng Y, Han Y. Macromolecules, 2015, 48(20): 7557 − 7566 doi: 10.1021/acs.macromol.5b01804

    65. [65]

      Michell R M, Müller A J. Prog Polym Sci, 2016, 54: 183 − 213

    66. [66]

      Zhang B, Chen J, Freyberg P, Reiter R, Mülhaupt R, Xu J, Reiter G. Macromolecules, 2015, 48(5): 1518 − 1523 doi: 10.1021/ma502345p

    67. [67]

      Chen J, Li L, Zhou D, Xu J, Xue G. Macromolecules, 2014, 47(10): 3497 − 3501 doi: 10.1021/ma500188b

    68. [68]

      Li Sijia(李思佳), Zhang Wanxi(张万喜), Yao Weiguo(姚卫国), Shi Tongfei(石彤非). Chemical Journal of Chinese Universities(高等学校化学学报), 2015, 36(6): 1133 − 1139

    69. [69]

      Zhu Dunshen(朱敦深), Shou Xingxian(寿兴贤), Liu Yixin(刘一新), Chen Erqiang(陈尔强), Cheng Zhengdi(程正迪). Acta Polymerica Sinica(高分子学报), 2006, (4): 553 − 556

    70. [70]

      Diao Y, Zhou Y, Kurosawa T, Shaw L, Wang C, Park S, Guo Y, Reinspach J A, Gu K, Gu X. Nat Commun, 2015, 6: 7955 doi: 10.1038/ncomms8955

    71. [71]

      Diao Y, Tee B C, Giri G, Xu J, Kim D H, Becerril H A, Stoltenberg R M, Lee T Hoon, Xue G, Mannsfeld S C B. Nat Mater, 2013, 12(7): 665 − 671 doi: 10.1038/nmat3650

    72. [72]

      Kikkawa Y, Abe H, Fujita M, Iwata T, Inoue Y. Macromol Chem Phys, 2003, 204(15): 1822 − 1831 doi: 10.1002/macp.200350044

    73. [73]

      Fujita M, Takikawa Y, Sakuma H, Teramachi S, Kikkawa Y. Macromol Chem Phys, 2007, 208(17): 1862 − 1870 doi: 10.1002/macp.200700208

    74. [74]

      Jradi K, Bistac S, Schmitt M, Schmatulla A, Reiter G. Eur Phys J E, 2009, 29(4): 383 − 389 doi: 10.1140/epje/i2009-10480-0

    75. [75]

      Kong X, He S, Wang Z, Chen Z, Xie X. Acta Polymerica Sinica(高分子学报), 2003, (4): 571 − 576

    76. [76]

      Ren Z, Zhang X, Li H, Sun X, Yan S. Chem Commun, 2016, 52(73): 10972 − 10975 doi: 10.1039/C6CC05522B

    77. [77]

      Liu Q, Sun X, Li H, Yan S. Polymer, 2013, 54(17): 4404 − 4421 doi: 10.1016/j.polymer.2013.04.066

    78. [78]

      Nie Y, Zhao Y, Matsuba G, Hu W. Macromolecules, 2018, 51(2): 480 − 487 doi: 10.1021/acs.macromol.7b02357

    79. [79]

      Hu W, Frenkel D, Mathot V. Macromolecules, 2002, 35(19): 7172 − 7174 doi: 10.1021/ma0255581

    80. [80]

      Weathers A, Khan Z U, Brooke R, Evans D, Pettes M T, Andreasen J W, Crispin X, Shi L. Adv Mater, 2015, 27(12): 2101 − 2106 doi: 10.1002/adma.201404738

    81. [81]

      Zhang T, Wu X, Luo T. J Phys Chem C, 2014, 118(36): 21148 − 21159 doi: 10.1021/jp5051639

    82. [82]

      Wang Z, Carter J A, Lagutchev A, Koh Y K, Seong N H, Cahill D G, Dlott D D. Science, 2007, 317(5839): 787 − 790 doi: 10.1126/science.1145220

    83. [83]

      Shen S, Henry A, Tong J, Zheng R, Chen G. Nat Nanotechnol, 2010, 5(4): 251 − 255 doi: 10.1038/nnano.2010.27

    84. [84]

      Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R. Nat Nanotechnol, 2014, 9(5): 384 − 390 doi: 10.1038/nnano.2014.44

    85. [85]

      Henry A, Chen G. Phys Rev Lett, 2008, 101(23): 235502 doi: 10.1103/PhysRevLett.101.235502

    86. [86]

      Chandran S, Reiter G. Phys Rev Lett, 2016, 116(8): 088301 doi: 10.1103/PhysRevLett.116.088301

    87. [87]

      Brochardwyart F, Debregeas G, R. Fondecave A, Martin P Macromolecules, 1997, 30(4): 1211 − 1213 doi: 10.1021/ma960929x

    88. [88]

      Xue L, Han Y. Prog Mater Sci, 2012, 57(6): 947 − 979 doi: 10.1016/j.pmatsci.2012.01.003

    89. [89]

      Wu L, Dong Z, Kuang M, Li Y, Li F, Jiang L, Song Y. Adv Funct Mater, 2015, 25(15): 2237 − 2242 doi: 10.1002/adfm.201404559

    90. [90]

      Peng Juan(彭娟), Cui Liang(崔亮), Luo Chunxia(罗春霞), Xing Rubo(邢汝博), Han Yanchun(韩艳春). Chinese Science Bulletin(科学通报), 2009, 6(54): 679 − 695

    91. [91]

      Kan X, Xiao C, Li X, Su B, Wu Y, Jiang W, Wang Z, Jiang L. ACS Appl Mater Interfaces, 2016, 8(29): 18978 − 18984 doi: 10.1021/acsami.6b04163

    92. [92]

      Sun Jiazhen(孙加振), Bao Bin(鲍斌), Wang Si(王思), Zhang Xingye(张兴业), Song Yanlin(宋延林). Polymer Bulletin(高分子通报), 2015, (9): 44 − 60

    93. [93]

      Reiter G. Phys Rev Lett, 1992, 68(1): 75 − 79 doi: 10.1103/PhysRevLett.68.75

    94. [94]

      Zhang H, Xu L, Lai Y, Shi T. Phys Chem Chem Phys, 2016, 18(24): 16310 − 16316 doi: 10.1039/C6CP02447E

    95. [95]

      Braun H-G, Meyer E. Int J Mol Sci, 2013, 14(2): 3254 − 3264 doi: 10.3390/ijms14023254

    96. [96]

      Li Sijia(李思佳), Zhang Wanxi(张万喜), Jiang Fang(蒋放), Lu Yuyuan(卢宇源), Shi Tongfei(石彤非), An Lijia (安立佳). Acta Polymerica Sinica(高分子学报), 2014, (9): 1174 − 1182

    97. [97]

      Massa M V, Carvalho J L, Dalnoki-Veress K. Phys Rev Lett, 2006, 97(24): 247802 doi: 10.1103/PhysRevLett.97.247802

    98. [98]

      Granasy L, Pusztai T, Borzsonyi T, Warren J A, Douglas J F. Nat Mater, 2004, 3(9): 645 − 650 doi: 10.1038/nmat1190

    99. [99]

      Wang H, Schultz J M, Yan S. Polymer, 2007, 48(12): 3530 − 3539 doi: 10.1016/j.polymer.2007.03.079

    100. [100]

      Jeon K, Krishnamoorti R. Macromolecules, 2008, 41(19): 7131 − 7140 doi: 10.1021/ma800652p

    101. [101]

      Qiao C D, Jiang S C, Ji X L, AN L J, Jiang B Z. Front Chem China, 2007, 2(4): 343 − 348

    102. [102]

      Xu J, Guo B H, Zhang Z M, Yan S K, Li L. Macromolecules, 2004, 37(11): 4118 − 4123 doi: 10.1021/ma0499122

    103. [103]

      Liu T, Petermann J, He C, Liu Z, Chung T S. Macromolecules, 2001, 34(13): 4305 − 4307 doi: 10.1021/ma010380o

    104. [104]

      Ma Y, Hu W, Reiter G. Macromolecules, 2006, 39(15): 5159 − 5164 doi: 10.1021/ma060798s

    105. [105]

      Sun X, Chen Z, Wang F, Yan S, Takahashi I. Macromolecules, 2013, 46(4): 1573 − 1581 doi: 10.1021/ma302349a

    106. [106]

      Yan C Z, Guo L, Sun X L, Yan S K, Takahashi I. Chinese J Polym Sci, 2013, 31(3): 407 − 418 doi: 10.1007/s10118-013-1240-9

    107. [107]

      Sun X, Guo L, Sato H, Ozaki Y, Yan S, Takahashi I. Polymer, 2011, 52(17): 3865 − 3870 doi: 10.1016/j.polymer.2011.06.024

    108. [108]

      Yang P, Han Y. Langmuir, 2009, 25(17): 9960 − 9968 doi: 10.1021/la901108p

    109. [109]

      Kikkawa Y, Abe H, Iwata T, Inoue Y, Doi Y. Biomacromolecules, 2001, 2(3): 940 − 945

    110. [110]

      Savage R, Mullin N, Hobbs J. Macromolecules, 2015, 48(17): 6160 − 6165 doi: 10.1021/ma5025736

    111. [111]

      Kocun M, Labuda A, Meinhold W, Revenko I, Proksch R. ACS Nano, 2017, 11(10): 10097 − 10105 doi: 10.1021/acsnano.7b04530

    112. [112]

      Mullin N, Hobbs J K. Phys Rev Lett, 2011, 107(19): 197801 doi: 10.1103/PhysRevLett.107.197801

    113. [113]

      Ono Y, Kumaki J. Macromolecules, 2018, 51(19): 7629 − 7636 doi: 10.1021/acs.macromol.8b01428

    114. [114]

      Kumaki J, Kawauchi T, Yashima E. J Am Chem Soc, 2005, 127(16): 5788 − 5789 doi: 10.1021/ja050457e

    115. [115]

      Umetsu R, Kumaki J. Macromolecules, 2019, 52(17): 6555 − 6565 doi: 10.1021/acs.macromol.9b01280

    116. [116]

      Zhang B, Wang B, Chen J, Shen C, Reiter R, Chen J, Reiter G. Macromolecules, 2016, 49(14): 5145 − 5151 doi: 10.1021/acs.macromol.6b01123

    117. [117]

      Li L, Chan C M, Yeung K L, Li J X, Ng K M, Lei Y. Macromolecules, 2001, 34(2): 316 − 325 doi: 10.1021/ma000273e

    118. [118]

      Liu Y X, Chen E Q. Coordin Chem Rev, 2010, 254(9): 1011 − 1037

    119. [119]

      Okui N, Umemoto S, Kawano R, Mamun A. In: Reiter G, Strobl G, eds. Progress in Understanding of Polymer Crystallization. Berlin: Springer, 2007. 179 − 200

    120. [120]

      Voigt M, Dorsfeld S, Volz A, Sokolowski M. Phys Rev Lett, 2003, 91(2): 026103 doi: 10.1103/PhysRevLett.91.026103

    121. [121]

      Meakin P. Fractals, Scaling and Growth far from Equilibrium. London: Cambridge University Press, 1998

    122. [122]

      Langer J. Rev Mod Phys, 1980, 52(1): 1 − 28 doi: 10.1103/RevModPhys.52.1

    123. [123]

      Taguchi K, Miyaji H, Izumi K, Hoshino A, Miyamoto Y, Kokawa R. Polymer, 2001, 42(17): 7443 − 7447 doi: 10.1016/S0032-3861(01)00215-4

    124. [124]

      Schonherr H, Frank C W. Macromolecules, 2003, 36(4): 1199 − 1208 doi: 10.1021/ma020686a

    125. [125]

      Meyer E, Braun H G. In: Herlach D M, eds. Solidification and Crystallization. Weinheim: Wiley-VCH, 2004. 300 − 309

    126. [126]

      Jerold M S. Macromolecules, 2012, 45(16): 6299 − 6323

    127. [127]

      Li C Y, Cheng S Z D, Ge J J, Bai F, Zhang J Z H, Mann I, Harris F W, Chien L, Yan D, He T. Phys Rev Lett, 1999, 83(22): 4558 − 4561 doi: 10.1103/PhysRevLett.83.4558

    128. [128]

      Kajioka H, Taguchi K, Toda A. Macromolecules, 2011, 44(23): 9239 − 9246 doi: 10.1021/ma201985h

    129. [129]

      Zhang G, Zhai X, Ma Z, Jin L, Zheng P, Wang W, Cheng S Z D, Lotz B. ACS Macro Lett, 2012, 1(1): 217 − 221 doi: 10.1021/mz2001109

    130. [130]

      Zhang B, Chen J, Liu B, Wang B, Chen J, Shen C, Reiter R, Chen J, Reiter G. Macromolecules, 2017, 50(16): 6210 − 6217 doi: 10.1021/acs.macromol.7b01381

    131. [131]

      Xu J, Wang S, Wang G N, Zhu C, Luo S, Jin L, Gu X, Chen S, Feig V R, To J W F. Science, 2017, 355(6320): 59 − 64 doi: 10.1126/science.aah4496

    132. [132]

      Choi J, Gunkel I, Li Y, Sun Z, Liu F, Kim H, Carter K R, Russell T P. Nanoscale, 2017, 9(39): 14888 − 14896 doi: 10.1039/C7NR05394K

    133. [133]

      Wang L, Boutilier M S, Kidambi P R, Jang D, Hadjiconstantinou N G, Karnik R. Nat Nanotechnol, 2017, 12(6): 509 − 522 doi: 10.1038/nnano.2017.72

    134. [134]

      Forth J, Liu X, Hasnain J, Toor A, Miszta K, Shi S, Geissler P L, Emrick T, Helms B A, Russell T P. Adv Mater, 2018, 30(16): 1707603 doi: 10.1002/adma.201707603

    135. [135]

      Kim H, Kang B-G, Choi J, Sun Z, Yu D M, Mays J, Russell T P. Macromolecules, 2018, 51(3): 1181 − 1188 doi: 10.1021/acs.macromol.7b02601

    136. [136]

      Dante M, Peet J, Nguyen T Q. J Phys Chem C, 2008, 112(18): 7241 − 7249 doi: 10.1021/jp712086q

    137. [137]

      Kondo Y, Osaka M, Benten H, Ohkita H, Ito S. ACS Macro Letters, 2015, 4(9): 879 − 885 doi: 10.1021/acsmacrolett.5b00352

    138. [138]

      Osaka M, Benten H, Ohkita H, Ito S. Macromolecules, 2017, 50(4): 1618 − 1625 doi: 10.1021/acs.macromol.6b02604

    139. [139]

      Reid O G, Munechika K, Ginger D S. Nano Lett, 2008, 8(6): 1602 − 1609 doi: 10.1021/nl080155l

    140. [140]

      Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, McCulloch I, Ha C S. Nat Mater, 2006, 5(3): 197 − 203 doi: 10.1038/nmat1574

    141. [141]

      Xiao S, Zhang Q, You W. Adv Mater, 2017, 29(20): 1601391 doi: 10.1002/adma.201601391

    142. [142]

      Li G, Chang W H, Yang Y. Nat Rev Mater, 2017, 2(8): 17043 doi: 10.1038/natrevmats.2017.43

    143. [143]

      Liu Y, Cole M D, Jiang Y, Kim P Y, Nordlund D, Emrick T, Russell T P. Adv Mater, 2018, 30(15): 1705976 doi: 10.1002/adma.201705976

    144. [144]

      Homyak P D, Liu Y, Harris J D, Liu F, Carter K R, Russell T P, Coughlin E B. Macromolecules, 2016, 49(8): 3028 − 3037 doi: 10.1021/acs.macromol.6b00386

    145. [145]

      Zhang Rui(张睿), Liu Jiangang(刘剑刚), Han Yanchun(韩艳春). Polymer Bulletin(高分子通报), 2019, (2): 112 − 125

    146. [146]

      Ludwigs S, eds. P3HT Revisited: from Molecular Scale to Solar Cell Devices. Berlin Heidelberg: Springer-Verlag, 2014. 39 − 82

    147. [147]

      Kwon S, Yu K, Kweon K, Kim G, Kim J, Kim H, Jo Y R, Kim B J, Kim J, Lee S H, Lee K. Nat Commun, 2014, 5: 4183 doi: 10.1038/ncomms5183

    148. [148]

      Noriega R, Rivnay J, Vandewal K, Koch F P, Stingelin N, Smith P, Toney M F, Salleo A. Nat Mater, 2013, 12(11): 1038 − 1044 doi: 10.1038/nmat3722

    149. [149]

      Aiyar A R, Hong J I, Reichmanis E. Chem Mater, 2012, 24(15): 2845 − 2853 doi: 10.1021/cm202700k

    150. [150]

      Bolsée J C, Oosterbaan W D, Lutsen L, Vanderzande D, Manca J. Adv Funct Mater, 2013, 23(7): 862 − 869 doi: 10.1002/adfm.201102078

    151. [151]

      Musumeci C, Liscio A, Palermo V, Samorì P. Mater Today, 2014, 17(10): 504 − 517 doi: 10.1016/j.mattod.2014.05.010

    152. [152]

      Dong Huanli(董焕丽), Yan Qingqing(燕青青), Hu Wenping(胡文平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1246 − 1260

    153. [153]

      Wang B, Chen J, Shen C, Reiter G, Zhang B. Macromolecules, 2019, 52(16): 6088 − 6096 doi: 10.1021/acs.macromol.9b01146

    154. [154]

      Choi D, Jin S, Lee Y, Kim S H, Chung D S, Hong K, Yang C, Jung J, Kim J K, Ree M. ACS Appl Mater Interfaces, 2010, 2(1): 48 − 53 doi: 10.1021/am9005385

    155. [155]

      Strobl G. Rev Mod Phys, 2009, 81(3): 1287 doi: 10.1103/RevModPhys.81.1287

    156. [156]

      Ludwigs S, eds. P3HT Revisited: from Molecular Scale to Solar Cell Devices. Berlin Heidelberg: Springer-Verlag, 2014. 83 − 106

    157. [157]

      Crossland E J W, Rahimi K, Reiter G, Steiner U, Ludwigs S. Adv Funct Mater, 2011, 21(3): 518 − 524 doi: 10.1002/adfm.201001682

    158. [158]

      Kim H S, Na J Y, Kim S, Park Y D. J Phys Chem C, 2015, 119(15): 8388 − 8393 doi: 10.1021/acs.jpcc.5b01199

    159. [159]

      Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch F P V, Nguyen H, Coulembier O, Dubois P, Brinkmann M, Reiter G. Angew Chem Inter Ed, 2012, 51(44): 11131 − 11135 doi: 10.1002/anie.201205653

    160. [160]

      Guo Y, Han Y, Su Z. J Phys Chem B, 2013, 117(47): 14842 − 14848 doi: 10.1021/jp405837m

    161. [161]

      Xia Y, Rogers J A, Paul K E, Whitesides G M. Chem Rev, 1999, 99(7): 1823 − 1848 doi: 10.1021/cr980002q

    162. [162]

      Guo S, Lu Y, Wang B, Shen C, Chen J, Reiter G, Zhang B. Soft Matter, 2019, 15(14): 2981 − 2989 doi: 10.1039/C9SM00370C

    163. [163]

      Jacobs I E, Aasen E W, Nowak D, Li J, Morrison W, Roehling J D, Augustine M P, Moulé A J. Adv Mater, 2017, 29(2): 1603221 doi: 10.1002/adma.201603221

    164. [164]

      Xue L, Han Y. Prog Polym Sci, 2011, 36(2): 269 − 293 doi: 10.1016/j.progpolymsci.2010.07.004

    165. [165]

      Briseno A L, Mannsfeld S C, Ling M M, Liu S, Tseng R J, Reese C, Roberts M E, Yang Y, Wudl F, Bao Z. Nature, 2006, 444(7121): 913 − 917 doi: 10.1038/nature05427

    166. [166]

      Schmaltz T, Sforazzini G, Reichert T, Frauenrath H. Adv Mater, 2017, 29(18): 1605286 doi: 10.1002/adma.201605286

    167. [167]

      Wang D, Russell T P. Macromolecules, 2018, 51(1): 3 − 24 doi: 10.1021/acs.macromol.7b01459

    168. [168]

      Zhang Wenke(张文科). Acta Polymerica Sinica(高分子学报), 2011, (9): 913 − 922

    169. [169]

      Gartside J C, Arroo D M, Burn D M, Bemmer V L, Moskalenko A, Cohen L F, Branford W R. Nat Nanotechnol, 2018, 13(1): 53 − 58 doi: 10.1038/s41565-017-0002-1

    170. [170]

      Garcia R, Knoll A W, Riedo E. Nat Nanotechnol, 2014, 9(8): 577 − 587 doi: 10.1038/nnano.2014.157

    171. [171]

      Ryu Y K, Garcia R. Nanotechnology, 2017, 28(14): 142003 doi: 10.1088/1361-6528/aa5651

    172. [172]

      Farina M, Ye T, Lanzani G, Donato A D, Venanzoni G, Mencarelli D, Pietrangelo T, Morini A, Keivanidis P E. Nat Commun, 2013, 4(1): 2668 doi: 10.1038/ncomms3668

    173. [173]

      Vettiger P, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche M I, Rothuizen H E, Stutz R, Widmer R, Binnig G K. Ibm J Res Dev, 2000, 44(3): 323 − 340 doi: 10.1147/rd.443.0323

    174. [174]

      Li Y, Maynor B W, Liu J. J Am Chem Soc, 2001, 123(9): 2105 − 2106 doi: 10.1021/ja005654m

    175. [175]

      Felts J R, Onses M S, Rogers J A, King W P. Adv Mater, 2014, 26(19): 2999 − 3002 doi: 10.1002/adma.201305481

    176. [176]

      Herruzo E T, Perrino A P, Garcia R. Nat Commun, 2014, 5: 3126 doi: 10.1038/ncomms4126

    177. [177]

      Zimmermann S T, Balkenende D W R, Lavrenova A, Weder C, Brugger J. Acs Appl Mater Interfaces, 2017, 9(47): 41454 − 41461 doi: 10.1021/acsami.7b13672

    178. [178]

      Cho Y K R, Rawlings C, Wolf H, Spieser M, Bisig S, Reidt S, Sousa M, Khanal S, Jacobs T D B, Knoll A W. ACS Nano, 2017, 11(12): 11890 − 11897 doi: 10.1021/acsnano.7b06307

    179. [179]

      Altebaeumer T, Gotsmann B, Pozidis H, Knoll A, Duerig U. Nano Lett, 2008, 8(12): 4398 − 4403 doi: 10.1021/nl8022737

    180. [180]

      Rice R H, Mokariantabari P, King W P, Szoszkiewicz R. Langmuir, 2012, 28(37): 13503 − 13511 doi: 10.1021/la302565s

    181. [181]

      Binnig G, Despont M, Drechsler U, Haeberle W, Lutwyche M, Vettiger P, Mamin H J, Chui B W, Kenny T W. Appl Phys Lett, 1999, 74(9): 1329 − 1331 doi: 10.1063/1.123540

    182. [182]

      Jo A, Joo W, Jin W H, Nam H, Kim J K. Nat Nanotech, 2009, 4(11): 727 − 731 doi: 10.1038/nnano.2009.260

    183. [183]

      Gotsmann B, Duerig U T, Frommer J, Hawker C J. Adv Funct Mater, 2006, 16(11): 1499 − 1505 doi: 10.1002/adfm.200500724

    184. [184]

      Knoll A W, Pires D, Coulembier O, Dubois P, Hedrick J L, Frommer J, Duerig U T. Adv Mater, 2010, 22(31): 3361 − 3365 doi: 10.1002/adma.200904386

    185. [185]

      Pires D, Hedrick J L, de Silva A, Frommer J, Gotsmann B, Wolf H, Despont M, Duerig U T, Knoll A W. Science, 2010, 328(5979): 732 − 735 doi: 10.1126/science.1187851

    186. [186]

      Duvigneau J, Schonherr H, Vancso G J. Langmuir, 2008, 24(19): 10825 − 10832 doi: 10.1021/la801337f

    187. [187]

      Lyuksyutov S F, Vaia R A, Paramonov P B, Juhl S, Waterhouse L, Ralich R M, Sigalov G, Sancaktar E. Nat Mater, 2003, 2(7): 468 − 472 doi: 10.1038/nmat926

    188. [188]

      Benetti E M, Chung H J, Vancso G J. Macromol Rapid Commun, 2009, 30(6): 411 − 417 doi: 10.1002/marc.200800628

    189. [189]

      Dago A I, Sangiao S, Fernandezpacheco R, De Teresa J M, Garcia R. Carbon, 2018, 129: 281 − 285 doi: 10.1016/j.carbon.2017.12.033

    190. [190]

      Garcia R, Martinez R V, Martinez J. Chem Soc Rev, 2006, 35(1): 29 − 38 doi: 10.1039/B501599P

    191. [191]

      Wang B, Zhang B, Shen C, Chen J, Reiter G. Macromolecules, 2018, 51(19): 7692 − 7698 doi: 10.1021/acs.macromol.8b01465

  • 加载中
    1. [1]

      XIA NanTANG Xiong-FengWEN Xiao-JingZHANG Guo-LiangDI Xue-MeiWANG Wei . THICKENING PROCESS OF LAMELLAR CRYSTALS OF A LOW MOLECULAR WEIGHT POLY(ETHYLENE OXIDE). Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2011.10391

    2. [2]

      Yi-xin LiuEr-qiang Chen . Thickening Kinetics of Monolayer Crystals of Low Molecular Weight Poly(ethylene oxide) Fractions on Mica Surfaces. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2017.17333

    3. [3]

      ZHANG Wen-Ke . AFM IMAGING AND SINGLE-MOLECULE FORCE SPECTROSCOPY STUDIES ON MACROMOLECULAR INTERACTIONS AT SINGLE-MOLECULE LEVEL. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2011.11124

    4. [4]

      Shu-xun Cui . Single-molecule Force Spectroscopy of Biomacromolecules: Comparative Studies in Aqueous Solution and Nonpolar Solvents. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2016.16131

    5. [5]

      Xiao-jing WenWei Wang . Studies on Lamellar Thickening of A Four-arm Poly(ethylene oxide) Using Small-angle X-Ray Scattering. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2014.13307

    6. [6]

      WANG XiLIU PengshengJIANG YongLUO YanhongGAO XiaLI Lin . LAMELLA GROWTH AT THE INTERFACE OF SPHERULITES OBSERVED BY AFM IN REAL TIME. Acta Polymerica Sinica,

    7. [7]

      ZHU DunshenSHOU XingxianLIU YixinCHEN ErqiangCHENG Stephen Zhengdi . AFM-TIP-INDUCED CRYSTALLIZATION OF POLY(ETHYLENE OXIDE) MELT DROPLETS. Acta Polymerica Sinica,

    8. [8]

      Xiao-dong HongYou Wang . Preparation of Poly(methyl methacrylate) Stretched Chains by Dropping Method with Dilute Solutions and Their Conformation Transition. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2016.15222

    9. [9]

      Li-guo ChaiLin LiQi LiaoShou-ke Yan . AFM OBSERVATIONS OF MELTING BEHAVIOR OF POLY(ETHYLENE OXIDE) SINGLE CRYSTALS ON IPB-1 SUBSTRATES WITH DIFFERENT LAMELLAR ORIENTATION. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2012.12073

    10. [10]

      WANG Guo-yingZHANG Hao-yuJIANG Bing-zheng . CRYSTALLINE LAMELLAR DAMAGE IN IRRADIATED POLYETHYLENE STUDIED WITH ELECTRON MICROSCOPE. Acta Polymerica Sinica,

    11. [11]

      Xiu-juan LvYu SongWen-ke Zhang . Mesoscopic Mechanical Properties of PEO Single Crystal. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2017.17246

    12. [12]

      GU NingYANG Xiao-minLU WuLU Zu-hongWEI Yu . AFM STUDIES ON POLY (METHYL METHACRYLATE) LANGMUIR-BLODGETT MONOLAYERS. Acta Polymerica Sinica,

    13. [13]

      Yan-zhi TianYan-li LiYong Jiang . AFM Observation of the Change of Surface Morphology during Layer-by-layer Self-assembly of DNA and PEI. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2014.13312

    14. [14]

      ZHANG XiaoyanFAN XiaodongGAO XinBAI HaitaoLI Yan . OBSERVATION OF COLLAGEN ASSEMBLY PROCESS BY USING ATOMIC FORCE MICROSCOPY. Acta Polymerica Sinica,

    15. [15]

      Yu Tong-yinPing Zheng-huaXu You-yi . SCANNING ELECTRON MICROSCOPIC EXAMINATION OF i-POLYPROPYLENE SPHERULITES. Acta Polymerica Sinica,

    16. [16]

      ЛИ Пан-ТунЧЭНЬ Цзен-ЧжанЧЖАН Цзин-ЦянВАН Кэ-Лай . ЗЛЕКТРОНОМИКРОСКОПИЧЕСКОЕ ИСЛЕДОВАНИЕ КРИСТАЛЛИ-ЧЕСКОЙ МОРФОЛОГИИ ПОЛИЗТИЛЕНА. Acta Polymerica Sinica,

    17. [17]

      Zeng Han-minXia Feng . INVESTIGATION OF TEXTURE-STRUCTURE AND THE DEFECT OF ACRYLIC FIBER BY SEM. Acta Polymerica Sinica,

    18. [18]

      ZHANG QinglingDU BinyangHE Tianbai . INVESTIGATING MECHANICAL RESPONSE OF SINGLE CHAIN POLYSTYRENE PARTICLES BY SCANNING PROBE TECHNIQUES. Acta Polymerica Sinica,

    19. [19]

      CHEN Shou-xiCHEN XinAN Yong-zeSONG Wen-huiCAI Li-ying . OBSERVATION OF DISCLINATION IN NEMATIC MESOPHASE OF LIQUID CRYSTALLINE POLYMERS BY LAMELLAR DECORATION. Acta Polymerica Sinica,

    20. [20]

      ZHOU En-leLI HongCHEN Jiu-shun . DETERMINATION OF THE MOLECULAR WEIGHT OF POLYACRYLAMIDE BY ELECTRON MICROSCOPY. Acta Polymerica Sinica,

Metrics
  • PDF Downloads(68)
  • Abstract views(455)
  • HTML views(248)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Supported byBeijing Renhe Information Technology Co. Ltd Technical support: info@rhhz.net 百度统计

/

DownLoad:  Full-Size Img  PowerPoint
Return