ISSN 1000-3304CN 11-1857/O6

稀土催化极性单体配位均聚及与非极性单体共聚合的研究

崔冬梅

引用本文: 崔冬梅. 稀土催化极性单体配位均聚及与非极性单体共聚合的研究[J]. 高分子学报, 2020, 51(1): 12-29. doi: 10.11777/j.issn1000-3304.2020.19142 shu
Citation:  Dong-mei CuiStudies on Homo- and Co-polymerizations of Polar and Non-polar Monomers Using Rare-earth Metal Catalysts[J]. Acta Polymerica Sinica, 2020, 51(1): 12-29. doi: 10.11777/j.issn1000-3304.2020.19142 shu

稀土催化极性单体配位均聚及与非极性单体共聚合的研究

    作者简介: 崔冬梅,女,1963年生. 1981 ~ 1988年就读于大连理工大学,获得学士和硕士学位;1998 ~ 2001年,中科学院长春应用化学研究所获得博士学位. 1988 ~ 1992年,沈阳药科大学,讲师;1992 ~ 2002年,长春工业大学,讲师,副教授,教授(2002年);2002年5 ~ 8月,香港浸会大学,访问学者;2002 ~ 2004年,日本理化学研究所(Riken),JSPS博士后;2013年9 ~ 11月,美国科罗拉多州立大学,访问教授;2004年11月至今,中国科学院长春应用化学研究所,研究员. 研究方向是金属有机合成与可控聚合. 主要针对通用单体的立体选择性聚合,制备高立构规整度、功能性、高附加值的聚烯烃材料. 发表论文160余篇,申请及获授权专利40件,其中国际专利5件;
    通讯作者: 崔冬梅, E-mail: dmcui@ciac.ac.cn
  • 基金项目: 国家自然科学基金(基金号 21634007)资助项目

摘要: 将极性基团引入大分子链中可改善非极性聚烯烃材料的表面性能,扩展其应用范围甚至带来不可预见的新功能,是市场需求并由企业驱动. 与聚合后功能化改性和物理共混方法相比,极性与非极性单体配位共聚合是最直接和简便的方法,适用范围广,并可保持聚烯烃的立构规整度,一直以来,相关研究备受企业和科研工作者瞩目. 然而,极性基团通常具有Lewis碱性,容易与Lewis酸性的聚合催化剂强烈螯合而致其毒化,因此,这又是极具挑战性的课题. 目前,该领域的研究取得了很大的进展,已经实现了乙烯与很多极性单体的共聚合. 今后,将集中解决如何实现极性单体均聚合,提高共聚合活性,特别是极性单体插入率和分布可调节性,保持立体选择性,以及获得高分子量、具有实际应用意义的共聚产物等问题. 本文旨在将课题组近年来在极性功能化苯乙烯和共轭双烯烃单体的均聚合及与苯乙烯、乙烯和共轭双烯烃等非极性单体共聚合方面的最新研究成果以及国内外该领域的相关报道进行综合阐述,为读者提供解决上述关键问题采用的研究路线、实施方法和创新性思维.

English

    1. [1]

      Zhang Yongjie(张勇杰), Li Huayi(李化毅), Dong Jinyong(董金勇), Hu Youliang(胡友良). Chemistry Advances(化学进展), 2014, 26: 110

    2. [2]

      Qiao Jinliang(乔金樑). Chemical Engineering of Petroleum(石油化工), 2015, 44: 1033 doi: 10.3969/j.issn.1000-8144.2015.09.001

    3. [3]

      Ouchi M, Terashima T, Sawamoto M. Chem Rev, 2009, 109(11): 4963 − 5050 doi: 10.1021/cr900234b

    4. [4]

      Matyjaszewski K, Xia J. Chem Rev, 2001, 101(9): 2921 − 2990 doi: 10.1021/cr940534g

    5. [5]

      Baughman T, Chan C, Winey K, Wagener K. Macromolecules, 2007, 40(18): 6564 − 6571 doi: 10.1021/ma070841r

    6. [6]

      Mutlu H, de Espinosa L, Meier M. Chem Soc Rev, 2011, 40(3): 1404 − 1445 doi: 10.1039/B924852H

    7. [7]

      Opper K, Wagener K. J Polym Sci, Part A: Polym Chem, 2011, 49(3): 821 − 831

    8. [8]

      Franssen N, Bas de Bruin R. Chem Soc Rev, 2013, 42(13): 5809 − 5832 doi: 10.1039/c3cs60032g

    9. [9]

      Nakamura A, Anselment T, Claverie J, Goodall B, Jordan R, Mecking S, Rieger B, Sen A, van Leeuwen P, Nozaki K. Chem Res, 2013, 46(7): 1438 − 1449 doi: 10.1021/ar300256h

    10. [10]

      Chen E. Chem Rev, 2009, 109(11): 5157 − 5214 doi: 10.1021/cr9000258

    11. [11]

      Yang X, Liu C, Wang C, Sun X, Guo Y, Wang X, Wang Z, Xie Z, Tang Y. Angew Chem Int Ed, 2009, 48(43): 8099 − 8102 doi: 10.1002/anie.200903334

    12. [12]

      Chen Z, Li J, Tao W, Sun X, Yang X, Tang Y. Macromolecules, 2013, 46(7): 2870 − 2875 doi: 10.1021/ma400283p

    13. [13]

      Aaltonen P, Lofgren B. Macromolecules, 1995, 28(15): 5353 − 5357 doi: 10.1021/ma00119a027

    14. [14]

      Aaltonen P, Fink G, Lofgren B, Seppala J. Macromolecules, 1996, 29(16): 5255 − 5260 doi: 10.1021/ma951607g

    15. [15]

      Imuta J, Kashiwa N, Toda Y. J Am Chem Soc, 2002, 124(7): 1176 − 1177 doi: 10.1021/ja0174377

    16. [16]

      Terao H, Ishii S, Mitani M, Tanaka H, Fujita T. Am Chem Soc, 2008, 130(52): 17636 − 17637 doi: 10.1021/ja8060479

    17. [17]

      Stehling U, Stein K, Kesti M, Waymouth R. Macromolecules, 1998, 31(7): 2019 − 2027 doi: 10.1021/ma971053c

    18. [18]

      Wang X, Wang Y, Shi X, Liu J, Chen C, Li Y. Macromolecules, 2014, 47(2): 552 − 559 doi: 10.1021/ma4022696

    19. [19]

      Zhang Y, Mu H, Pan L, Wang X, Li Y. ACS Catal, 2018, 8(7): 5963 − 5976 doi: 10.1021/acscatal.8b01088

    20. [20]

      Kesti M, Coates G, Waymouth R. Chem Soc, 1992, 114(24): 9679 − 9680 doi: 10.1021/ja00050a069

    21. [21]

      Xu G, Chung T. Macromolecules, 2000, 33(16): 5803 − 5809 doi: 10.1021/ma000303d

    22. [22]

      Kim K, Jo W, Kwak S, Kim K, Hwang S, Kim J. Macromolecules, 1999, 32(26): 8703 − 8710 doi: 10.1021/ma991036i

    23. [23]

      Ittel S, Johnson L, Brookhart M. Chem Rev, 2000, 100(4): 1169 − 1204 doi: 10.1021/cr9804644

    24. [24]

      Nakamura A, Ito S, Nozaki K. Chem Rev, 2009, 109(11): 5215 − 5244 doi: 10.1021/cr900079r

    25. [25]

      Johnson L, Killian C, Brookhart M. J Am Chem Soc, 1995, 117(23): 6414 − 6415 doi: 10.1021/ja00128a054

    26. [26]

      Johnson L, Mecking S, Brookhart M. J Am Chem Soc, 1996, 118(1): 267 − 268 doi: 10.1021/ja953247i

    27. [27]

      Mecking S, Johnson L, Wang L, Brookhart M. J Am Chem Soc, 1998, 120(5): 888 − 899 doi: 10.1021/ja964144i

    28. [28]

      Dai S, Sui X, Chen C. Angew Chem Int Ed, 2015, 54(34): 9948 − 9953 doi: 10.1002/anie.201503708

    29. [29]

      Dai S, Sui X, Chen C. Chem Commun, 2016, 52: 9113 − 9116 doi: 10.1039/C6CC00457A

    30. [30]

      Dai S, Chen C. Angew Chem Int Ed, 2016, 55(42): 13281 − 13285 doi: 10.1002/anie.201607152

    31. [31]

      Zhang D, Chen C. Angew Chem Int Ed, 2017, 56(46): 14672 − 14676 doi: 10.1002/anie.201708212

    32. [32]

      Li M, Wang X, Luo Y, Chen C. Angew Chem Int Ed, 2017, 56(38): 11604 − 11609 doi: 10.1002/anie.201706249

    33. [33]

      Chen M, Chen C. Angew Chem Int Ed, 2018, 57(12): 3094 − 3098 doi: 10.1002/anie.201711753

    34. [34]

      Chen Min(陈敏), Chen Changle(陈昶乐). Acta Polymerica Sinica(高分子学报), 2018, (11): 1372 − 1384 doi: 10.11777/j.issn1000-3304.2018.18155

    35. [35]

      Tan C, Chen C. Angew Chem Int Ed, 2019, 58(22): 7192 − 7200 doi: 10.1002/anie.201814634

    36. [36]

      Wang F, Chen C. Polym Chem, 2019, 10(19): 2354 − 2369 doi: 10.1039/C9PY00226J

    37. [37]

      Weng W, Shen Z, Jordan R. J Am Chem Soc, 2007, 129(50): 15450 − 15451 doi: 10.1021/ja0774717

    38. [38]

      Luo S, Vela J, Lief G, Jordan R. J Am Chem Soc, 2007, 129(29): 8946 − 8947 doi: 10.1021/ja072562p

    39. [39]

      Chen C, Luo S, Jordan R. J Am Chem Soc, 2008, 130(39): 12892 − 12893 doi: 10.1021/ja8056858

    40. [40]

      Diamanti S, Ghosh P, Shimizu F, Bazan G. Macromolecules, 2003, 36(26): 9731 − 9735 doi: 10.1021/ma035102z

    41. [41]

      Diamanti S, Khanna V, Hotta A, Yamakawa D, Shimizu F, Kramer E, Fredrickson G, Bazan G. J Am Chem Soc, 2004, 126(34): 10528 − 10529 doi: 10.1021/ja047231g

    42. [42]

      Schneider Y, Azoulay J, Coffin R, Bazan G. J Am Chem Soc, 2008, 130(32): 10464 − 10465 doi: 10.1021/ja803006d

    43. [43]

      Coffin R, Schneider Y, Kramer E, Bazan G. J Am Chem Soc, 2010, 132(39): 13869 − 13878 doi: 10.1021/ja1056938

    44. [44]

      Younkin T, Conner E, Henderson J, Friedrich S, Grubbs R, Bansleben D. Science, 2000, 287(462): 460 − 462

    45. [45]

      Connor E, Younkin T, Henderson J, Hwanf S, Grubbs R, Roberts W, Litzau J. J Polym Sci, Part A: Polym Chem, 2002, 40(16): 2842 − 2854 doi: 10.1002/pola.10370

    46. [46]

      Waltman A, Younkin T, Grubbs R. Organometallics, 2004, 23(22): 5121 − 5123 doi: 10.1021/om049360b

    47. [47]

      Carrow B, Nozaki K. J Am Chem Soc, 2012, 134(21): 8802 − 8805 doi: 10.1021/ja303507t

    48. [48]

      Sakai N, Nozaki K, Takaya H. J Am Chem Soc, 1994, 116(4): 395 − 396

    49. [49]

      Konishi Y, Tao W, Yasuda H, Ito S, Oishi Y, Ohtaki H, Tanna A, Tayano T, Nozaki K. ACS Macro Lett, 2018, 7(2): 213 − 217 doi: 10.1021/acsmacrolett.7b00904

    50. [50]

      Ota Y, Ito S, Kobayashi M, Kitade S, Sakata K, Tayano T, Nozaki K. Angew Chem Int Ed, 2016, 55(26): 7505 − 7509 doi: 10.1002/anie.201600819

    51. [51]

      Kawakami T, Ito S, Nozaki K. Dalton T, 2015, 44(47): 20745 − 20752 doi: 10.1039/C5DT03551A

    52. [52]

      Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh R. Chem Commun, 2002, (7): 744 − 745 doi: 10.1039/b111252j

    53. [53]

      Skupov K, Marella P, Simard M, Yap G, Allen N, Conner D, Goodall B, Claverie J. Macromol Rapid Commun, 2007, 28(20): 2033 − 2038 doi: 10.1002/marc.200700370

    54. [54]

      Nakano R, Nozaki K. J Am Chem Soc, 2015, 137(28): 10934 − 10942

    55. [55]

      Ito S, Kanazawa M, Munakata K, Kuroda J, Okumura Y, Nozaki K. J Am Chem Soc, 2011, 133(5): 1232 − 1235 doi: 10.1021/ja1092216

    56. [56]

      Ito S, Munakata K, Nakamura A, Nozaki K. J Am Chem Soc, 2009, 131(41): 14606 − 14607 doi: 10.1021/ja9050839

    57. [57]

      Kochi T, Noda S, Yoshimura K, Nozaki K. J Am Chem Soc, 2007, 129(29): 8948 − 8949 doi: 10.1021/ja0725504

    58. [58]

      Masusa Y, Hasegawa M, Yamashita M, Nozaki K, Ishida N, Murakami M. J Am Chem Soc, 2013, 135(19): 7142 − 7145 doi: 10.1021/ja403461f

    59. [59]

      Ota Y, Ito S, Kuroda J, Okumura Y, Nozaki K. J Am Chem Soc, 2014, 136(34): 11898 − 11901 doi: 10.1021/ja505558e

    60. [60]

      Berkefeld A, Mecking S. Angew Chem Int Ed, 2008, 47(14): 2538 − 2542 doi: 10.1002/anie.200704642

    61. [61]

      Guironnet D, Roesle P, Runzi T, Göttker-Schnetmann I, Mecking S. J Am Chem Soc, 2009, 131(2): 422 − 423 doi: 10.1021/ja808017n

    62. [62]

      Guironnet D, Caporaso L, Neuwald B, Goöttker-Schnetmann I, Cavallo L, Mecking S. J Am Chem Soc, 2010, 132(12): 4418 − 4426 doi: 10.1021/ja910760n

    63. [63]

      Ruünzi T, Froöhlich D, Mecking S. J Am Chem Soc, 2010, 132(50): 17690 − 17691 doi: 10.1021/ja109194r

    64. [64]

      Friedberger T, Wucher P, Mecking S. J Am Chem Soc, 2012, 134(2): 1010 − 1018 doi: 10.1021/ja207110u

    65. [65]

      Jian Zhongbao(简忠保). Acta Polymerica Sinica(高分子学报), 2018, (11): 1359 − 1371 doi: 10.11777/j.issn1000-3304.2018.18146

    66. [66]

      Jian Z, Baier M, Mecking S. J Am Chem Soc, 2015, 137(8): 2836 − 2839 doi: 10.1021/jacs.5b00179

    67. [67]

      Jian Z, Mecking S. Angew Chem Int Ed, 2015, 54(52): 15845 − 15849 doi: 10.1002/anie.201508930

    68. [68]

      Jing Y, Sheares V. Macromolecules, 2000, 33(17): 6255 − 6261 doi: 10.1021/ma9918046

    69. [69]

      Jing Y, Sheares V. Macromolecules, 2000, 33(17): 6262 − 6268 doi: 10.1021/ma0002287

    70. [70]

      Yang Y, Lee J, Cho M, Sheares V. Macromolecules, 2006, 39(25): 8625 − 8631 doi: 10.1021/ma061249p

    71. [71]

      Beery M. Rath M, Sheares V Macromolecules, 2001, 34(8): 2469 − 2475 doi: 10.1021/ma001491a

    72. [72]

      Takenaka K, Hanada K, Shiomi T. Macromolecules, 1999, 32(12): 3875 − 3877 doi: 10.1021/ma981506t

    73. [73]

      Yaegashi T, Takeshita H, Takenaka K, Shiomi T. J Polym Sci Part A: Polym Chem, 2003, 41(10): 1545 − 1552 doi: 10.1002/pola.10675

    74. [74]

      Yaegashi T, Yodoya S, Nakamura M, Takeshita H, Takenaka K, Shiomi T. J Polym Sci, Part A: Polym Chem, 2004, 42(4): 999 − 1007 doi: 10.1002/pola.11051

    75. [75]

      Takenaka K, Hirao A, Hattori T, Nakahama S. Macromolecules, 1987, 20(8): 2034 − 2035 doi: 10.1021/ma00174a062

    76. [76]

      Takenaka K, Hirao A, Hattori T, Nakahama S. Macromolecules, 1989, 22: 1563 − 1567 doi: 10.1021/ma00194a010

    77. [77]

      Hirao A, Hiraishi Y, Nakahama S, Takenaka K. Macromolecules, 1998, 31(2): 281 − 287 doi: 10.1021/ma971214c

    78. [78]

      Natta G, Dall′Asta G, Mazzanti G, Casale A. Makromol Chem, 1962, 58(1): 217 − 225 doi: 10.1002/macp.1962.020580115

    79. [79]

      Kawamura T, Uryu T, Matsuzaki K. Makromol Chem, 1982, 183(1): 125 − 141 doi: 10.1002/macp.1982.021830111

    80. [80]

      Li D, Li S, Cui D, Zhang X. Organometallics, 2010, 29(9): 2186 − 2193 doi: 10.1021/om100100r

    81. [81]

      Liu D, Yao C, Wang R, Wang M, Wang Z, Wu C, Lin F, Li S, Wan X, Cui D. Angew Chem Int Ed, 2015, 54(17): 5205 − 5209 doi: 10.1002/anie.201412166

    82. [82]

      Chai Y, Wang L, Liu D, Wang Z, Run M, Cui D. Chem Eur J, 2019, 25(8): 2043 − 2050 doi: 10.1002/chem.201805012

    83. [83]

      Malanga M. Adv Mater, 2000, 12(23): 1869 − 1872 doi: 10.1002/1521-4095(200012)12:23<1869::AID-ADMA1869>3.0.CO;2-#

    84. [84]

      Shi X, Nishiura M, Hou Z. Angew Chem Int Ed, 2016, 55(47): 14812 − 14817 doi: 10.1002/anie.201609065

    85. [85]

      Liu D, Wang R, Wang M, Wu C, Wang Z, Yao C, Liu B, Wan X, Cui D. Chem Commun, 2015, 51(22): 4685 − 4688 doi: 10.1039/C5CC00470E

    86. [86]

      Liu D, Wang M, Chai Y, Wan X, Cui D. ACS Catal, 2019, 9(3): 2618 − 2625 doi: 10.1021/acscatal.9b00555

    87. [87]

      Wang Z, Liu D, Cui D. Macromolecules, 2016, 49(3): 781 − 787 doi: 10.1021/acs.macromol.5b02263

    88. [88]

      Lang X, Jia W, Wang Y, Zhu Z. Catal Commun, 2015, 70: 58 − 61 doi: 10.1016/j.catcom.2015.07.017

    89. [89]

      Ishihara N, Kuramoto M, Uoi M. Macromolecules, 1988, 21(12): 3356 − 3360 doi: 10.1021/ma00190a003

    90. [90]

      Wang Z, Wang M, Liu J, Liu D, Cui D. Chem Eur J, 2017, 23(72): 18151 − 18155 doi: 10.1002/chem.201704584

    91. [91]

      Soga K, Nakatani H, Monoi T. Macromolecules, 1990, 23(4): 953 − 957 doi: 10.1021/ma00206a009

    92. [92]

      Grassi A, Longo P, Proto A, Zambelli A. Macromolecules, 1989, 22(1): 104 − 108 doi: 10.1021/ma00191a021

    93. [93]

      Liu D, Wang M, Wang Z, Wu C, Pan Y, Cui D. Angew Chem Int Ed, 2017, 56(10): 2714 − 2719 doi: 10.1002/anie.201611066

    94. [94]

      Li S, Liu D, Wang Z, Cui D. ACS Catal, 2018, 8(7): 6086 − 6093 doi: 10.1021/acscatal.8b00885

    95. [95]

      Wang C, Luo G, Nishiura M, Song G, Yamamoto A, Luo Y, Hou Z. Sci Adv, 2017, 3(7): e1701011 doi: 10.1126/sciadv.1701011

    96. [96]

      Guo N, Stern C, Marks T. J Am Chem Soc, 2008, 130(7): 2246 − 2261 doi: 10.1021/ja076407m

    97. [97]

      Liu B, Qiao K, Fang J, Wang T, Wang Z, Liu D, Xie Z, Maron L, Cui D. Angew Chem Int Ed, 2018, 57(45): 14896 − 14901 doi: 10.1002/anie.201808836

    98. [98]

      Payne A. J Appl Polym Sci, 1962, 6(19): 57 − 63 doi: 10.1002/app.1962.070061906

    99. [99]

      Payne A. J Appl Polym Sci, 1962, 6(21): 368 − 372 doi: 10.1002/app.1962.070062115

    100. [100]

      Sheares V, Wu L, Li Y, Emmick T. J Polym Sci, Part A: Polym Chem, 2000, 38(22): 4070 − 4080 doi: 10.1002/1099-0518(20001115)38:22<4070::AID-POLA70>3.0.CO;2-P

    101. [101]

      Hirao A, Goseki R, Ishizone T. Macromolecules, 2014, 47(6): 1883 − 1905 doi: 10.1021/ma401175m

    102. [102]

      Wu L, Sheares V. J Polym Sci Part A: Polym Chem, 2001, 39(19): 3227 − 3238 doi: 10.1002/pola.1305

    103. [103]

      Yao C, Liu N, Long S, Wu C, Cui D. Polym Chem, 2016, 7(6): 1264 − 1270 doi: 10.1039/C5PY01801C

    104. [104]

      Leicht H, Göttker-Schnetmann I, Mecking S. ACS Macro Lett, 2016, 5(6): 777 − 780 doi: 10.1021/acsmacrolett.6b00321

    105. [105]

      Long S, Lin F, Yao C, Cui D. Macromol Rapid Commun, 2017, 38(17): 1700227 doi: 10.1002/marc.201700227

    106. [106]

      Li L, Li S, Cui D. Macromolecules, 2016, 49(4): 1242 − 1251 doi: 10.1021/acs.macromol.5b02654

    107. [107]

      Li L, Li S, Cui D. J Polym Sci, Part A: Polym Chem, 2017, 55(6): 1031 − 1039 doi: 10.1002/pola.28463

    1. [1]

      简忠保 . 功能化聚烯烃合成:从催化剂到极性单体设计. 高分子学报, 2018, 0(11): 1359-1371. doi: 10.11777/j.issn1000-3304.2018.18146

    2. [2]

      陈敏陈昶乐 . 官能团化聚烯烃:新催化剂、新聚合调控手段、新材料. 高分子学报, 2018, 0(11): 1372-1384. doi: 10.11777/j.issn1000-3304.2018.18155

    3. [3]

      孙秀丽唐勇 . 边臂策略在聚烯烃催化剂设计中的应用. 高分子学报, 2017, (7): 1019-1037. doi: 10.11777/j.issn1000-3304.2017.17033

    4. [4]

      朱寒白志欣赵姜维零萍吴一弦 . 稀土催化制备窄分子量分布高顺式聚异戊二烯及聚合反应动力学. 高分子学报, 2012, (5): 571-579. doi: 10.3724/SP.J.1105.2012.11292

    5. [5]

      李佳林段志强龚诚谢续明 . 分子结构对丙烯酸酯类单体接枝LLDPE影响的研究. 高分子学报, 2012, (11): 1349-1354. doi: 10.3724/SP.J.1105.2012.12093

    6. [6]

      邱欢李瑶白天闻凌君 . 两仪聚合——拓扑结构聚合物合成新方法. 高分子学报, 2019, 50(11): 1133-1145. doi: 10.11777/j.issn1000-3304.2019.19150

    7. [7]

      史正海孟蕊郭方许蔷李婷婷李杨王玉荣 . 单茂钪催化剂(C5 H5 )Sc(CH2 C6 H4 NMe2 -o)2 合成高顺式窄分布聚丁二烯. 高分子学报, 2014, (10): 1420-1427. doi: 10.11777/j.issn1000-3304.2014.14057

    8. [8]

      唐涛陈辉张学全李林黄葆同 . 聚烯烃/极性聚合物界面的分子状态. 高分子学报, 1996, (3): 336-342.

    9. [9]

      嵇显忠逄束芬孙涛单成基杨继华 . 稀土-其它过渡金属混合催化剂用于共轭双烯烃的聚合——Ⅳ.(NdCl3+FeCl3)·nphen-HAI(i-Bu)2体系对异戊二烯的聚合. 高分子学报, 1991, (2): 129-133.

    10. [10]

      王子川刘东涛崔冬梅 . 稀土金属有机配合物催化共轭双烯烃高选择性聚合. 高分子学报, 2015, (9): 989-1009. doi: 10.11777/j.issn1000-3304.2015.15056

    11. [11]

      田晶王胤然付洪然郭方 . 单茂钪催化乙烯与共轭二烯烃共聚合的研究. 高分子学报, 2019, 50(8): 826-833. doi: 10.11777/j.issn1000-3304.2019.19020

    12. [12]

      何明波胡兴洲 . 预氧化聚烯烃膜的表面光接枝聚合. 高分子学报, 1989, (3): 275-279.

    13. [13]

      颜德岳 . 极性单体阴离子型聚合反应产物的分子量分布. 高分子学报, 1982, (1): 1-8.

    14. [14]

      周杭生李康秦亚伟董金勇 . 基于氯硅烷功能化非共轭α,ω-双烯烃和Ziegler-Natta催化剂合成长链支化聚丙烯. 高分子学报, 2019, 50(11): 1177-1186. doi: 10.11777/j.issn1000-3304.2019.19078

    15. [15]

      王海肖士镜蔡世绵 . 给电子体在制备烯烃聚合NdCl3载体催化剂中的作用. 高分子学报, 1992, (5): 636-640.

    16. [16]

      冯震国 . 聚烯烃纤维表面光接枝的ESCA表征. 高分子学报, 1990, (2): 182-187.

    17. [17]

      王茜茜戴璐介素云李伯耿 . 双烯烃橡胶复分解-加氢制备端羧基聚烯烃. 高分子学报, 2020, 51(3): 277-286. doi: 10.11777/j.issn1000-3304.2019.19171

    18. [18]

      于建香刘太奇 . 纳米丝负载钯催化剂的制备及催化烯烃加氢性能研究. 高分子学报, 2007, (6): 514-518.

    19. [19]

      孙涛逄束芬嵇显忠杨继华 . Nd-AI双金属活性体的活性部位及其对共轭双烯烃聚合机理的研究. 高分子学报, 1991, (4): 489-999.

    20. [20]

      范志强封麟先杨士林 . TiCl4/MgCl2负载型烯烃聚合催化剂活性中心性质的研究. 高分子学报, 1993, (6): 691-697.

  • Figure 1.  Coordination modes of polar monomer to the active metal center

    Figure 2.  Copolymerization of protected polar monomers and olefins

    Figure 3.  Copolymerizations of ethylene and propylene with cationic β-diimino Pd catalyst

    Figure 4.  Oligomerization of vinyl ether by cationic Pd catalyst

    Figure 5.  Neutral phosphine-sulfonate Pd catalyzed polymerizations of allyl ether: insertion and β-H elimination

    Figure 6.  β-Diimido rare-earth complex catalyzed copolymerizations of polar ortho-methoxy styrene and styrene and the mechanism elucidated by DFT calculation (Reprinted with permission from Ref.[81]; Copyright (2015) Wiley-VCH)

    Figure 7.  β-Diimido rare-earth complex catalyzed polymerizations of ortho-methoxy styrene: effects of ionic size and selectivity Reprinted with permission from Ref.[82]; Copyright (2019) Wiley-VCH)

    Figure 8.  Polymerizations of polar methoxy styrene catalyzed by constrained-geometry-configuration rare-earth metal catalysts (A) and the NMR spectra of the resulting polymers (B)

    Figure 9.  Effects of ligand framework and steric bulkiness of the monomers on the catalytic performances (Reprinted with permission from Ref.[86]; Copyright (2019) American Chemical Society)

    Figure 10.  Energy profiles for insertion of oMOS and generation of stereo-regularity (Reprinted with permission from Ref.[86]; Copyright (2019) American Chemical Society)

    Figure 11.  DFT simulation of the polymerizations of para-fluorenyl styrene using CGC (constrained-geometry-configuration) and non-CGC catalysts (Reprinted with permission from Ref.[90]; Copyright (2017) Wiley-VCH)

    Figure 12.  Copolymerization of polar and non-polar styrenes with different sequence distributions (Reprinted with permission from Ref.[93]; Copyright (2017) Wiley-VCH)

    Figure 13.  13C-NMR spectrum of poly(para-thiomethyl-styrene) (Reprinted with permission from Ref.[87]; Copyright (2016) American Chemical Society)

    Figure 14.  Plots of monomer loading versus compositions in copolymer calculated via first-order Markov equation and 13C-NMR spectrum data (Reprinted with permission from Ref.[87]; Copyright (2016) American Chemical Society)

    Figure 15.  Catalysts and polar styrenes (Reprinted with permission from Ref.[94]; Copyright (2018) American Chemical Society)

    Figure 16.  1H-NMR (a), and 13C-NMR (b) spectra of E-DMAS copolymer (CDCl3, 25 °C)

    Figure 17.  The mechanism of polar styrene and ethylene (Reprinted with permission from Ref.[94]; Copyright (2018) American Chemical Society)

    Figure 18.  Polar styrene monomers

    Figure 19.  13C-NMR spectra of poly(ethylene-para-fluorinyl styrene)

    Figure 20.  DFT simulation of mechanism for copolymerizations of ethylene-para-flurenyl styrene (Reprinted with permission from Ref.[97]; Copyright (2018) Wiley-VCH)

    Figure 21.  Copolymerizations of isoprene and 2-(4-methoxy phenyl)-1,3 butadiene and contact angle of the resulting copolymer (Reprinted with permission from Ref.[103]; Copyright (2016) The Royal Society of Chemistry)

    Figure 22.  Homo- and copolymerizations of 2-furanyl-1,3-butadine (Reprinted with permission from Ref.[105]; Copyright (2018) Wiley-VCH)

    Figure 23.  Copolymerizations of MHD and isoprene and post-modification with thiol compounds (Reprinted with permission from Ref.[106]; Copyright (2018) American Chemical Society)

    Figure 24.  1,2-Selective homo- and copolymerizations of MHD and isoprene (Reprinted with permission from Ref.[107]; Copyright (2017) Wiley-VCH)

  • 加载中
图(25)
计量
  • PDF下载量:  194
  • 文章访问数:  2061
  • HTML全文浏览量:  1306
  • 引证文献数: 0
文章相关
  • 通讯作者:  崔冬梅, dmcui@ciac.ac.cn
  • 收稿日期:  2019-07-31
  • 修稿日期:  2019-08-28
  • 网络出版日期:  2019-10-23
  • 刊出日期:  2020-01-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计