ISSN 1000-3304CN 11-1857/O6

典型高分子纤维发展回顾与未来展望

俞森龙 相恒学 周家良 邱天 胡泽旭 朱美芳

引用本文: 俞森龙, 相恒学, 周家良, 邱天, 胡泽旭, 朱美芳. 典型高分子纤维发展回顾与未来展望[J]. 高分子学报, 2020, 51(1): 39-54. doi: 10.11777/j.issn1000-3304.2020.19148 shu
Citation1:  Sen-long Yu, Heng-xue Xiang, Jia-liang Zhou, Tian Qiu, Ze-xu Hu and Mei-fang Zhu. Typical Polymer Fiber Materials: An Overview and Outlook[J]. Acta Polymerica Sinica, 2020, 51(1): 39-54. doi: 10.11777/j.issn1000-3304.2020.19148 shu

典型高分子纤维发展回顾与未来展望

    作者简介: 朱美芳,女,1965年生. 1986年、1989年分别获中国纺织大学化纤系学士和硕士学位,1999年获东华大学材料学博士学位. 教育部长江学者特聘教授(2013年). 现任东华大学材料科学与工程学院院长、纤维材料改性国家重点实验室主任. 主要研究方向为杂化功能纤维材料成形方法与基础理论、纳米复合水凝胶材料等. 已主持国家杰出青年基金、国家“863”计划、国家重点研发计划、国家自然科学基金重点项目等30余项. 发表SCI收录论文300余篇,授权中国发明专利100余件. 获国家科技进步二等奖、上海市自然科学一等奖等科技/教育奖励10余项. 曾获中国青年科技奖、国家有突出贡献中青年专家、何梁何利科学与技术青年创新奖、中国青年女科学家奖等称号;
    通讯作者: 朱美芳, E-mail: zhumf@dhu.edu.cn
摘要: 高分子纤维作为发展国民经济的基础材料、国防军工的战略材料、新兴产业的前沿材料,其产品内涵与应用领域正在不断拓展. 本文首先简要介绍了国内外高分子纤维材料的发展简史,其依次经历了天然纤维、人造纤维、合成纤维(差别化、功能化、高性能等纤维)等发展阶段. 其次,结合本课题组相关工作重点阐述了通用型聚酯纤维、高性能聚苯硫醚纤维以及生物质聚乳酸纤维等典型高分子纤维材料的研究进展,包括发展历程、制备方法、性能优化、应用领域等内容. 最后,展望了高分子纤维材料的发展趋势,我们认为基于材料、信息、生物、机械等学科交叉融合与技术突破,具有多材料、多结构、多功能的绿色、超性能、智能纤维材料将成为未来发展方向.

English

    1. [1]

      Liu Dezhong(刘德中), Li Jiefu(李皆富), Huang Wentao(黄文弢), Yang Shuguang(杨曙光). Acta Polymerica Sinica (高分子学报), 2018, (4): 445 − 455 doi: 10.11777/j.issn1000-3304.2017.17285

    2. [2]

      Huang W T, Liu D Z, Li J F, Zhu L P, Yang S G. Sci China Technol Sci, 2019, 62(6): 931 − 944 doi: 10.1007/s11431-018-9475-5

    3. [3]

      Shen Xinyuan(沈新元). Chemical Fiber Identification and Inspection(化学纤维鉴别与检验). Beijing(北京): China Textile Press(中国纺织出版社), 2013. 1-2

    4. [4]

      Xiang H X, Chen W, Chen Z Y, Sun B, Zhu M F. Compos Sci Technol, 2017, 142: 207 − 213 doi: 10.1016/j.compscitech.2017.02.016

    5. [5]

      Chen Ziye(陈姿晔), Xiang Hengxue(相恒学), Hu Zexu(胡泽旭), Ni Zhanggen(倪张根), Zhu Meifang(朱美芳). Acta Polymerica Sinica(高分子学报), 2017, (7): 1121 − 1129 doi: 10.11777/j.issn1000-3304.2017.16366

    6. [6]

      Ma Wujun(麻伍军), Chen Shaohua(陈少华), Zhu Meifang(朱美芳). Materials China(中国材料进展), 2016, (2): 118 − 127

    7. [7]

      Zhang Y K, Hu Z X, Xiang H X, Zhai G X, Zhu M F. Dyes Pigments, 2019, 162: 705 − 711 doi: 10.1016/j.dyepig.2018.11.007

    8. [8]

      Sun Jinliang(孙晋良), LvYuanwei(吕元伟). New Fiber Materials(纤维新材料). Shanghai(上海): ShanghaiUniversity Press(上海大学出版社), 2003.1-3

    9. [9]

      Hooke R. Micrograrphia: Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon. London: Council of the Royal Society of London, 1665

    10. [10]

      Cheng Bowen(程博文). China Synthetic Fiber Industry(合成纤维工业), 1994, (4): 19

    11. [11]

      Cheng Bowen(程博文). China Synthetic Fiber Industry(合成纤维工业), 1995, (1): 39

    12. [12]

      Tang Benzhong(唐本忠). Bulletin of National Natural Science Foundation of China(中国科学基金), 2018, (3): 241 − 242

    13. [13]

      Staudinger H. Introduction to organic qualitative analysis, Berlin: Springer-Verlag, 1923

    14. [14]

      Staudinger H. The high-molecular organic compounds, rubber and cellulose, Berlin: Springer-Verlag, 1932

    15. [15]

      American Chemical Society International Historic Chemical Landmarks. Foundations of Polymer Science: Hermann Staudinger and Macromolecules. http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/staudinger-polymerscience.html, 2019

    16. [16]

      Sun Shiyu(孙时聿). Synthetic Fiber in China(合成纤维), 1987, (5): 65

    17. [17]

      China Chemical Fiber Association(中国化学纤维工业协会). Analysis and Forecast of China Chemical Fibers,Economoy of 2017(2017年中国化纤经济形势分析与预测). Beijing(北京): China Textile Apparel Press(中国纺织出版社), 2017. 414-419

    18. [18]

      Wang Songlin(王松林), Xiang Hengxue(相恒学), Xu Jinlong(徐锦龙), Cheng Yanhua(成艳华), Zhou Zhe(周哲), Sun Bin(孙宾), Zhu Meifang(朱美芳). Journal of Textile Research(纺织学报), 2018, 39(3): 167 − 174

    19. [19]

      Wang Decheng(王德诚). Polyester Industry(聚酯工业), 2019, (2): 40

    20. [20]

      Zhang Xushun(张徐顺). China Textile(中国纺织), 1996, (7): 32 − 34

    21. [21]

      Ren Chuanjun(任传俊). China Textile(中国纺织), 1996, (3): 4 − 9

    22. [22]

      China chemical fiber association(中国化学纤维工业协会). Basic information of the national chemical fiber industry in 2018(2018年全国化纤行业基本情况). http://www.ccfa.com.cn, 2019

    23. [23]

      Dong Jizhen(董纪震), Luo Honglie(罗鸿烈). Technology of Synthetic Fiber Production(合成纤维生产工艺学), Vol. 2(下册). Beijing(北京): Textile Industry Press(纺织工业出版社), 1993. 1-4

    24. [24]

      Guo Dasheng(郭大生), Wang Wenke(王文科). Polyester Fiber Science and Technology(聚酯纤维科学与工程).Beijing(北京): China Textile Press(中国纺织出版社), 2001. 1-20

    25. [25]

      Loscertales I G, Barrero A, Marquez M, Spretz R, Velarde-Oritz R, Larsen G. J Am Chem Soc, 2004, 126(17): 5376 − 537 doi: 10.1021/ja049443j

    26. [26]

      Li D, McCann J T, Xia Y N. Small, 2005, 1(1): 83 − 86

    27. [27]

      Weitz R T, Harnau L, Rauschenbach S, Burghard M, Kern K. Nano Lett, 2008, 8(4): 1187 − 1191 doi: 10.1021/nl080124q

    28. [28]

      Ren L Y, Pandit V, Elkin J, Denman T, Cooper J A, Kotha S P. Nanoscale, 2013, 5(6): 2337 − 2345 doi: 10.1039/c3nr33423f

    29. [29]

      Sarkar K, Gomez C, Zambrano S, Ramirze M, Hoyos E, Vasquez H, Lozano K. Mater Today, 2010, 13(11): 12 − 14 doi: 10.1016/S1369-7021(10)70199-1

    30. [30]

      Tanioka A, Takahashi M. Ind Eng Chem Res, 2016, 55(13): 3759 − 3764 doi: 10.1021/acs.iecr.5b05010

    31. [31]

      Tokarev A, Trotsenko O, Asheghali D, Grifiths I M, Stone H A, Minko S. Angew Chem Int Ed, 2015, 54(46): 13613 − 13616 doi: 10.1002/anie.201506796

    32. [32]

      Suzuki A, Mikuni T, Hasegawa T. J Appl Polym Sci, 2013, 131(6): 40015 − 40026

    33. [33]

      Xiang H X, Niu Y J, Liao Z J, Chen W, Ji H Q, Sun B, Zhu M F. J Appl Polym Sci, 2017, 134(36): 45253 − 45259 doi: 10.1002/app.45253

    34. [34]

      Esra K, Feryal Q. J Appl Polym Sci, 2007, 103(4): 2615 − 2621 doi: 10.1002/app.25350

    35. [35]

      Zhou Jialiang(周家良), Xiang Hengxue(相恒学), Zhou Zhe(周哲), Sun Bin(孙宾), Cheng Yanhua(成艳华), Weng Wei(翁巍), Zhu Meifang(朱美芳). Chinese Science Bulletin(科学通报), 2016, 61(19): 2136 − 2146

    36. [36]

      Ge X G, Wang D Y, Wang C, Qu M H, Wang J S, Zhao C S, Jing X K, Wang Y Z. Eur Polym J, 2007, 43(7): 2882 − 2890 doi: 10.1016/j.eurpolymj.2007.03.040

    37. [37]

      Wang D Y, Ge X G, Wang Y Z, Wang C, Qu M H, Zhou Q. Macromol Mater Eng, 2006, 291(6): 638 − 645 doi: 10.1002/mame.200600017

    38. [38]

      Wang D Y, Wang Y Z, Wang J S, Chen D Q, Zhou Q, Yang B, Li W Y. Polym Degrad Stabil, 2005, 87(1): 171 − 176 doi: 10.1016/j.polymdegradstab.2004.08.004

    39. [39]

      Liu F, Wang R, Shi Y, Jiang X Z, Sun B, Zhu M F. Prog Nat Sci, 2013, 23(6): 573 − 578 doi: 10.1016/j.pnsc.2013.11.011

    40. [40]

      Zhou J L, Wang C C, Cunningham A J, Hu Z X, Xiang H X, Sun B, Zuo W W, Zhu M F. Mat Sci Eng C-Mater, 2019, 101: 499 − 504 doi: 10.1016/j.msec.2019.04.008

    41. [41]

      Zhou J L, Xiang H X, Zabihi F, Yu S L, Sun B, Zhu M F. Nano Res, 2019, 12(6): 1453 − 1460 doi: 10.1007/s12274-019-2406-8

    42. [42]

      Zhou J L, Fei X, Li C Q, Yu S L, Hu Z X, Xiang H X, Sun B, Zhu M F. Polymers, 2019, 11(1): 113 − 126 doi: 10.3390/polym11010113

    43. [43]

      Zhu Meifang(朱美芳), Zhou Zhe(周哲). China’s Strategic Emerging Industry-New Materials High PerformanceFibers(中国战略性新兴产业-新材料高性能纤维). Beijing(北京): China Railway Press(中国铁道出版社), 2017. 5-7

    44. [44]

      Ye Guangdou(叶光斗), Tang Guoqiang(唐国强). New Chemical Materials(化工新型材料), 2007, 35(3): 79 − 82

    45. [45]

      Li Gang(李刚), Liu Ting(刘婷), Chen Yanmo(陈彦模), Zhang Yu(张瑜). Synthetic Technology and Application (合成技术及应用), 2005, 20(3): 30 − 33

    46. [46]

      Zhang Hao(张浩), Ma Haiyan(马海燕), Hu Zuming(胡祖明), Liu Zhaofeng(刘兆峰). Materials Review(材料导报), 2006, 20(9): 64 − 85 doi: 10.3321/j.issn:1005-023X.2006.09.017

    47. [47]

      Xu Junyi(徐俊怡), Liu Zhao(刘钊), Hong Rui(洪瑞), Wang Xiaojun(王孝军), Long Shengru(龙盛如), Zhang Gang (张刚), Yang Jie(杨杰). Materials China(中国材料进展), 2015, 34(12): 883 − 888

    48. [48]

      Yang Jie(杨杰). Polyphenylene Sulfide Resin and Its Application(聚苯硫醚树脂及其应用). Beijing(北京): Chemical Industry Press(化学工业出版社), 2006. 22-24

    49. [49]

      Wang Jiaming(汪家铭). China Textile Leader(纺织导报), 2009, (6): 76 − 79 doi: 10.3969/j.issn.1003-3025.2009.06.016

    50. [50]

      Wang Lihua(王丽华), ShengJing(盛京), Zhao Jiasen(赵家森). Journal of Textile Research(纺织学报), 2004, 25(1): 25 − 27 doi: 10.3321/j.issn:0253-9721.2004.01.008

    51. [51]

      Xiao Qianling(肖前玲). Textile Machinery(纺织机械), 2009, 3: 38 − 40 doi: 10.3969/j.issn.1003-2290.2009.06.013

    52. [52]

      Hu Z X, Li L L, Sun B, Meng S, Chen L, Zhu M F. Prog Nat Sci, 2015, 25(4): 310 − 315 doi: 10.1016/j.pnsc.2015.08.004

    53. [53]

      Zhang He(张贺). Preparation and Research of Polyphenylene Sulfone/Polyphenylene Sulfide Blend(聚亚苯基砜/聚苯硫醚共混物的制备及性能研究). Doctoral Dissertation of Jilin University (吉林大学博士学位论文), 2015

    54. [54]

      Wang Yan(王妍), Hu Zexu(胡泽旭), Zhou Zhe(周哲), Zhu Meifang(朱美芳). Synthetic Fiber in China(合成纤维), 2019, (3): 12 − 18 doi: 10.3969/j.issn.1001-0041.2019.03.003

    55. [55]

      Bourbigot S, Flambard X. Fire Mater, 2002, 26(4-5): 155 − 168 doi: 10.1002/fam.799

    56. [56]

      Carr P L, Ward I M. Polymer, 1987, 28(12): 2070 − 2076 doi: 10.1016/0032-3861(87)90043-7

    57. [57]

      Xing Jian(刑剑). Antioxidant Modification of Polyphenylene Sulfide (PPS) and Research on Its Structure andPerformance(聚苯硫醚抗氧化改性及其结构与性能的研究). Doctoral Dissertation of Jiangnan University (江南大学博士学位论文), 2017

    58. [58]

      Hu Zexu(胡泽旭). A Study on the Preparation and Light Aging Resistance of Polyphenlene Sulfide Nanocomposite Fibers(聚苯硫醚纳米复合纤维的制备及其耐光老化性能研究). Doctoral Dissertation of Donghua University(东华大学博士学位论文), 2017

    59. [59]

      Liu Ting(刘婷), Chen Yanmo(陈彦模), Yan Bo(闫波), Zhang Yu(张瑜), Zhu Meifang(朱美芳). China Synthetic Fiber Industry(合成纤维工业), 2008, 31(3): 8 − 11 doi: 10.3969/j.issn.1001-0041.2008.03.003

    60. [60]

      Sheng Xiangqian(盛向前), Zhang Ruiping(张蕊萍), Niu Mei(牛梅), Yang Han(杨晗), Dai Jinming(戴晋明), Gao Libin(高立斌), Bai Qirong(白启荣). Technical Textiles(产业用纺织品), 2011, 2: 23 − 26 doi: 10.3969/j.issn.1004-7093.2011.04.007

    61. [61]

      Wang Xiao(王晓), Liu Pengqing(刘鹏清), Wang Sheng(王升), Ye Guangdou(叶光斗), Xu Jianjun(徐建军). China Synthetic Fiber Industry(合成纤维工业), 2012, 35(4): 20 − 23 doi: 10.3969/j.issn.1001-0041.2012.04.006

    62. [62]

      Wang Sheng(王升), Liu Pengqing(刘鹏清), Zhu Mo(朱墨), Hu An(胡安), Xu Jianjun(徐建军), Ye Guangdou(叶光斗). China Synthetic Fiber Industry(合成纤维工业), 2010, 33(3): 5 − 8 doi: 10.3969/j.issn.1001-0041.2010.03.002

    63. [63]

      Naffakh M, Marco C, Gómez M A, Jiménez I. J Phys Chem B, 2009, 113(20): 7107 − 7115 doi: 10.1021/jp9008515

    64. [64]

      Li C Y, Li Z H, Zhang M L, Cheng B W. RSC Adv, 2017, 7(74): 46678 − 46689 doi: 10.1039/C7RA08849C

    65. [65]

      Hu Zexu(胡泽旭), Chen Ziye(陈姿晔), Xiang Hengxue(相恒学), Qiu Tian(邱天), Tang Yuze(汤宇泽), Zhou Zhe (周哲), Zhu Meifang(朱美芳). Journal of Textile Research(纺织学报), 2017, 38(11): 1 − 7

    66. [66]

      Hu Zexu(胡泽旭), Meng Si(孟思), Zhou Zhe(周哲), Chen Long(陈龙), Chen Yanmo(陈彦模), Zhang Yu(张瑜), Zhu Meifang(朱美芳). Materials China(中国材料进展), 2014, 33(8): 484 − 490

    67. [67]

      Richard A G, Bhanu K. Science, 2002, 297(5582): 803 − 807 doi: 10.1126/science.297.5582.803

    68. [68]

      Xiang H X, Chen Z Y, Zheng N, Zhang X Z, Zhu L P, Zou Z, Zhu M F. Inter J Biol Macromol, 2019, 122: 1136 − 1143 doi: 10.1016/j.ijbiomac.2018.09.063

    69. [69]

      Carothers W H, Dorough G L, van-Natta F J. J Am Chem Soc, 1932, 54(2): 761 − 772 doi: 10.1021/ja01341a046

    70. [70]

      Eling B, Gogolewski S, Pennings A J. Polymer, 1982, 23(11): 1587 − 1592 doi: 10.1016/0032-3861(82)90176-8

    71. [71]

      Gogolewski S, Pennings A J. J Appl Polym Sci, 1983, 28(3): 1045 − 1061 doi: 10.1002/app.1983.070280312

    72. [72]

      Hyon S H, Jamshidi K, Ikada Y. Polymer Preprints, 1983, 24(1): 6

    73. [73]

      Zhen Guangming(甄光明). Biotechnology and Business(生物产业技术), 2015, (1): 42 − 52 doi: 10.3969/j.issn.1674-0319.2015.01.005

    74. [74]

      Bai Qiongqiong(白琼琼), Wen Meilian(文美莲), Li Zengjun(李增俊), LvJiabin(吕佳滨). Wool Textile Journal (毛纺科技), 2017, 45(2): 64 − 68

    75. [75]

      Marius M, Philippe D. Adv Drug Deliver Rev, 2016, 107(15): 17 − 46

    76. [76]

      RafaelA, Bruce H, Susan S. Macromol Biosci, 2004, 4(9): 835 − 864 doi: 10.1002/mabi.200400043

    77. [77]

      Bhuvanesh G, Nielsh R, Jons H. Prog Polym Sci, 2007, 32(4): 455 − 482 doi: 10.1016/j.progpolymsci.2007.01.005

    78. [78]

      Uruchaya S, Fabiola I F, Rafael A, Susan S, Maria R, Loong T L. Prog Polym Sci, 2018, 86(12): 85 − 121

    79. [79]

      Sajjad S, Michel A H, Li H B, Chul B P. Prog Polym Sci, 2012, 37(12): 1657 − 1677 doi: 10.1016/j.progpolymsci.2012.07.005

    80. [80]

      Xia Mingfeng(夏明凤), Yang Yue(杨月), Fu Guoliang(付国良), Yun Han(云汉), Zhang Hao(张昊), Wu Ningjing (吴宁晶). Polymer Bulletin(高分子通报), 2019, (3): 29 − 34

    81. [81]

      Nampoothiri K M, Nimisha R N, Rojan P J. Bioresource Technol, 2010, 101(22): 8493 − 8501 doi: 10.1016/j.biortech.2010.05.092

    82. [82]

      Yang Y, Zhang L S, Xiong Z, Tang Z B, Zhang R Y, Zhu J. Sci China Chem, 2016, 59(11): 1335 − 1368

    83. [83]

      Rahul M R, Amol V J, Douglas E H. Prog Polym Sci, 2010, 35(3): 338 − 356 doi: 10.1016/j.progpolymsci.2009.12.003

    84. [84]

      Jean M R, Youssef H, Marius M, Philippe D. Prog Polym Sci, 2013, 38(10): 1504 − 1542

    85. [85]

      Jin F L, Hu R R, Park S J. Compos Part B-Eng, 2019, 164(1): 287 − 296

    86. [86]

      Mohammadreza N, Dilara S, Pierre J C, Musa R K, Marie-Claude H. Int J Biol Macromol, 2019, 125: 307 − 360 doi: 10.1016/j.ijbiomac.2018.12.002

    87. [87]

      Xiong Z J, Liu G, Zhang X Q, Wen T, Vos D S, Joziasse C, Wang D J. Polymer, 2013, 54(2): 964 − 971 doi: 10.1016/j.polymer.2012.11.076

    88. [88]

      Hideto T. Macromol Biosci, 2005, 5(7): 569 − 597 doi: 10.1002/mabi.200500062

    89. [89]

      Kotiba H, Mosab K, Muhammad A, Jinho J, Fawaz D. Prog Polym Sci, 2018, 85: 83 − 127 doi: 10.1016/j.progpolymsci.2018.07.001

    90. [90]

      Xiang H X, Zabihi F, Zhang X Z, Zhu M F. Chinese J Polym Sci, 2018, 36(12): 1353 − 1360 doi: 10.1007/s10118-018-2157-0

    91. [91]

      Aguirre E C, Iñiguez-Franco F, Samsudin H, Fang X, Auras R. Adv Drug Deliver Rev, 2016, 107: 333 − 366 doi: 10.1016/j.addr.2016.03.010

    92. [92]

      Zhu Meifang(朱美芳). World Science(世界科学), 2018, (7): 32 − 34 doi: 10.3969/j.issn.1000-0968.2018.07.012

    93. [93]

      Wang S C, Chen W, Xiang H X, Yang J J, Zhou Z, Zhu M F. Polymers, 2016, 8(8): 273 − 301 doi: 10.3390/polym8080273

    94. [94]

      Xiang Hengxue(相恒学), Zeng Jia(曾佳), Chen Ziye(陈姿晔), Zhou Zhe(周哲), Zhu Meifang(朱美芳). Materials China(中国材料进展), 2019, 38(5): 450 − 456

    95. [95]

      Chen W, Xiang H X, Jiang Y M, Rashdi S Y, Zhu M F. Sci China Chem, 2017, 60(11): 1450 − 1457 doi: 10.1007/s11426-017-9119-2

    96. [96]

      Meng S, Zhang J Y, Chen W P, Wang X P, Zhu M F. Micropor Mesopor Mat, 2019, 273: 294 − 296 doi: 10.1016/j.micromeso.2018.07.021

    97. [97]

      Chen T, Hou K, Ren Q Y, Chen G Y, Wei P L, Zhu M F. Macromol Rapid Commun, 2018, 39(21): 1800337 − 1800363 doi: 10.1002/marc.201800337

    98. [98]

      Xiang H X, Xia M G, Cunningham A, Chen W, Sun B, Zhu M F. J Mech Behav Biomed, 2017, 72: 74 − 81 doi: 10.1016/j.jmbbm.2017.04.026

    99. [99]

      Tebyetekerwa M, Marriam I, Xu Z, Yang S Y, Zhang H, Zabihi F, Jose R, Peng S J, Zhu M F, Ramakrishna S. Energ Environ Sci, 2019, 12(7): 2148 − 2160 doi: 10.1039/C8EE02607F

    100. [100]

      Weng W, Yang J J, Zhang Y, Li Y X, Yang S Y, Zhu L P, Zhu M F. Adv Mater, 2019, Doi:10.1002/adma.201902301

    101. [101]

      Yu S L, Wang X P, Xiang H X, Zhu L P, Tebyetekerwa M, Zhu M F. Carbon, 2018, 140: 1 − 9 doi: 10.1016/j.carbon.2018.08.028

    102. [102]

      Yu S L, Wang X P, Xiang H X, Tebyetekerwa M, Zhu M F. Sci China Mater, 2019, 62(7): 995 − 1004 doi: 10.1007/s40843-018-9402-1

    1. [1]

      黄庆吴鹏飞崔宁崔华帅沈锂鸣高绪珊 . 聚苯硫醚纤维的抗张强度与工艺和结构的关系. 高分子学报, 2012, (3): 326-333. doi: 10.3724/SP.J.1105.2012.11267

    2. [2]

      胡恒亮穆祥祺吴世臻 . 冷拉伸无定形聚酯纤维的形态研究. 高分子学报, 1984, (1): 39-44.

    3. [3]

      丁彬 . 功能微纳米聚合物纤维材料. 高分子学报, 2019, 50(8): 764-774. doi: 10.11777/j.issn1000-3304.2019.19069

    4. [4]

      侯甲子张万喜李莉莉孙晓平 . 纤维素纤维材料几种降解方法的研究. 高分子学报, 2013, (1): 30-35. doi: 10.3724/SP.J.1105.2013.12116

    5. [5]

      曾汉民何国仁 . 聚苯硫醚及其碳纤维复合材料结晶动力学的研究. 高分子学报, 1983, (1): 12-18.

    6. [6]

      张安秋江浩吴承训周林洋宣亮钱宝钧 . 热定型聚酯纤维内应力与晶格变形的关系. 高分子学报, 1985, (3): 216-220.

    7. [7]

      张德仁张永娟周宝官孙大宽 . 聚酯纤维与丙烯酸的辐照-过氧化法接枝聚合. 高分子学报, 1982, (3): 167-171.

    8. [8]

      刘瑞来刘俊劭刘海清 . 聚乳酸/醋酸纤维素复合多孔超细纤维的制备. 高分子学报, 2013, (10): 1312-1318. doi: 10.3724/SP.J.1105.2013.13051

    9. [9]

      张济邦朱维芳 . 氢氧化钠对聚酯纤维(PET)降解或水解作用的探讨. 高分子学报, 1983, (4): 295-298.

    10. [10]

      傅思睿杨静晖傅强 . 碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究. 高分子学报, 2012, (3): 344-350. doi: 10.3724/SP.J.1105.2012.11293

    11. [11]

      李武丹姚军燕张世杰陈晓 . 聚乳酸/聚苯胺/富勒烯静电纺丝纤维的制备与表征. 高分子学报, 2016, (6): 715-721. doi: 10.11777/j.issn1000-3304.2016.15297

    12. [12]

      曹胜光胡炳环刘海清 . 静电纺制备纳米孔结构聚乳酸(PLLA)超细纤维. 高分子学报, 2010, (10): 1193-1198. doi: 10.3724/SP.J.1105.2010.09391

    13. [13]

      赵亚男李晓然袁晓燕 . 聚乙二醇-b-聚乳酸的合成及其电纺形成超细纤维研究. 高分子学报, 2008, (5): 405-409. doi: 10.3724/SP.J.1105.2008.00405

    14. [14]

      华笋陈风王捍卿刘正英杨伟杨鸣波 . 纤维素接枝共聚物对聚乳酸结晶性能和拉伸流变性能的影响. 高分子学报, 2016, (8): 1136-1144. doi: 10.11777/j.issn1000-3304.2016.15376

    15. [15]

      李蜀凤刘大兴郑勇辉岳瑛黄宇彬景遐斌 . 负载紫杉醇的聚乳酸纳米纤维对宫颈癌的抑制作用. 高分子学报, 2012, (9): 1029-1034. doi: 10.3724/SP.J.1105.2012.12066

    16. [16]

      龚华俊杨小平陈国强刘太奇张淑敏邓旭亮胡晓阳 . 电纺丝法制备聚乳酸/多壁碳纳米管/羟基磷灰石杂化纳米纤维的研究. 高分子学报, 2005, (2): 297-300.

    17. [17]

      徐羽梧李健董世华 . 螯合树脂研究ⅩⅩ.聚硫醚型离子交换纤维的合成及其吸附性能. 高分子学报, 1993, (5): 576-582.

    18. [18]

      何天白周江曲桂杰陈天禄李滨耀 . 连续碳纤维增强的聚芳醚酮复合材料的层间破坏. 高分子学报, 1990, (6): 734-739.

    19. [19]

      张秀芹熊祖江刘国明尹永爱王锐王笃金 . 取向对聚左旋乳酸/聚右旋乳酸复合物纤维结晶性能的影响. 高分子学报, 2014, (8): 1048-1055. doi: 10.11777/j.issn1000-3304.2014.13444

    20. [20]

      沈衡赵宁徐坚 . 锂离子电池隔膜专利分析与发展趋势. 高分子学报, 2015, (11): 1266-1270. doi: 10.11777/j.issn1000-3304.2015.15145

  • Figure 1.  Development history and industrialization time of world chemical fiber production

    Figure 2.  Chemical fiber output of China and fiber yeild ratio of China/world from 2009 to 2018

    Figure 3.  Scheme of PET resin and fiber fabrication (PTA method and DMT method)[24]

    Figure 4.  Novel fiber forming technology: (a) Electrospinning (Reprinted with permission from Ref.[25]; Copyright (2004) American Chemical Society), (b) Centrifugal spinning (Reprinted with permission from Ref.[28]; Copyright (2013) The Royal Society of Chemistry), (c) Zetta-spinning (Reprinted with permission from Ref.[30]; Copyright (2016) American Chemical Society), (d) CO2 Laser supersonic drawing (Reprinted with permission from Ref.[32]; Copyright (2014) John Wiley and Sons)

    Figure 5.  Special-sharped PET fiber ((a) round, (b) hollow-round, (c) trilobal, (d) hollow-triobal)) with different cross sections (Reprinted with permission from Ref.[34]; Copyright (2007) John Wiley and Sons)

    Figure 6.  Different structures of PPS: (a) line type, (b) crosslinking type, (c) hyper-branched type[53]

    Figure 7.  Reinforcing mechanism of light stability of different inorganic nano materials in PPS fiber (a) TiO2 UV light shielding and absorbing mechanism, (b) graphene UV light shielding and excited electron quenching mechanism[58]

    Figure 8.  Schematic diagram for the cyclic progress of biodegradable polymers (Reprinted with permission from Ref.[67]; Copyright (2002) The American Association for the Advancement of Science)

    Figure 9.  Evolution of PLA worldwide production capacities (2011 − 2020)[75]

    Figure 10.  Schematic diagram for the synthesis methods of PLA (Reprinted with permission from Ref.[76]; Copyright (2004) John Wiley and Sons)

    Figure 11.  Chemical structures of lactic acid, lactide and PLA[78~80]

    Figure 12.  Schematic illustration of the crystallization behavior of the PLLA/PDLA between the α-crystals and sc-crystals during the heating (a) and cooling (b) processes (Reprinted with permission from Ref.[87]; Copyright (2013) Elsevier)

    Figure 13.  Diagram of "Next Generation Fiber": material basis, product connotation, potential application

    Table 1.  Series of functional fibers from main international chemical fiber companies[18]

    FunctionProductFiberApplicationCompany
    CooldryTOREX/QUUPPA6Apparel/AccessoriesToray
    Fang Li Shuang/HygraPET/PAToray/Unitika
    Thermo-regulatedMOISCARE/HEATMAXPolyacrylate/PANApparel/AccessoriesToyobo/Toray
    UrtalfineSENS/EastmanPTT/PolyesterHome textile/CarpetFilature Miroglio/
    Eastman
    BreathabilityEltas/KURAFLEX-MB/
    Beegette
    Polyamide/Polyolefin/
    Polyeste
    Apparel/Accessories/
    Packing
    Asahi/Kasei/Kuraray/
    Toray
    Flame retardantNomex/PyromexAramid/PAMProtective clothingDupont/Teijin
    High strengthLeonaPA66AutomobileAsahi/Kasei
    Anti-bacteriaArtisyarn/Makspec/
    Aerosilver
    PANApparel/AccessoriesToray/Hyosung
    下载: 导出CSV

    Table 2.  The main research institutions and production enterprises of PPS fiber in the world

    YearOrganization/AuthorAchievement
    1975BartlesvilleSpinnability of PPS resin[44]
    1979PhillipsFabrication ofPPS fiber for the first time[44]
    1983PhillipsIndustrialization of PPS fiber,trade name Ryton[44]
    1987P.L.CarrTheoretical model of PPS melt spinning[46]
    1989PhillipsPPS capacity of Phillips: 7500 t/y in USA, 7500 t/y in Japan[45]
    1990Sichuan Textile Academy"863" National project, the beginning of homemade PPS fiber[49]
    1993Dainippon Ink &Chemical InPPS Capacity: 3600 t/y in USA[45]
    1995Tsinghua UniversitySpinning dynamics of imported PPS resin[46]
    1998TorayIndustrialization of PPS fiber,trade name Torcon[44]
    2001Koketsu TomotakaRelation between multistage drafting process and structure[46]
    2001Tsubaki YasushiReinforced modification of PPS fiber by drafting process[46]
    2004Nogami KatsuoMelt spinning temperature of PPS: 310 − 340 °C[46]
    2004China Textile AcademyNationalization of resin synthesis, PPS spinning, fiber products[49]
    2004Tianjin UniversityHollow PPS fiber[50]
    2006Jiangsu Ruitai companyLarge scale production of PPSfiber, capacity 1500 t/y[49]
    2006Donghua UniversitySpinnability and structure of homemade PPS resin[50]
    2008Sichuan Deyang CompanyNationalization of PPS fiber, capacity 5000 t/y[49]
    2009Beijing ZhongliNationalization of relevant equipments[51]
    2013Donghua UniversityLaboratory scale fabrication of anti-oxidation PPS fiber[52]
    下载: 导出CSV

    Table 3.  The thermal, flame retardant properties, solubility and conductivity of PPS[54~56]

    SampleTg (°C)Tm (°C)Tc (°C)Td (°C)Solubility (g/L)LOI (%)Conductivity (S/cm)
    PPS882851255003410−18 − 18−15
    下载: 导出CSV

    Table 4.  The oxidation resistance of PPS modified by different inorganic nano materials

    Functional fillersResults
    0DStabilizer/TiO2,
    (0.75/0.75, weight ratio)
    After 50 h of UV, strength increased by 40%, aberration decreased by 10%[58]
    SiO2 (1 wt%)240 °C for 24 h, the strength increased by 51%, oxidation induced
    temperature increased by 60 °C[59]
    TiO2@SiO2 (1.5 wt%)60 °C for 180 h, the strength of modified fiber increased by 17%[52]
    TiO2 (1.5 wt%)After 192 h of UV, the strength of modified fiber increased by 39%[60]
    Carbon black (1.5 wt%)After 192 h of UV, the strength of modified fiber increased by 30%[61]
    1DCNT (1 wt%)Young’s modulus and strength increased by 51 and 37%[62]
    CNT/WS2
    (1.5/0.5, weight ratio)
    The oxidation induced temperature increased by 27 °C[63]
    2DMMT@SiC (5 wt%)The oxidation induced temperature time increased by 41 °C[64]
    Graphene (1 wt%)60 °C for 192 h, the strength of modified fiber increased by 24%[65]
    下载: 导出CSV

    Table 5.  Comparison of thermal and mechanical properties of PLLA and typical fibers

    PropertyPETPA6CottonWoolPLLA
    Density (g·cm−3)1.41.11.51.31.2
    Tg (°C)70.040.057.0
    Tm (°C)260.0215.0175.0
    Tensile strength (cN/dtex)3.0 − 6.54.0 − 5.53.3 − 5.51.43.0 − 5.0
    Fibreresilience (%)65.089.052.069.093.0
    Moisture regain (%)0.2 − 0.44.0 − 4.57.0 − 11.014.0 − 18.00.4 − 0.6
    下载: 导出CSV
  • 加载中
图(14)表(5)
计量
  • PDF下载量:  242
  • 文章访问数:  1413
  • HTML全文浏览量:  784
  • 引证文献数: 0
文章相关
  • 通讯作者:  朱美芳, zhumf@dhu.edu.cn
  • 收稿日期:  2019-08-04
  • 修稿日期:  2019-10-07
  • 刊出日期:  2020-01-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发 技术支持: info@rhhz.net 百度统计