ISSN 1000-3304CN 11-1857/O6

Citation: Shi-jia Gao, Xin Wang, Yu-lin Zhang, Sai Zhang, Wen-qiang Qiao and Zhi-yuan Wang. Effects of Annealing Temperature and Active Layer Thickness on the Photovoltaic Performance of Poly(3-hexylthiophene) Photodetector[J]. Acta Polymerica Sinica. doi: 10.11777/j.issn1000-3304.2019.19206 shu

Effects of Annealing Temperature and Active Layer Thickness on the Photovoltaic Performance of Poly(3-hexylthiophene) Photodetector

Figures(5) / Tables(2)

  • Poly(3-hexylthiophene) (P3HT) with good electronic transmission capacity is one of promising material for organic photodetector. Compared with organic solar cells, the research of photodetector based on P3HT is deficient, especially in how to improve the light absorption efficiency and electronic transmission ability of active layer. Here, bulk heterojunction photodetectors with a structure of ITO/PEDOT:PSS/P3HT:PC61BM/C60/Al were prepared by using P3HT as a donor and fullerene derivative (PC61BM) as an acceptor. The change of active layer thickness plays an important role in the effective transfer of photogenerated charge to the electrode. Although increasing the thickness of active layer can increase the light absorption efficiency, it may also lead to the recombination of electrons and holes in the process of long distance transmission. In addition, annealing condition is the key to the film forming process. Adjusting the annealing temperature can control the self-assembly of active layer, thus obtaining the ideal nano-size phase separation structure and reducing the recombination probability of photoexcitons. Therefore, the active layer thickness in P3HT devices varied at 120, 160, 180 and 200 nm and the devices were annealed at 100, 120, 130, 140 and 150 °C in order to probe the effect of these variables on photodetector performance. It was found that the device with a 180-nm thick active layer, after being annealed at 150 °C, exhibited the maximal responsivity of 268 mA/V at 550 nm and more than 200 mA/W in the wavelengths of 470 − 610 nm under the bias of −2 V. Furthermore, the same device showed a linear dynamic range of 95 dB after annealing at 120 °C. Our study demonstrates that the thickness of active layer is of great importance to the light absorption efficiency and the device performance, while the annealing treatment can significantly affect the morphology of active layer, as evidenced by AFM study, which reduces the recombination probability of holes and the electrons and thus improves the photodetector performance.
  • 加载中
    1. [1]

      Xu J J, Hu J C, Liu X F. Macromol Rapid Commun, 2009, 30(16): 1419 − 1423 doi: 10.1002/marc.200900132

    2. [2]

      Qi J, Qiao W Q, Wang Z Y. Chem Rec, 2016, 16: 1531 − 1548 doi: 10.1002/tcr.201600013

    3. [3]

      Cui Yong(崔勇), Yao Huifeng(姚惠峰), Yang Chenyi(杨晨熠), Zhang Shaoqing(张少青), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2018, (2): 223 − 230 doi: 10.11777/j.issn1000-3304.2018.17297

    4. [4]

      Yang Peipei(杨佩佩), Dong Lichao(董立超), Li Yuanyuan(李园园), Zhang Longlong(张龙龙), Shi Jianbing(石建兵), Zhi Junge(支俊格), Tong Bin(佟斌), Dong Yuping(董宇平). Acta Polymerica Sinica(高分子学报), 2017, (8): 1285 − 1293 doi: 10.11777/j.issn1000-3304.2017.17001

    5. [5]

      Yao Huifeng(姚惠峰), Hou Jianhui(侯剑辉). Acta Polymerica Sinica(高分子学报), 2016, (11): 1468 − 1481

    6. [6]

      Deng Yanghua(邓阳华), Xiao Haibin(肖海斌), Qiao He(乔贺), Tan Songting(谭松庭). Acta Polymerica Sinica(高分子学报), 2017, (6): 922 − 929 doi: 10.11777/j.issn1000-3304.2017.16314

    7. [7]

      Lu Junming(卢俊明), Cai Wanqing(蔡万清), Zhang Guichuan(张桂传), Liu Shengjian(刘升建), Ying Lei(应磊),Huang Fei(黄飞). Acta Chimica Sinica(化学学报), 2015, 73: 1153 − 1160 doi: 10.6023/A15080546

    8. [8]

      Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2016, (4): 399 − 401 doi: 10.11777/j.issn1000-3304.2016.16111

    9. [9]

      Azzellino G, Grimoldi A, Binda M, Caironi M, Natali D, Sampietro M. Adv Mater, 2013, 25: 6829 − 6833 doi: 10.1002/adma.201303473

    10. [10]

      Ruderer M A, Metwalli E, Wang W. ChemPhysChem, 2009, 10: 664 − 671 doi: 10.1002/cphc.200800773

    11. [11]

      Hu Z Y, Zhang J J, Huang L K, Sun J Y, Zhang T, He H Y, Zhang J. Renew Energ, 2015, 74: 11 − 17 doi: 10.1016/j.renene.2014.07.034

    12. [12]

      Liu X L, Wang H X, Yang T B, Zhang W, Gong X. ACS Appl Mater Interfaces, 2012, 4(7): 3701 − 3705 doi: 10.1021/am300787m

    13. [13]

      Kim C-H, Cha S-H, Kim S C, Song M K, Lee J, Shin W S, Moon S J. ACS Nano, 2011, 5: 3319 − 3325 doi: 10.1021/nn200469d

    14. [14]

      Motaung D E, Malgas G F, Arendse C J, Mavundla S E, Oliphant C J, Knoesen D. Sol Energ Mater Sol C, 2009, 93: 1674 − 1680 doi: 10.1016/j.solmat.2009.05.016

    15. [15]

      Kim J Y, Noh S, Nam Y M, Kim J Y, Jo W H. ACS Appl Mater Interfaces, 2011, 3: 4279 − 4285 doi: 10.1021/am2009458

    16. [16]

      Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H. Nature, 1999, 401: 685 − 688 doi: 10.1038/44359

    17. [17]

      Oh S H, Heo S J, Yang J S, Kim H J. ACS Appl Mater Interfaces, 2013, 5(22): 11530 − 11534 doi: 10.1021/am4046475

    18. [18]

      Rashmi, Kapoor A K, Upendra K, Balakrishnan. Pramana-J Phys, 2007, 68(3): 489 − 498 doi: 10.1007/s12043-007-0052-2

    19. [19]

      Wang D H, Kim J K, Seo J H, Park O O, Park J H. Sol Energ Mater Sol C, 2012, 101: 249 − 255 doi: 10.1016/j.solmat.2012.02.005

    20. [20]

      Oklobia O, Shafai T S. Solid State Electron, 2013, 87: 64 − 68 doi: 10.1016/j.sse.2013.05.005

    21. [21]

      Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y. Nat Mater, 2005, 4: 864 − 868 doi: 10.1038/nmat1500

    22. [22]

      Liu B, Wang Y, Chen P, Zhang X H, Sun H L, Tang Y M, Liao Q G. ACS Appl Mater Interfaces, 2019, 11: 33505 − 33514 doi: 10.1021/acsami.9b12583

    23. [23]

      Li L L, Zhang F J, Wang J, An Q S, Sun Q Q, Wang W B, Zhang J. Sci Rep-UK, 2015, 5: 9181 doi: 10.1038/srep09181

    24. [24]

      Zhong Z M, Li K, Zhang J X, Ying L, Xie R H, Yu G, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11: 14208 − 14214 doi: 10.1021/acsami.9b02092

    25. [25]

      Zhong Wenkai(钟文楷), Xie Ruihao(谢锐浩), Ying Lei(应磊), Huang Fei(黄飞), Cao Yong(曹镛). Acta Polymerica Sinica(高分子学报), 2018, (2): 217 − 222 doi: 10.11777/j.issn1000-3304.2018.17242

    26. [26]

      Shrotriya V, Ouyang J Y, Tseng R J, Li G, Yang Y. Chem Phys Lett, 2005, 411(1-3): 138 − 143 doi: 10.1016/j.cplett.2005.06.027

    27. [27]

      Yager K G, Tanchak O M, Barrett C J. Rev Sci Instrum, 2006, 77: 769 − 141

    28. [28]

      Yao Y, Liang Y Y, Shrotriya V, Xiao S Q, Yu L P, Yang Y. Adv Mater, 2007, 19(22): 3979 − 3983 doi: 10.1002/adma.200602670

    29. [29]

      Kim K D, Koo J b, Jong k, Yang Y S. J Korean Phys Soc, 2010, 57(1): 124 − 127 doi: 10.3938/jkps.57.124

    30. [30]

      Ruderer M A, Wang C, Schaible E. Macromolecules, 2013, 46(11): 4491 − 4501 doi: 10.1021/ma4006999

    31. [31]

      Huan B Y, Glynos E, Frieberg B. ACS Appl Mater Interfaces, 2012, 4: 5204 − 5210 doi: 10.1021/am3011252

    32. [32]

      Yan L P, Wang Y L, Wei J F. J Mater Chem A, 2019, 7(12): 7099 − 7108 doi: 10.1039/C8TA12109E

    33. [33]

      An T, Wang Y Q, Xue J W. Opt Quant Electron, 2020, 52(1): 1 − 12 doi: 10.1007/s11082-019-2116-1

  • 加载中
    1. [1]

      Ya-fei HeLi-feng HaoXiao-long LuFan YangWei-cheng JiaoWen-bo LiuRong-guo Wang . Preparation and Properties of MoS2 Nanosheets and Their Epoxy Composites. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2015.14194

    2. [2]

      Si-yuan DongPing ZhuJi-guang LiuDu-jin WangXia Dong . Thermal Treatment Effects on the Microstructure and Tensile Properties of Transparent Polyamides. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2018.18198

    3. [3]

      Lan BaiLei ZhaiMin-hui HeChang-ou WangSong MoLin Fan . Effect of High Temperature Annealing on Thermal Expansion Behavior of Poly(amide-imide) Films with Ultralow Coefficient of Thermal Expansion. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2019.19099

    4. [4]

      Ai-ping ChangJian-da XieQing-shi WuShou-min ChenXue DuWei-tai Wu . Synthesis and Aggregation-enhanced Emission of Poly(3-oligo(ethylene oxide)3-thiophene). Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2016.15342

    5. [5]

      Zhou Xing-maoJia Lian-daLiu LiWang Guo-yingZhou En-le . THE SUPERMOLECULAR STRUCTURE OF FEP COPOLYMER AND ITS INFLUENCE ON THE CRACKING BEHAVIOR. Acta Polymerica Sinica,

    6. [6]

      SANG YongFANG MingLU Hongbin . POLY(3-HEXYLTHIOPHENE) BRUSHES GROWN FROM GRAPHENE NANOSHEETS. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2012.11152

    7. [7]

      Yue-qin LiZhu-ye WangYang SongXi-yu ZhangLei JiangXiang-xiang WuQian Hua . Electrically Bistable Memory Cells from Poly(3-hexylthiophene)/Poly(ethylene oxide) Doped with Ethyl Viologen Bilayer System. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2015.15115

    8. [8]

      HUANG Yu-huiCONG Guang-minLIU YanSONG Mo . THE AGGREGATION STRUCTURE OF CARBOXYLATED POLY(2,6-DIMETHYL-1,4-PHENYLENE OXIDE) IONOMER. Acta Polymerica Sinica,

    9. [9]

      HUANG Xue-yingMO Zhi-shenGAO HuanWANG Long-quanMU Zhong-cheng . THE AGGREGATION STATE STRUCTURE OF THE NYLON-1010. Acta Polymerica Sinica,

    10. [10]

      ZHANG Liang-renJIN Dao-senTAKAHARA AtsushiKAJIYAMA Tisato . AGGREGATION STATE OF AMPHIPHILE CONTAINING SULFINATE GROUP/POLYETHYLENEIMINE COMPLEXED LB FILMS. Acta Polymerica Sinica,

    11. [11]

      ZHENG HuajingJIANG YadongXU JianhuaYANG Yajie . STRUCTURE AND ELECTRIC PROPERTIES OF POLY(3,4-ETHYLENEDIOXYTHIOPHENE) FILMS PREPARED THROUGH MODIFICATION OF LB FILM TEMPLATES. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2010.09470

    12. [12]

      ZHOU FengFENG WeiYAN XuejiaWANG Xiaogong . PHOTOELECTRIC PROPERTIES OF PHT/PDI COMPOSITE FILMS. Acta Polymerica Sinica,

    13. [13]

      Zhou En-leXu Bai-lingJia Lian-da . THE MORPHOLOGY AND EXTENSION BEHAVIOUR OF CIS-1,4-POLYBUTADIENE RUBBER. Acta Polymerica Sinica,

    14. [14]

      Xi-hong ZuZheng ZhangXue-mei JiangHuan WangHong-sheng LuoCui WangGuo-bin Yi . Preparation of High-density Polyaniline Nanowire Array and Its Application in UV Photodetector. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2015.14258

    15. [15]

      Min LuoXiao-kang ZhouJie ZhangDong-ge MaXin-hua Wan . Design, Synthesis and Their Application in Photodetectors of Conjugated Polymers Based on Anthraquinone Imide. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2014.13418

    16. [16]

      Zhong Wen-kaiXie Rui-haoYing LeiHuang FeiCao Yong . High Performance Polymer Photodetectors Enabled by a Naphtho[1, 2-c: 5, 6-c']bis([1, 2, 5]thiadiazole) Based π-Conjugated Polymer. Acta Polymerica Sinica, doi: 10.11777/j.issn1000-3304.2018.17242

    17. [17]

      ZHAO Ya-MeiHU Xiao-LingGUAN PingXUE Guan . STRUCTURE CONTROLLING MECHANISM OF POLYSULFONE MEMBRANES BY USING 1-(n-OCTYL)-3-METHYL LIMIDAZOLIUM HEXFLUOROPHOSPHATE IONIC LIQUID. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2010.094261

    18. [18]

      HU Jia-congHU Qi-yiGU Yan . STUDIES ON THE CRYSTALLINITY, ORIENTATION AND SUPER-STRUCTURE OF HEPP BY FRS-XRSA AND SAXS II. The Effect of Annealing Temperature. Acta Polymerica Sinica,

    19. [19]

      HU Jia-congHUANG WeiWANG Xiang-gan . STUDIES ON THE CRYSTALLINITY, ORIENTATION AND SUPER-STRUCTURE OF HEPP BY FRS-XRSA AND SAXS I. The Effect of Annealing Time. Acta Polymerica Sinica,

    20. [20]

      KONG MiqiuHUANG YajiangLIU WenjuanLI Guangxian . INFLUENCE OF SILICA NANOPARTICLES ON THE COARSENING OF CO-CONTINUOUS PMMA/PS BLENDS DURING ANNEALING. Acta Polymerica Sinica, doi: 10.3724/SP.J.1105.2010.09340

  • 电子支持信息-gfzxb20190207刘晓喧.pdf

Metrics
  • PDF Downloads(30)
  • Abstract views(271)
  • HTML views(175)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Supported byBeijing Renhe Information Technology Co. Ltd Technical support: info@rhhz.net 百度统计

/

DownLoad:  Full-Size Img  PowerPoint
Return